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Abstract. Famous descriptive characterisations of P and PSPACE are
restated in terms of the Cook-Nguyen style second order bounded arith-
metic. We introduce an axiom of inductive definitions over second order
bounded arithmetic. We show that P can be captured by the axiom of
inflationary inductive definitions whereas PSPACE can be captured by
the axiom of non-inflationary inductive definitions.

1 Introduction

The notion of inductive definitions is widely accepted in logic and mathematics.
Although inductive definitions usually deal with infinite sets, we can also discuss
about finitary inductive definitions. Suppose a finite set S and an operator Φ :
P(S) → P(S), a mapping over the power set P(S) of S. For a natural m, define
a subset Pm

Φ of S inductively by P 0
Φ = ∅ and Pm+1

Φ = Φ(Pm
Φ ). If the operator

Φ is inflationary, i.e., X ⊆ Φ(X) for any X ⊆ S, then there exists a natural
k ≤ |S| such that P k+1

Φ = P k
Φ , where |S| denotes the number of elements of S,

and hence the operator Φ has a fixed point. On the side of finite model theory,
a famous descriptive characterisation of the class of P of polytime predicates
was given by N. Immerman [6] and M. Y. Vardi [11]. It is shown that the class
P can be captured by the first order predicate logic with fixed point predicates
of first order definable inflationary operators. In case that the operator Φ is
not inflationary, it is not in general possible to find a fixed point of Φ. One
can however find two naturals k, l ≤ 2|S| such that l ̸= 0 and P k+l

Φ = P k
Φ .

Based on this observation, it is shown that the class PSPACE of polyspace
predicates can be captured by the first order predicate logic with fixed point
predicates of first order definable (non-inflationary) operators, cf. [4]. On the
side of bounded arithmetic, it was shown by S. Buss that P can be captured
by a first order system S12 whereas PSPACE can be captured by a second order
extension U1

2 of S12, cf. [2]. An alternative way to characterise P was invented
by D. Zambella [12]. As well as Buss’ characterisation by S12, P can be captured
by a certain form of comprehension axiom over a weak second order system
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of bounded arithmetic. A modern formalisation of Zambella’s idea including
further discussions can be found in the book [3] by S. Cook and P. Nguyen.
More recently, A. Skelley in [8] extended this idea to a third order formulation of
bounded arithmetic, capturing PSPACE as well as Buss’ characterisation by U1

2.
On the other side, as discussed by K. Tanaka [9,10] and others, cf. [7], inductive
definitions over infinite sets of naturals can be axiomatised over second order
arithmetic the most elegantly. All these motivate us to introduce an axiom of
inductive definitions over second order bounded arithmetic. Let us recall that for
each i ≥ 0 the class ΣB

i of formulas is defined in the same way as the class Σ1
i of

second order formulas, but only bounded quantifiers are taken into account. We
show that over a suitable base system the class P can be captured by the axiom
of inductive definitions under ΣB

0 -definable inflationary operators (Corollary 5.9)
whereas PSPACE can be captured by the axiom of inductive definitions under
ΣB

0 -definable (non-inflationary) operators (Corollary 7.12). There is likely no
direct connection, but this work is also partially motivated by the axiom AID of
Alogtime inductive definitions introduced by T. Arai in [1].

After the preliminary section, in Section 3 we introduce a system ΣB
0 -IID

of inductive definitions under ΣB
0 -definable inflationary operators and a system

ΣB
0 -ID of inductive definitions under ΣB

0 -definable (non-inflationary) operators.
In Section 4 we show that every polytime function can be defined in ΣB

0 -IID. In
Section 5 we show that conversely the system ΣB

0 -IID can only define polytime
functions by reducing ΣB

0 -IID to Zambella’s system V1. In Section 6 we show that
every polyspace function can be defined in ΣB

0 -ID. In Section 7 we show that
conversely the system ΣB

0 -ID can only define polyspace functions by reducing
ΣB

0 -ID to Skelley’s system W1
1.

2 Preliminaries

The two-sorted first order vocabulary L2
A consists of 0, 1, +, ·, | |, =1, =2, ≤

and ∈. At the risk of confusion, we also call L2
A the second order vocabulary

of bounded arithmetic. Note that =1 and =2 respectively denote the first order
and the second order equality, and t =1 s or U =2 V will be simply written as
t = s or U = V . First order elements x, y, z, . . . denote natural numbers whereas
seconder order elements X,Y, Z, . . . denote binary strings. The formula of the
form t ∈ X is abbreviated as X(t). Under a standard interpretation, |X| denotes
the length of the string X, and X(i) holds if and only if the ith bit of X is 1. Let
L be a vocabulary such that L2

A ⊆ L. We follow a convention that for an L-term
t, a string variable X and a formula φ, (∃X ≤ t)φ stands for ∃X(|X| ≤ t ∧ φ)
and (∀X ≤ t)φ stands for ∀X(|X| ≤ t → φ). Further (∃x ≤ t)φ stands for
(∃x1 ≤ t1) · · · (∃xk ≤ tk)φ if x = x1, . . . , xk and t = t1, . . . , tk. We follow similar
conventions for (∀x ≤ t)φ, (∃X ≤ t)φ and (∀X ≤ t)φ. A quantifier of the form
(Qx ≤ t) or (QX ≤ t) is called a bounded quantifier. Specific classes ΣB

i (L) and
ΠB

i (L) (0 ≤ i) are defined by the following clauses.

1. ΣB
0 (L) = ΠB

0 (L) is the set of L-formulas whose quantifiers are bounded
number ones only.
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2. ΣB
i+1(L) (ΠB

i+1(L) resp.) is the set of formulas of the form (∃X ≤ t)φ(X)
((∀X ≤ t)φ(X) resp.), where φ is a ΠB

i (L)-formula (a ΣB
i (L)-formula resp.)

and t is a sequence of L-terms not involving any variables from X.

Finally the class ∆B
i (L) is defined in the most natural way for each i ≥ 0. We

simply write ΣB
i (ΠB

i resp.) to denote ΣB
i (L2

A) (ΠB
i (L2

A) resp.) if no confusion
likely arises. Let us recall that for each i ≥ 0 the system Vi is axiomatised over
L2
A by the defining axioms for numerical and string function symbols in L2

A (B1–
B12, L1, L2 and SE, see [3, p. 96]) and the axiom (ΣB

i -COMP) of comprehension
for ΣB

i formulas:

∀x(∃Y ≤ x)(∀i < x)[Y (i) ↔ φ(i)], (ΣB
i -COMP)

where φ ∈ ΣB
i . We will use the following fact frequently.

Proposition 2.1 (Zambella [12]). (Cf. [3, p. 98, Corollary V.1.8]) The axiom
(ΣB

i -IND) of induction for ΣB
i formulas holds in Vi.

Let L2
A ⊆ L. For a string function f , a class Φ of L-formulas and a system

T over L, we say f is Φ-definable in T if there exists an L-formula φ(X, Y ) ∈ Φ
such that

– φ does not involve free variables other than X nor Y ,
– the graph f(X) = Y of f is expressed by φ(X, Y ) under a standard inter-

pretation as mentioned at the beginning of this section, and
– the sentence ∀X∃!Y φ(X, Y ) is provable in T .

Note that every function over natural numbers can be regarded as a string
one by representing naturals in their binary expansion.

Proposition 2.2 (Zambella [12]). (Cf. [3, p. 135, Theorem VI.2.2]) A func-
tion is polytime computable if and only if it is ΣB

1 -definable in V1.

3 Axiom of Inductive Definitions

In this section we introduce an axiom of inductive definitions. We work over
a conservative extension of V0. For the sake of readers’ convenience we recall
from Cook-Nguyen [3] several string functions, all of which have ΣB

0 -definable
bit-graphs. We suppose a standard numerical paring function ⟨x, y⟩ = (x+y)(x+
y + 1) + 2y. Clearly the paring function is definable in L2

A.
(String encoding [3, p. 114 Definition V.4.26]) The xth component Z [x] of a

string Z is defined by the axiom Z [x](i) ↔ i < |Z| ∧ Z(⟨x, i⟩).
(Encoding of bounded number sequences [3, p. 115 Definition V.4.31]) The

xth element (Z)x of the sequence encoded by Z is defined by the axiom

(Z)x = y ↔ [y < |Z| ∧ Z(⟨x, y⟩) ∧ (∀z < y)¬Z(⟨x, z⟩)] ∨
[y = |Z| ∧ (∀z < y)¬Z(⟨x, z⟩)].
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(String paring [3, p. 243, Definition VIII.7.2]) The string function ⟨X,Y ⟩ is
defined by the axiom

⟨X0, X1⟩(i) ↔ (∃j ≤ i)[(i = ⟨0, j⟩ ∧X0(j)) ∨ (i = ⟨1, j⟩ ∧X1(j))].

Correspondingly, a pair of strings can be unpaired as ⟨Z0, Z1⟩[i] = Zi (i = 0, 1).
(String constant, string successor, string addition [3, p. 112, Example V.4.17])

The string constant ∅ is defined by the axiom ∅(i) ↔ i < 0. The string successor
S(X) is defined by the axiom

S(X)(i) ↔ i ≤ |X| ∧ [X(i) ∧ (∃j < i)¬X(j)] ∨ [¬X(i) ∧ (∀j < i)X(j)].

The string addition X + Y is defined by the axiom

(X + Y )(i) ↔ (i < |X|+ |Y | ∧ (X(i)⊕ Y (i)⊕ Carry(i,X, Y ))),

where ⊕ denotes “exclusive or”, i.e., p⊕ q ≡ (p ∧ ¬q) ∨ (¬p ∧ q), and

Carry(i,X, Y ) ↔ (∃k < i)[X(k) ∧ Y (k) ∧ (∀j < i)(k < j → X(j) ∨ Y (j)].

(String ordering [3, p. 219, Definition VIII.3.5]) The string relation X < Y
is defined by the axiom

X < Y ↔ |X| ≤ |Y | ∧
(∃i ≤ |Y |)[(∀j ≤ |Y |)(i < j ∧X(j) → Y (j)) ∧ Y (i) ∧ ¬X(i)].

We write X ≤ Y to denote X = Y ∨ X < Y . It is known that if V0 is aug-
mented by adding a collection of ΣB

0 -defining axioms for string functions, then
the resulting system is a conservative extension of V0, cf. [3, p. 110, Corolalry
V.4.14]. Hence we identify V0 with the system resulting by augmenting V0 by
adding the ΣB

0 -defining axioms for those string functions and relations defined
above.

Further we work over a slight extension of the vocabulary L2
A. For a formula

φ(i,X) let Pφ(i, x,X) denote a fresh predicate symbol, where φ may contain free
variables other than i and X. We write L2

ID to denote the vocabulary expanded
by the new predicate Pφ for each φ. For a system T over a vocabulary L such that
L2
A ⊆ L we write T (L2

ID) to denote the conservative extension of T obtained by
augmenting T with the expanded vocabulary L2

ID. Now we introduce an axiom
of inductive definitions.

Definition 3.1 (Axiom of Inductive Definitions). Let Φ be a class of for-
mulas. Then the axiom schema (Φ-ID) of inductive definitions asserts that for
any natural x there exist two strings U and V such that |U |, |V | ≤ x+1, V ̸= ∅
fulfilling the following clauses, where φ ∈ Φ.

1. (∀i < x)[Pφ(i, x, ∅) ↔ i < 0].
2. (∀X ≤ x + 1)[X < U + V → (∀i < x)(Pφ(i, x, S(X)) ↔ φ(i, PX

φ,x))], where

φ(i, PX
φ,x) denotes the result of replacing every occurrence of Y (j) in φ(i, Y )

with Pφ(j, x,X) ∧ j < x.
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3. (∀i < x)[Pφ(i, x, U + V ) ↔ Pφ(i, x, U)].

We write (Φ-IID) for (Φ-ID) if additionally the formula φ ∈ Φ is inflationary,
i.e., if (∀Y ≤ x)(∀i < x)[Y (i) → φ(i, Y )] holds.

We write PX
φ,x = Y to denote (∀i < x)[Pφ(i, x,X) ↔ Y (i)]. By definition,

PX
φ,x denotes the string consisting of the first x bits of the string obtained by X-

fold iteration of the operator defined by the formula φ (starting with the empty
string).

Definition 3.2. Let Φ be a class of L2
A-formulas.

1. Φ-ID := V0(L2
ID) + (Φ-ID).

2. Φ-IID := V0(L2
ID) + (Φ-IID).

By definition the inclusion Φ-IID ⊆ Φ-ID holds for any class Φ of L2
A-formulas.

It is important to note that (ΣB
i (L2

ID)-COMP) is not allowed in Vi(L2
ID) for any

i ≥ 0, and hence ∀x∀X(∃Y ≤ x)PX
φ,x = Y does not hold in V0(L2

ID). The main
theorem in this paper is stated as follows.

Theorem 3.3. 1. A function is polytime computable if and only if it is ΣB
1

(L2
ID)-definable in ΣB

0 -IID.
2. A function is polyspace computable if and only if it is ΣB

1 (L2
ID)-definable in

ΣB
0 -ID.

4 Defining P functions by inflationary inductive
definitions

Theorem 4.1. Every polytime function is ΣB
1 (L2

ID)-definable in ΣB
0 -IID.

Proof. Suppose that a function f is polytime computable. Assuming without
loss of generality that f is a unary function such that f(X) can be computed
by a single-tape Turing machine M in a step bounded by a polynomial p(|X|)
in the binary length |X| of an input X.

We can assume that each configuration of M on input X is encoded into a
binary string whose length is exactly q(|X|) for some polynomial q. The polyno-
mial q can be found from information on the polynomial p since |f(X)| ≤ p(|X|)
holds. Let the predicate InitM denote the initial configuration of M and NextM
the next configuration of M . More precisely,

– InitM (i,X) is true if and only if the ith bit of the binary string that encodes
the initial configuration of M on input X is 1, and

– NextM (i,X, Y ) is true if and only if Y encodes a configuration of M on
input X and the ith bit of the binary string that encodes the successor
configuration of Y is 1. Note that NextM (i,X, Y ) never holds if Y does not
encode a configuration of M , or if Y encodes the final configuration of M .
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Careful readers will see that both Init and Next can be expressed by ΣB
0 -formulas.

We define MSP(j, Y ), the last j bits of a string Y , which is also known as the
most significant part of Y , by

MSP(j, Y )(i) ↔ i < j ∧ Y (|Y | –̇ j + i).

Let φ(i,X, Y ) denote the formula

i < |Y |+ q(|X|) ∧ [Y (i) ∨ InitM (i,X) ∨ NextM (i –̇ |Y |, X,MSP(q(|X|), Y ))].

Clearly φ is a ΣB
0 -formula.

Now reason in ΣB
0 -IID. It is not difficult to see that φ(i,X, Y ) is infla-

tionary with respect to Y . Hence, by the axiom (ΣB
0 -IID) of ΣB

0 inflationary
inductive definitions, we can find two strings U and V such that |U |, |V | ≤
q(|X|) · (p(|X|) + 1), V ̸= ∅ and PU+V

φ,q(|X|)·(p(|X|)+1) = PU
φ,q(|X|)·(p(|X|)+1). Hence

the following ΣB
1 (L2

ID) formula ψf (X,Y ) holds.

(∃U, V ≤ q(|X|) · (p(|X|) + 1)) [V ̸= ∅ ∧ PU+V
φ,q(|X|)·(p(|X|)+1) = PU

φ,q(|X|)·(p(|X|)+1)

∧Y = Value(MSP(q(|X|), PU
φ,q(|X|)·(p(|X|)+1)))],

where Value(Z) denotes the function ΣB
0 -definable in V0 (depending on the un-

derlying encoding) which extracts the value of the output from Z if Z encodes the
final configuration of M . By the definition of φ, MSP(q(|X|), PU

φ,q(|X|)·(p(|X|)+1))
encodes the final configuration of M , since in any terminating computation the
same configuration does not occur more than once. Hence ψf (X,Y ) defines the
graph f(X) = Y of f . It is easy to see that ∀X∃Y ψf (X,Y ) also holds. The
uniqueness of Y such that ψf (X,Y ) can be shown accordingly, allowing us to
conclude. ⊓⊔

5 Reducing inflationary inductive definitions to V1

In this section we show that every function ΣB
1 (L2

ID)-definable in the system
ΣB

0 -IID of ΣB
0 inflationary inductive definitions is polytime computable by re-

ducing ΣB
0 -IID to the system V1.

Notation. We write x –̇ y to denote the limited subtraction: x –̇ y = max{0, x−y},
and |x| to denote the devision of x by 2: |x| = ⌊x/2⌋. We will write x − y = z
if x –̇ y = z and y ≤ x. We expand the notion of “Φ-definable in T” (presented
on page 3) to those functions involving the numerical sort in addition to the
string sort in an obvious way. Then it can be shown that both x –̇ y and |x|
are ΣB

0 -definable in V0, cf. [3, p. 60]. Further, though much harder to show, it
can be also shown that a limited form of exponential, Exp(x, y) = min{2x, y},
is ΣB

0 -definable in V0, cf. [3, p. 64].
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Definition 5.1. A function val(x,X), which denotes the numerical value of the
string consisting of the last x bits of a string X, is defined by

val(x, ∅) = 0, or otherwise,

val(0, X) = 0,

val(x+ 1, X) =


val(x,X) if |X| ≤ x,

2 · val(x,X) if x < |X| & ¬X((|X| –̇ 1) –̇ x),

2 · val(x,X) + 1 if x < |X| & X((|X| –̇ 1) –̇ x).

Lemma 5.2. The function (x,X) 7→ val(x,X) is ∆B
1 -definable in V1 if x ≤ |y|

for some y. More precisely, the relation val(x,X) = z can be expressed by a
∆B

1 formula ψval(x, y, z,X) if x ≤ |y|, and the sentence ∀y(∀x ≤ |y|)∀X∃!z
ψval(x, y, z,X) is provable in V1.

Proof. Let ψ(x, z,X, Y ) denote the formula expressing that z = 0 if |X| = 0, or
otherwise (Y )0 = 0, (Y )x = z, and for all j < x,

– |X| ≤ j → (Y )j+1 = (Y )j ,

– j < |X| ∧ ¬X(|X| –̇ j –̇ 1) → (Y )j+1 = 2(Y )j , and

– j < |X| ∧X(|X| –̇ j –̇ 1) → (Y )j+1 = 2(Y )j + 1.

Define ψval(x, y, z,X, Y ) to be (∃Y ≤ ⟨x, 2y+1⟩+1)ψ(x, z,X, Y ). Clearly ψval is a
ΣB

1 formula expressing the relation val(x,X) = z in case x ≤ |y|. Note that 2|y| ≤
2y+1 for all y. Hence if x ≤ |y|, then val(x,X) ≤ 2x ≤ 2|y| ≤ 2y+1. Reason in V1.
One can show that if x ≤ |y|, then (∃z ≤ 2y+1)(∃Y ≤ ⟨x, 2y+1⟩+1)ψ(x, z,X, Y )
holds by induction on x. Accordingly the uniqueness of those z and Y above can
be also shown. From the uniqueness of z and Y , val(x,X) = z is equivalent to
a ΠB

1 formula (∀u ≤ 2y + 1)(∃Y ≤ ⟨x, 2y + 1⟩ + 1)[ψ(x, y, u,X, Y ) → u = z].
Hence ψval is a ∆B

1 formula. ⊓⊔

Lemma 5.3. Let φ(x,X) be a ΣB
0 formula. Then the relation (x,X, Y ) 7→

PX
φ,x = Y can be expressed by a ∆B

1 formula ψPφ(x, y,X, Y ) if |X| ≤ |y|. More
precisely, corresponding to Definition 3.1.1 and 3.1.2, ψPφ enjoys the following.

1. ψPφ(x, y, ∅, ∅).
2. (∀X ≤ x + 1)(|X| ≤ |y| → ∀Y,Z[ψPφ(x, y,X, Y ) ∧ ψPφ(x, y, S(X), Z) →

(∀i < x)(Z(i) ↔ φ(i, Y ))]).

Further the sentence ∀x, y(∀X ≤ |y|)(∃!Y ≤ x)ψPφ(x, y,X, Y ) is provable in V1.

Proof. Let ψ(x,X, Y, Z) denote a formula which expresses that

– (∀j ≤ val(|y|, X))|(Z)j | ≤ x,

– Z [0] = ∅, Z [val(|y|,X)] = Y , and

– (∀j < val(|y|, X))(∀i < x)[Z [j+1](i) ↔ φ(i, Z [j])].
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Define ψPφ(x, y,X, Y ) to be (∃Z ≤ ⟨val(|y|, X), x⟩+1)ψ(x,X, Y, Z). Then, since
φ is a ΣB

0 formula, ψPφ is a ΣB
1 formula expressing the relation PX

φ,x = Y if
|X| ≤ |y|. Reason in V1. On can show |X| ≤ |y| → (∃Y ≤ x)ψPφ(x, y,X, Y, Z)
by induction on val(|y|, X). The uniqueness of such strings Y and Z can be also
shown. Hence, as in the previous proof, thanks to the uniqueness of Y and Z,
ψPφ is a ∆B

1 formula. ⊓⊔

Definition 5.4. 1. A string function Ones(y), which denotes the string con-
sisting only of 1 of length y, is defined by the axiom Ones(y)(i) ↔ i < y.

2. The string predecessor P (X) is by the axiom

P (X)(i) ↔ i < |X| ∧ [(X(i) ∧ (∃j < i)X(j)) ∨ (¬X(i) ∧ (∀j < i)¬X(j))].

Lemma 5.5. 1. In V0, if 0 < |X|, then S(P (X)) = X holds.
2. In V1, if x < |y|, then the following holds.

val(|y|, S(Ones(x))) = val(|y|,Ones(x)) + 1. (1)

3. In V1, if 0 < |X| ≤ |y|, then val(|y|, P (X)) + 1 = val(|y|, X) holds.

Proof. 1. We reason in V0. Suppose 0 < |X|. Then X(i) holds for some i < |X|.
Since the axiom (ΣB

i -MIN) of minimisation for ΣB
i formulas holds in Vi, cf. [3,

p. 98, Corollary V.1.8], there exists an element i0 < |X| such that X(i0) and
(∀j < i0)¬X(j) hold. Define a string Y with use of (ΣB

0 -COMP) by

|Y | ≤ |X| and (∀i < |X|)[Y (i) ↔ (i0 < i ∧X(i)) ∨ i < i0]. (2)

We show (i) S(Y ) = X and (ii) P (X) = Y . It is not difficult to see |S(Y )| =
|X| and |P (X)| = |Y |. For (i) suppose i < |S(X)| and S(X)(i). If Y (i) and
(∃j < i)¬Y (j) hold, then i0 < i and X(i) hold by the definition of Y . If ¬Y (i)
and (∀j < i)Y (j) hold, then i = i0 holds. By the choice of i0, X(i0) and (∀j <
i0)¬X(j), and hence X(i) holds. The converse inclusion can be shown in the
same way. For (ii) suppose i < |P (X)| and P (X)(i). If X(i) and (∃j < i)X(j)
hold, then X(i) and i0 < i by the choice of i0, and hence Y (i). If ¬X(i) and
(∀j < i)¬X(j) hold, then i < i0, and hence Y (i) holds. The converse inclusion
can be shown in the same way.

2. By Lemma 5.2, both val(|y|, S(Ones(x))) and val(|y|,Ones(x)) can be de-
fined in V1. We reason in V1. Suppose x ≤ |y|. Then |val(x,Ones(z))| + 1 ≤
|val(x, S(Ones(z)))| ≤ x + 1 ≤ |y|. We show that (1) holds by induction on x.
In case x = 0, Ones(x) = ∅, and hence val(|y|, S(Ones(x))) = val(|y|, S(∅)) =
1 = val(|y|, ∅) + 1. For the induction step, assume by IH (Induction Hypoth-
esis) that (1) holds. Then val(|y|, S(Ones(x + 1))) = 2 · val(|y|, S(Ones(x))) =
2{val(|y|,Ones(x))+1} = (2 ·val(|y|,Ones(x))+1)+1 = val(|y|,Ones(x+1))+1.

3. We reason in V1. Suppose 0 < |X| ≤ |y|. Choose an element i0 < X as
above and define a string Y in the same way as (2). Then Y = P (X) as we
showed above. By the choice of i0, for any j < |X|, if i0 < j, then X(j) ↔ Y (j)
holds. Hence it suffices to show that val(|y|,Ones(i0)) + 1 = val(|y|, S(Ones(i0)))
holds, but this follows from Lemma 5.5.2. ⊓⊔
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Theorem 5.6. Let φ ∈ ΣB
0 . In V1, if φ is inflationary, then there exists a string

U such that U ≤ Ones(|x|) and the following holds.

∀Y, Z[ψPφ(x, 2x, S(U), Y ) ∧ ψPφ(x, 2x,U, Z) → (∀i < x)(Y (i) ↔ Z(i))]. (3)

Proof. Let us recall a numerical function numones(x,X) which denotes the num-
ber of elements of X, or equivalently the number of 1 occurring in the string X,
not exceeding x (See [3, p. 149]). It can be shown that numones is ΣB

1 -definable
in V1 (See [3, p. 149]). As we observed in the proof of Lemma 5.2 or Lemma 5.3,
numones is even ∆B

1 -definable in V1.
Let φ ∈ ΣB

0 . Reason in V1. Suppose that φ is inflationary, i.e., (∀Y ≤
x)(∀j < x)[Y (i) → φ(i, Y )] holds. We show by contradiction the existence
of a string U such that U ≤ Ones(|x|) and the condition (3) holds. Since
|S(Ones(|x|))| = |x|+ 1 = |2x|, by Lemma 5.3 (∃!Y ≤ x)PX

φ,x = Y holds for any
X ≤ S(Ones(|x|)). Hence it suffices to find a string U such that U ≤ Ones(|x|)
and P

S(U)
φ,x = PU

φ,x. Assume that such a string U does not exist. Then for any

X ≤ Ones(|x|) there exists i < x such that P
S(X)
φ,x (i) but ¬PX

φ,x(i). This means

that numones(x, PX
φ,x) < numones(x, P

S(X)
φ,x ) holds for any X ≤ Ones(|x|).

Claim. If X ≤ S(Ones(|x|)), then val(|x|+ 1, X) ≤ numones(x, PX
φ,x) holds.

We show the claim by induction on val(|x|+1, X). The base case that val(|x|+
1, X) = 0 is clear. For the induction step, consider the case val(|x|+ 1, X) > 0.
In this case, 0 < |X|, and hence by Lemma 5.5.3 val(|x| + 1, P (X)) + 1 =

val(|x|+1, X) holds. Hence by IH val(|x|+1, P (X)) ≤ numones(x, P
P (X)
φ,x ) holds.

By Lemma 5.5.1, S(P (X)) = X holds. This together with IH yields val(|x| +
1, X) = val(|x|+ 1, P (X)) + 1 ≤ numones(x, PX

φ,x) since numones(x, P
P (X)
φ,x ) <

numones(x, P
S(P (X))
φ,x ) = numones(x, PX

φ,x).

By the claim val(|x|+1, S(Ones(|x|))) ≤ numones(x, P
S(Ones(|x|))
φ,x ) holds. On

the other hand x < val(|x|+1, S(Ones(|x|))) since |x| < |x|+1 = |S(Ones(|x|))|.
Therefore x < numones(x, P

S(Ones(|x|))
φ,x ) holds, but this contradicts the definition

of numones. ⊓⊔

Theorem 5.7. Suppose 1 ≤ i. If ΣB
i (L2

ID) formula ψ is provable in ΣB
0 -IID,

then there exists a ΣB
i formula ψ′ provable in V1 and provably equivalent to ψ

in V1(L2
ID).

Proof. This theorem can be shown by an induction argument on the length a
formal ΣB

0 -IID-proof resulting in ψ. We only discuss about the axiom (ΣB
0 -IID)

of ΣB
0 inflationary inductive definitions and kindly refer details to readers. One

can see that any instance of (ΣB
0 -IID) is a ΣB

2 formula (with a free variable x).
Suppose a ΣB

0 formula φ. We reason in V1. Fix a natural x arbitrarily. Then,
since S(X) = X + S(∅), Theorem 5.6 yields two strings U and V such that
|U |, |V | ≤ |x|, V = ∅, |U + V | = |x| + 1 = |2x|, and the following clauses hold
corresponding to Definition 3.1.1–3.1.3.
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1. ψPφ(x, 2x, ∅, ∅).
2. (∀X ≤ x + 1)(|X| ≤ |x| → ∀Y,Z[ψPφ(x, 2x,X, Y ) ∧ ψPφ(x, 2x, S(X), Z) →

(∀i < x)(Z(i) ↔ φ(i, Y ))]).
3. ∀Y,Z[ψPφ(x, 2x,U + V, Y ) ∧ ψPφ(x, 2x,U, Z) → (∀i < x)(Y (i) ↔ Z(i))].

One can check that in V1(L2
ID) this statement is provably equivalent to the

instance of (ΣB
0 -IID) in case φ. Further from Lemma 5.3 the unbounded universal

quantifiers ∀Y, Z in clause 2 and 3 can be replaced with the bounded one (∀Y,Z ≤
x), hence the formula expressing the above statement is a ΣB

2 formula as well as
(ΣB

0 -IID). ⊓⊔

Note that Theorem 5.7 does not hold in case i = 0, since a ΣB
0 (L2

ID) formula
of the form Pφ(i, x,X) will be expressed only by a ΣB

1 formula of the form
|x|+1 < |X|∨x ≤ i∨(∃Y ≤ x)[ψPφ(x, 2x,X, Y )∧Y (i)], or equivalently by a ΠB

1

formula of the form |x|+ 1 < |X| ∨ x ≤ i ∨ (∀Y ≤ x)[ψPφ(x, 2x,X, Y ) → Y (i)].

Corollary 5.8. Every function ΣB
1 (L2

ID)-definable in ΣB
0 -IID is polytime com-

putable.

Proof. Suppose that a ΣB
1 (L2

ID) sentence ψ is provable in ΣB
0 -ID. Then by The-

orem 5.7 we can find a ΣB
1 sentence ψ′ provable in V1 and provably equivalent

to ψ in V1(L2
ID). In particular ψ and ψ′ are equivalent under the underlying

standard interpretation. Hence every function ΣB
1 (L2

ID)-definable in ΣB
0 -IID is

ΣB
1 -definable in V1. Now employing Proposition 2.2 enables us to conclude. ⊓⊔

Corollary 5.9. A predicate belongs to P if and only if it is ∆B
1 (L2

ID)-definable
in ΣB

0 -IID.

6 Defining PSPACE functions by non-inflationary
inductive definitions

Theorem 6.1. Every polyspace computable function is ΣB
1 (L2

ID)-definable in
ΣB

0 -ID.

Proof. The theorem can be shown in a similar manner as Theorem 4.1. Sup-
pose that a function f is polyspace computable. As in the proof of Theorem
4.1 we can assume that f is a unary function such that f(X) can be com-
puted by a single-tape Turing machine M using a number of cells bounded by
a polynomial p(|X|) in |X|. Assuming a standard encoding of configurations
of M into binary strings, the binary length of every configuration is exactly
q(|X|) for some polynomial q. Let InitM denote the predicate defined on page
5. A new predicate Next′M (i,X, Y ) denotes the successor configuration of Y ,
but in contrast to NextM , Next′M (i,X, Y ) does not change if Y encodes the
final configuration. More precisely, if Y encodes the final configuration, then
(∀i < q(|X|))(Next′M (i,X, Y ) ↔ Y (i)) holds. In contrast to the definition of φ
on page 6, let φ(i,X, Y ) denote the formula

i < q(|X|) ∧ [InitM (i,X) ∨ Next′(i,X, Y )].

10



It is not difficult to convince ourselves that φ is a ΣB
0 formula. Hence, reasoning in

ΣB
0 -ID, by the axiom (ΣB

0 -ID) of ΣB
0 inductive definitions, we can find two strings

U and V such that |U |, |V | ≤ q(|X|) + 1, V ̸= ∅ and PU+V
φ,q(|X|)+1 = PU

φ,q(|X|)+1

hold. Hence the following ΣB
1 (L2

ID) formula ψf (X,Y ) holds.

(∃U, V ≤ q(|X|) + 1) [V ̸= ∅ ∧ PU+V
φ,q(|X|)+1 = PU

φ,q(|X|)+1∧
Y = Value(PU

φ,q(|X|)+1)],

where Value(Z) denotes the extraction function ΣB
0 -definable in V0 as in the

proof of Theorem 4.1. As we observed, PU
φ,q(|X|)+1 encodes the final configuration

of M . Hence ψf (X,Y ) defines the graph f(X) = Y of f . Now it is clear that
∀X∃Y ψf (X,Y ) holds. The uniqueness of Y follows accordingly, allowing us to
conclude. ⊓⊔

7 Reducing non-inflationary inductive definitions to W1
1

In this section we show that every function ΣB
1 (L2

ID)-definable in the system
ΣB

0 -ID of ΣB
0 inductive definitions is polyspace computable by reducing ΣB

0 -ID
to a third order system W1

1 of bounded arithmetic which was introduced by A.
Skelley in [8]. The third order vocabulary L3

A is defined augmenting the second
order vocabulary L2

A by the third order membership relation ∈3. As in the case of
the second order membership, the formula of the form Y ∈3 X is abbreviated as
X (Y ). Third order elements X ,Y,Z, . . . would denote hyper strings, i.e., X (Y )
holds if and only if the Y th bit of X is 1. Classes ΣB

i , Π
B
i and ∆B

i (0 ≤ i) are de-
fined in the same manner as ΣB

i , Π
B
i and ∆B

i but third order quantifiers are taken
into account instead of second order ones. For instance, ΣB

0 =
∪

0≤i Σ
B
i (L3

A), and

a ΣB
1 formula is of the form ∃Xψ(X ), where no third order quantifier appears in

ψ. For a class Φ of L3
A-formulas, the axiom of (Φ-3COMP) is defined by

∀x∃Z(∀Y ≤ x)[Z(Y ) ↔ φ(Y )], (Φ-3COMP)

where φ ∈ Φ. The system W1
1 consists of the basic axioms of second order

bounded arithmetic (B1–B12, L1, L2 and SE, [3, p. 96]), (ΣB
1 -IND), (ΣB

0 -COMP)
and ΣB

0 -3COMP.

Proposition 7.1 (Skelley [8]). A function is polyspace computable if and only
if it is ΣB

1 -definable in W1
1.

Remark 7.2. In the original definition of W1
1 presented in [8], the axiom (IND)

of induction is allowed only for a class ∀2ΣB
1 of formulas, which is slightly more

restrictive than ΣB
1 . However it can be shown that every ΣB

1 formula is provably
equivalent to a ∀2ΣB

1 formula in W1
1 (See [8, Theorem 2 and Cororally 3]).

We show that even a stronger form of the axiom of ΣB
0 inductive definitions

holds in W1
1.
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Definition 7.3 (Axiom of Relativised Inductive Definitions). We assume
a new predicate symbol Pφ(i, x,X, Y ) instead of Pφ(i, x,X) for each φ. Then a
relativised form of the axiom of inductive definitions asserts that for any natural
x and for any string Y such that |Y | ≤ x there exist two strings U and V such
that |U |, |V | ≤ x+ 1, V ̸= 0 fulfilling the following clauses, where φ ∈ Φ.

1. (∀i < x)[Pφ(i, x, ∅, Y ) ↔ Y (i)].
2. (∀X ≤ x + 1)[X < U + V → (∀i < x)(Pφ(i, x, S(X), Y ) ↔ φ(i, PX

φ,x[Y ]))],

where φ(i, PX
φ,x[Y ]) denotes the result of replacing every occurrence of X(j)

in φ(i,X) with Pφ(j, x,X, Y ) ∧ j < x.
3. (∀i < x)(Pφ(i, x, U + V, Y ) ↔ Pφ(i, x, U, Y )).

As in the case of the predicate Pφ(i, x,X), we write PX
φ,x[Y ] = Z instead of

(∀i < x)(Pφ(i, x,X, Y ) ↔ Z(i)). Apparently the axiom of relativised inductive
definitions implies the original axiom of inductive definitions.

Definition 7.4. 1. The complementary string Y C
x of a string Y of length x is

defined by the axiom Y C
x (i) ↔ i < x ∧ ¬Y (i).

2. The string subtraction X –̇ Y is defined by the axiom

(X –̇ Y )(i) ↔ (X ≤ Y ∧ i < 0) ∨ (Y < X ∧ i < |X| ∧ (X + S(Y C
|X|))(i)).

It can be shown that in V0, if |Y | ≤ x, then Y + Y C
x = Ones(x), and hence

Y + S(Y C
x ) = S(Ones(x)) holds. Thus one can show that |(X + Y ) –̇ Y | = |X|

and, for any i < |X|, [(X + Y ) –̇ Y ](i) ↔ [X + S(Ones(|X + Y |))](i) ↔ X(i),
concluding (X + Y ) –̇ Y = X.

Lemma 7.5. Let φ(x,X) be a ΣB
0 formula. Then the relation (x, y,X, Y, Z) 7→

PX
φ,x[Y ] = Z can be expressed by a ∆B

1 formula ψPφ(x,X, Y, Z) if |X|, |Y | ≤ y
in the same sense as in Lemma 5.3. Further the sentence ∀x, y(∀X ≤ y)(∀Y ≤
x)(∃!Z ≤ x)ψPφ(x, y,X, Y, Z) is provable in W1

1.

Notation. We define a string function (Z)X , which denotes the Xth component
of a hyper string Z, by the axiom (Z)X = Y ↔ Z(⟨X,Y ⟩). For a hyper string
Z we write ∃!Z ≤ x to refer to the uniqueness up to elements of length not
exceeding x, i.e., (∃!Z ≤ x)ψ(Z) denotes ∃Zψ(Z) and additionally,

∀Z0,Z1[ψ(Z0) ∧ ψ(Z1) → (∀Y ≤ x)(Z0(Y ) ↔ Z1(Y ))]. (4)

Proof. Let ψ(x, y,X, Y, Z,Z) denote the ΣB
0 formula expressing

– (∀U ≤ y)(U ≤ X → |(Z)U | ≤ x),
– (Z)∅ = Y , (Z)X = Z, and
– (∀U ≤ y)(U < X → (∀i < x)[(Z)S(U)(i) ↔ φ(i, (Z)U )]).

By the definition of ψ, the relation PX
φ,x[Y ] = Z is expressed by the ΣB

1 for-
mula ∃Zψ(x, y,X, Y, Z,Z) if |X| ≤ y. It suffices to show that (∀Y ≤ x)(∃!Z ≤
x)(∃!Z ≤ ⟨|X|, x⟩) ψ(x,X, Y, Z,Z) hols in W1

1.
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Reason in W1
1. We only show the existence of such a string Z and a hyper

string Z. The uniqueness in the sense of (4) can be shown accordingly. We derive
by induction on |X| the ΣB

1 formula (∀Y ≤ x)(∃Z ≤ x)∃Zψ(x,X, Y, Z,Z). The
argument is based on a standard “divide-and-conquer method”. In the base case,
|X| = 0, i.e., X = ∅, and hence the assertion is clear. The case that |X| = 1,
i.e., X = S(∅), is also clear. Suppose that |X| > 1. Then we can find two strings
X0 and X1 such that |X0| = |X1| = |X| − 1 and X = X0 +X1. Fix a string Y
so that |Y | ≤ x. Then by IH we can find a string Z0 and a hyper string Z0 such
that |Z0| ≤ x and ψ(x,X0, Y, Z0,Z0) hold. Since |Z0| ≤ x, another application
of IH yields Z1 and Z1 such that |Z0| ≤ x and ψ(x,X1, Z0, Z1,Z1) hold. Define
a hyper string Z with use of (ΣB

0 -3COMP) by

(∀U ≤ ⟨|X|, x⟩)[Z(U) ↔ (U [0] ≤ X0 ∧ (Z0)
U [0]

= U [1])∨
(X0 < U [0] ∧ (Z0)

U [0] –̇ X0 = U [1])].
(5)

Intuitively Z denotes the concatenation Z0
⌢Z1, the hyper string Z0 followed

by Z1. Then by definition ψ(x,X, Y, Z1,Z) holds. Due to the uniqueness of
the string Z and the hyper string Z, the ΣB

1 formula ∃Zψ(x, y,X, Y, Z,Z) is
equivalent to the ΠB

1 formula (∀V ≤ x)(∀Z ≤ ⟨|X|, x⟩)(ψ(x,X, Y, V,Z) → V =
Z), and hence is also a ∆B

1 formula. ⊓⊔

Lemma 7.6. The following holds in W1
1.

∀x, y(∀X ≤ y)(∀Y ≤ y)(∀Z ≤ x)(|Y +X| ≤ y → PX
φ,x[P

Y
φ,x[Z]] = PY+X

φ,x [Z]).

Proof. By the previous lemma the relation PX
φ,x[P

Y
φ,x[Z]] = PY+X

φ,x [Z] can be

expressed by a ∆B
1 formula if |X|, |Y | ≤ y. Reason in W1

1. We show that

|X| ≤ y → (∀Y ≤ y)(∀Z ≤ x)(|Y +X| ≤ y → PX
φ,x[P

Y
φ,x[Z]] = PY+X

φ,x [Z])

holds by induction on |X|. The base case that |X| = 0 or |X| = 1 is clear. Suppose
|X| > 0. Then we can find two strings X0 and X1 such that |X0| = |X1| = |X|−1
and X0 +X1 = X. Fix a string Z so that |Z| ≤ x. Since |X1| = |X0| < |X| ≤ y
and |X0 +X1| = |X| ≤ y, IH yields PX0

φ,x[P
X1
φ,x[Z]] = PX0+X1

φ,x [Z]. Hence

PY
φ,x[P

X
φ,x[Z]] = PY

φ,x[P
X0
φ,x[P

X1
φ,x[Z]]]. (6)

On the other hand, since |X0| ≤ y, |Y +X0| ≤ |Y +X| ≤ y and |PX1
φ,x[Z]| ≤ x,

another application of IH yields

PY
φ,x[P

X0
φ,x[P

X1
φ,x[Z]]] = PY+X0

φ,x [PX1
φ,x[Z]]. (7)

Farther, since |Y +X0| ≤ y and |X1| ≤ |X| ≤ x, the final application of IH yields

PY+X0
φ,x [PX1

φ,x[Z]] = PY+X0+X1
φ,x [Z] = PY+X

φ,x [Z]. (8)

Combining equation (6), (7) and (8) allows us to conclude. ⊓⊔
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Definition 7.7. A string function numones3[Y ](X,X ), which counts the number
of elements of X (starting with Y ) such that ≤ X, is defined by

numones3[Y ](∅,X ) = Y,

numones3[Y ](S(X),X ) =

{
S(numones3[Y ](X,X )) if X (X) holds,

numones3[Y ](X,X ) if ¬X (X) holds.

Lemma 7.8. The function numones3 is ∆B
1 -definable in W1

1.

Proof. Let ψnumones3(X,Y, Z,X ,Y) denote the ΣB
0 formula expressing

– Z ≤ Y +X,
– (Y)∅ = Y ,
– (Y)X = Z,
– (∀U ≤ |X|)[U < X ∧ X (U) → (Y)S(U) = S((Y)U )], and
– (∀U ≤ |X|)[U < X ∧ ¬X (U) → (Y)S(U) = (Y)U ].

Then by definition the ΣB
1 formula ∃Yψnumones3(X,Y, Z,X ,Y) defines the graph

numones3[Y ](X,X ) = Z of numones3. We show that if |X| ≤ x, then

(∀Y ≤ x)[|Y +X| ≤ x→ (∃!Z ≤ x)(∃!Y ≤ ⟨|X|, x⟩)ψnumones3(X,Y, Z,X ,Y)]

holds in W1
1. Reason in W1

1. Given x, we only show the existence of such a string
Z and a hyper string Y by induction on |X|. The uniqueness can be shown in
a similar manner. Fix x and Y so that |Y | ≤ x and |Y +X| ≤ x. In case that
|X| = 0, i.e., X = ∅, define Y by

(∀U ≤ ⟨0, x⟩)[Y(U) ↔ (U = ⟨∅, Y ⟩)].

Then |Y | ≤ x, Y ≤ Y + ∅ and ψnumones3(∅, Y, Y,X ,Y) hold. In the case that
|X| = 1, i.e., X = S(∅), define Y by

(∀U ≤ ⟨1, x⟩)[Y(U) ↔ U = ⟨∅, Z⟩∨ (X (∅) ∧ U = ⟨S(∅), S(Y )⟩)∧
(¬X (∅) ∧ U = ⟨S(∅), Y ⟩)].

Clearly |(Y)S(∅)| ≤ |S(Y )| = |Y + S(∅)|, (Y)S(∅) ≤ S(Y ) = Y + S(∅) and
ψnumones3(S(∅), (Y)S(∅), Y,X ,Y) hold. For the induction step, suppose |X| > 1.
Then there exist strings X0 and X1 such that |X0| = |X1| = |X| − 1 and
X0 +X1 = X. By assumption |Y +X0| ≤ |Y +X| ≤ x. Hence IH yields a string
Z0 and a hyper string Y0 such that |Z0| ≤ x and ψnumones3(X0, Y0, Z0,X ,Y0)
hold. In particular Z0 ≤ Y + X0 holds. This implies |Z0 + X1| ≤ |Y + X0 +
X1| = |Y +X| ≤ x. Thus another application of IH yields Z1 and Y1 such that
|Z1| ≤ x and ψnumones3(X1, Z0, Z1,X ,Y1) hold. Define Y in the same way as
(5) in the proof of Lemma 7.5, i.e., Y = Y0

⌢Y1. It is not difficult to see that
ψnumones3(X,Y, Z1,X ,Y) holds. Thanks to the uniqueness of Z and Y, one can
see that ∃Yψnumones3(X,Y, Z,X ,Y) is a ∆B

1 formula. ⊓⊔

Lemma 7.9. The axiom (ΣB
1 -3COMP) of third order comprehension for ΣB

1

formulas holds in W1
1.
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One will recall that the V1 can be axiomatised by (ΣB
0 -COMP) and (ΣB

1 -IND)
instead of (ΣB

1 -COMP), cf. [3, p. 149, Lemma VI.4.8]. Lemma 7.9 can be shown
with the same idea as the proof of this fact. For the sake of completeness, we
give a proof in the appendix.

Theorem 7.10. The axiom (ΣB
0 -ID) of ΣB

0 inductive definitions holds in W1
1

in the same sense as in Theorem 5.6.

Proof. Instead of showing that the axiom (ΣB
0 -ID) holds in W1

1, we show that
even the axiom of relativised ΣB

0 inductive definitions holds in W1
1. Let φ ∈ ΣB

0 .
We reason in W1

1. Fix x arbitrarily. Given X and Y , we define a hyper string
PX [Y ] with use of (ΣB

1 -3COMP) by

(∀Z ≤ x)[PX [Y ](Z) ↔ (∃U ≤ |X|)[U < X ∧ PU
φ,x[Y ] = Z]].

Claim. For a string W , if x < |W |, then the following holds.

(∀Y ≤ x) [numones3(W,PX [Y ]) ≤ X →
(∃U, V ≤ |X|)(U < V ≤ X ∧ PV

φ,x[Y ] = PU
φ,x[Y ])].

(9)

Assume the claim. Since numones3(S(Ones(x)),PS(Ones(x))[Y ]) ≤ S(Ones(x)) by
the definition of numones3 and x < x + 1 = |S(Ones(x))|, (9) then implies the
instance of (ΣB

0 -ID) in case of φ.
The rest of the proof is devoted to prove the claim. Let us observe that (9)

is a ΣB
1 statement. We show the claim by induction on |X|. In the base case,

X = ∅ and hence (9) trivially holds. The case that X = S(∅) is also trivial. For
the induction step, suppose |X| > 1. Then there exist strings X0 and X1 such
that |X0| = |X1| = |X| − 1 and X0 +X1 = X. Fix a string Y so that |Y | ≤ x
and suppose numones3(W,PX [Y ]) ≤ X. By the definition of the hyper string
PX [Y ] and Lemma 7.6, for any Z, if |Z| ≤ x, then PX [Y ](Z) ↔ PX0 [Y ](Z) ∨
PX1 [PX0

φ,x[Y ]](Z) holds, i.e., PX [Y ] = PX0 [Y ]∪PX1 [PX0
φ,x[Y ]]. On the other hand

we can assume that (∀U < X0)(∀V < X1)P
U
φ,x[Y ] ̸= PV

φ,x[P
X0
φ,x[Y ]] holds, i.e.,

PX0 [Y ] ∩ PX1 [PX0
φ,x[Y ]] = ∅. This yields

numones3(W,PX [Y ])

= numones3(W,PX0 [Y ]) + numones3(W,PX1 [PX0
φ,x[Y ]]). (10)

Case. numones3(W,PX0 [Y ]) ≤ X0: In this case IH yields two strings U0 and
V0 such that |U0|, |V0| ≤ |X0|, U0 < V0 ≤ X0 and PV0

φ,x[Z] = PU0
φ,x[Z]. Since

|X0| ≤ |X| and ≤ X0 ≤ X, we can define U and V by U = U0 and V = V0.
Case. X0 < numones3(W,PX0 [Y ]): In this case, numones3(W,PX1 [PX0 [Y ]])

≤ X1 by the equality (10). Since |PX0 [Y ]| ≤ x by definition, another application
of IH yields two strings U1 and V1 such that |U1|, |V1| ≤ |X1|, U1 < V1 ≤ X1

and PV1
φ,x[P

X0
φ,x[Y ]] = PU1

φ,x[P
X0
φ,x[Y ]] hold. Define strings U and V by U = X0+U1

and V = X0 + V1. Since P
V
φ,x[Y ] = PV1

φ,x[P
X0
φ,x[Y ]] and PU

φ,x[Y ] = PU1
φ,x[P

X0
φ,x[Y ]]

by Lemma 7.6, now it is easy to check that the assertion (9) holds. ⊓⊔
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Corollary 7.11. Every function ΣB
1 (L2

ID)-definable in ΣB
0 -ID is polyspace com-

putable.

Proof. Suppose that a ΣB
1 (L2

ID) formula ψ is provable in ΣB
0 -ID. Then, as in

the proof of Theorem 5.7, from Lemma 7.5 and Theorem 7.10 one can find a
ΣB

1 formula ψ′ provable in W1
1 and provably equivalent to ψ in W1

1(L2
ID). In

particular ψ and ψ′ are equivalent under the underlying interpretation. Hence
every string function ΣB

1 (L2
ID)-definable in ΣB

0 -ID is ΣB
1 -definable in W1

1. Thus
employing Proposition 7.1 enables us to conclude. ⊓⊔

Corollary 7.12. A predicate belongs to PSPACE if and only if it is ∆B
1 (L2

ID)-
definable in ΣB

0 -ID.

8 Conclusion

In this paper we introduced a novel axiom of finitary inductive definitions over
the Cook-Nguyen style second order bounded arithmetic. We showed that over
a conservative extension V0(L2

ID) of V0 by fixed point predicates, P can be
captured by the axiom of inductive definitions under ΣB

0 -definable inflationary
operators whereas PSPACE can be captured by the axiom of inductive definitions
under (non-inflationary) ΣB

0 -definable operators. It seems also possible for each
i ≥ 0 to capture the ith level of the polynomial hierarchy by the axiom of
inductive definitions under ΣB

i -definable inflationary operator, e.g., a predicate
belongs to NP if and only if it is ∆B

2 (L2
ID)-definable in ΣB

1 -IID. As shown by Y.
Gurevich and S. Shelah in [5], over finite structures the fixed point of a first order
definable inflationary operator can be reduced the least fixed point of a first order
definable monotone operator. In accordance with this fact, it is natural to ask
whether the axiom ΣB

0 -IID of inflationary inductive definitions for ΣB
0 -definable

operators can be reduced a suitable axiom of monotone inductive definitions for
ΣB

0 -definable operators. One would define a third order version of Pigeon Hole
Principle PHP3(x,X ) as

(∀Y ≤ x)(∃Z ≤ x+ 1)X (⟨Y, Z⟩) →
(∃U ≤ x)(∃V ≤ x)(∃Z ≤ x+ 1)[U < V ∧ X (⟨U,Z⟩) ∧ X (⟨V, Z⟩)].

Modifying the proof of Theorem 7.10, one could show that ∀x∀XPHP3(x,X )
holds in ΣB

0 -ID. We have shown that (ΣB
1 -COMP) implies (ΣB

0 -IID) over V0(L2
ID)

(from Theorem 5.6) and (ΣB
1 -3COMP) implies (ΣB

0 -ID) over a third order con-
servative extension of V0(L2

ID) (from Theorem 7.10). In terms of bounded reverse
mathematics it may be of interest to ask whether, conversely, (ΣB

0 -IID) also im-
plies (ΣB

1 -COMP), or whether (ΣB
0 -ID) implies (ΣB

1 -3COMP), over a suitable
weak base system.
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val and the string one PX
φ,x (|X| ≤ |y|) are not only ΣB

1 -definable but even

∆B
1 -definable in V1 (Lemma 5.2 and 5.3) and PX

φ,x and numones3 are even ∆B
1 -

definable in W1
1 as well (Lemma 7.5 and 7.8). This observation made later ar-

guments easier.
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A Proving (ΣB
1 -3COMP) in W1

1

In the appendix we show Lemma 7.9 which states that the axiom (ΣB
1 -3COMP)

of third order comprehension for ΣB
1 formulas (presented on page 11) holds in

W1
1.

Lemma A.1. In W1
1 for any number x, string X and hyper string Z, if |X| ≤ x

and ∅ < numones3(X,Z), then the following holds.

(∃Y ≤ x)(Y < X ∧ S(numones3(Y,Z)) = numones3(X,Z)).
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Proof. Reason in W1
1. Fix x and Z. We show the following stronger assertion

holds by induction on |X| ≤ x.

(∀U ≤ x) |U +X| ≤ x ∧ numones3(U,Z) < numones3(U +X,Z) →
(∃Y ≤ x)(Y < X ∧ S(numones3(U + Y,Z)) = numones3(U +X,Z)).

If |X| = 0, i.e., X = ∅, then numones3(U,Z) = numones3(U + X,Z), and
hence the assertion trivially holds. In the case |X| = 1 , i.e., X = S(∅), if
numones3(U,Z) < numones3(U + S(∅),Z), then the assertion is witnessed by
Y = ∅. For the induction step, suppose |X| > 1. Then there exist two strings X0

and X1 such that |X0| = |X1| = |X|−1 and X0+X1 = X. Fix a string U so that
|U | ≤ x and suppose that |U + X| ≤ x and numones3(U,Z) < numones3(U +
X,Z) hold. Then |U +X0| ≤ x.

Case. numones3(U,Z) = numones3(U +X0,Z): By IH there exists a string
Y < X1 < X such that |Y | ≤ x and S(numones3(U + Y,Z)) = numones3(U +
X1,Z) = numones3(U +X0 +X1,Z) = numones3(U +X,Z).

Case. numones3(U,Z) < numones3(U+X0,Z): In this case by IH there exists
a string Y0 < X0 such that |Y0| ≤ x and S(numones3(U+Y0,Z)) = numones3(U+
X0,Z) holds. If numones3(U+X0,Z) = numones3(U+X,Z), then the witnessing
string Y can be defined to be Y0. Consider the case numones3(U + X0,Z) <
numones3(U+X,Z). Then another application of IH yields a string Y1 < X1 such
that |Y1| ≤ x and S(numones3((U+X0)+Y1,Z)) = numones3((U+X0)+X1,Z)
hold. Define a string Y by X0 + Y1. Then |Y | ≤ |X| ≤ x, Y = X0 + Y1 <
X0 +X1 = X and S(numones3(U + Y,Z)) = numones3(U +X,Z) hold. ⊓⊔

Lemma A.2. In W1
1, for any number x, strings X, Z and hyper string Z, if

|X| ≤ x and ∅ < Z ≤ numones3(X,Z), then the following holds.

(∃Y ≤ x)(Y < X ∧ numones3(Y,Z) + Z = numones3(X,Z)).

Proof. Reason in W1
1. Fix x and Z. We show the following stronger assertion

holds by induction on |Z|.

(∀X ≤ x)(∀U ≤ x)
{|U + Z| ≤ x ∧ ∅ < Z ≤ numones3(X,Z) →
(∃Y ≤ x)(Y < X ∧ numones3(Y,Z) + U + Z = numones3(X,Z) + U)}.

If |Z| = 0, i.e., Z = ∅, then the assertion trivially holds. In the case |Z| = 1,
i.e., Z = S(∅), since numones3(Y,Z) + U + S(∅) = S(numones3(Y,Z)) + U , the
assertion follows from Lemma A.1. For the induction step, suppose |Z| > 1.
Then, as in the previous proof, there exist strings Z0 and Z1 such that |Z0| =
|Z1| = |Z| − 1 and Z0 + Z1 = Z. Fix two strings X and U so that |X|, |U | ≤ x
and |U + Z| ≤ x and suppose that ∅ < Z ≤ numones3(X,Z). Then, since
|U + Z0| ≤ |U + Z| ≤ x and ∅ < Z0 < Z ≤ numones3(X,Z), IH yields a string
Y0 < X such that |Y0| ≤ x and numones3(Y0,Z)+U+Z0 = numones3(X,Z)+U
hold. Since |Y0| ≤ |X| ≤ x and |U + Z0| ≤ |U + Z| ≤ x, another application of
IH yields a string Y1 < Y0 < X such that |Y1| ≤ x and numones3(Y0,Z) + (U +
Z0) + Z1 = numones3(Y1,Z) + U + Z0 = numones3(X,Z) + U holds. Thus the
witnessing string Y can be defined to be Y0. ⊓⊔
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Notation. In contrast to the empty string ∅, we write ∅3 to denote the empty
hyper string defined by the axiom ∅3(X) ↔ |X| < 0.

Proof (of Lemma 7.9). Suppose a ΣB
1 formula φ(Z). We have to show the ex-

istence of a hyper string Y such that (∀Z ≤ x)(Y(Z) ↔ φ(Z)) holds. Let
ψ(x,U,X,Y) denote the following formula.

(∀Z ≤ x)(Y(Z) → φ(Z)) ∧X = U + numones3(S(Ones(x)),Y).

By Lemma 7.8, ψ is a ΣB
1 formula, and hence so is ∃Yψ(x,U,X,Y). Reason in

W1
1. The argument splits into two (main) cases.
Case. (∃X ≤ x+ 1)[X < S(Ones(x)) ∧ ∃Yψ(x, ∅, X,Y) ∧ (∀Y ≤ x+ 1)(Y ≤

S(Ones(x)) ∧X < Y → ¬∃Yψ(x, ∅, Y,Y))]: Suppose that a string X0 witnesses
this case. Let ψ(x, ∅, X0,Y). Then clearly (∀Z ≤ x)(Y(Z) → φ(Z)) holds. We
show the converse inclusion by contradiction. Assume that there exists a string
Z0 such that |Z0| ≤ x, φ(Z0) but ¬Y(Z0). Define a hyper string Y ′ by

(∀Z ≤ x)[Y ′(Z) ↔ (Z = Z0 ∨ Y(Z))].

Then (∀Z ≤ x)(Y ′(Z) → φ(Z)) by definition, and also numones3(S(Ones(x)),Y)
= X0 < S(X0) = numones3(S(Ones(x)),Y ′) ≤ S(Ones(x)). But this contradicts
the assumption of this case.

Case. The previous case fails: Namely, (∀X ≤ x + 1)[X < S(Ones(x)) ∧
∃Yψ(x, ∅, X,Y) → (∃Y ≤ x + 1)(Y ≤ S(Ones(x)) ∧ X < Y ∧ ∃Yψ(x, ∅, Y,Y))]
holds. We derive the following ΣB

1 formula by induction on |X|.

(∀U ≤ x+ 1)[U +X ≤ S(Ones(x)) →
(∃Y ≤ x+ 1)(∃Yψ(x,U, Y,Y) ∧ U +X ≤ Y ≤ S(Ones(x)))].

(11)

Assume the formula (11) holds. Let U = ∅ and X = S(Ones(x)). Then by
(11) we can find a string Y and a hyper string Y such that |Y | ≤ x + 1 and
numones3(S(Ones(x)),Y) = Y = S(Ones(x)). This means that (∀Z ≤ x)Y(Z)
holds, and hence in particular (∀Z ≤ x)[φ(Z) → Y(Z)] holds.

In the base case, if |X| = 0, i.e., X = ∅, then ψ(x, U, U, ∅3) holds. This implies
ψ(x, ∅, ∅, ∅3). Hence by the assumption of this case, we can find a string Y and a
hyper string Y such that |Y | ≤ x+ 1, Y ≤ S(Ones(x)), ∅ < Y and ψ(x, ∅, Y,Y).
These imply the case |X| = 1, i.e., ψ(x,U, U + Y,Y) and U + S(∅) ≤ U + Y .
For the induction step, suppose |X| > 1. Then there exist two strings X0 and
X1 such that |X0| = |X1| = |X| − 1 and X0 +X1 = X. Fix a string U so that
|U +X| ≤ x+1. Then by IH we can find a string Y0 and a hyper string Y0 such
that |Y0| ≤ x+ 1, ψ(x, U, Y0,Y0) and U +X0 ≤ Y0.

Subcase. U + X0 = Y0: In this subcase, another application of IH yields
a string Y1 and a hyper string Y1 such that |Y1| ≤ x + 1, ψ(x, Y0, Y1,Y1) and
Y0 +X1 ≤ Y1. Since U +X = U +X = Y0 +X1 ≤ Y1, it can be observed that
ψ(x,U, Y1,Y0

⌢Y1) holds.
Subcase. U + X0 < Y0: In this subcase we can assume that Y0 < U + X

holds. Hence by Lemma A.2, we can find a string V < S(Ones(x)) such that
numones3(V,Y0) = U +X0 holds. Define a hyper string Y0 ↾ V by

(∀Z ≤ x)[(Y0 ↾ V )(Z) ↔ Z < V ∧ Y0(Z)].
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Then numones3(S(Ones(x)),Y0 ↾ V ) = U +X0 holds by definition. Now we can
proceed in the same way as the previous subcase but we define the witnessing
hyper string Y by Y = (Y0 ↾ V )⌢Y1. This completes the proof of Lemma 7.9. ⊓⊔
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