Proving Termination of Unfolding Graph Rewriting for
General Safe Recursion

Naohi Eguchi*

Institute of Computer Science, University of Innsbruck, Austria

naohi.eguchi@uibk.ac.at

We present a new termination proof and complexity analysis of unfolding graph rewriting which is
a specific kind of infinite graph rewriting expressing the general form of safe recursion. We intro-
duce a termination order over sequences of terms together with an interpretation of term graphs into
sequences of terms. Unfolding graph rewrite rules expressing the general safe recursion can be em-
bedded into the termination order by the interpretation, yielding the polynomial runtime complexity.

1 Introduction

In this paper we present a new termination proof and complexity analysis of a specific kind of infinite
graph rewriting called unfolding graph rewriting [1]. The formulation of unfolding graph rewriting
stems from a function-algebraic characterisation of the polytime computable functions based on the
principle known as safe recursion [0] or tiered recursion [9]]. Safe recursion is a syntactic restriction of
the standard primitive recursion based on a specific separation of argument positions of functions into
two kinds. Notationally, the separation is indicated by semicolon as f(xy,. .., X ;Xk41,---,Xkt+), Where
X1,...,Xx; are called normal arguments while x;1,...,x;,1; are called safe ones. The schema of safe
recursion formalises the idea that recursive calls are restricted on normal arguments whereas substitution
of recursion terms is restricted for safe arguments: f(0,¥;7) = g(3,2), f(ci(x),¥:2) = hi(x, ¥, 7, f(x,3;2))
(i € I), where I is a finite set of indices. As discussed in [7], safe recursion is sound for polytime
computability over unary constructor, i.e., over numerals or lists, but it was not clear whether general
forms of safe recursion over arbitrary constructors, which is called general ramified recurrence [|] or
(General Safe Recursion)), could be related to polynomial complexity.

f(C[(Xh e axarity(ci))ay; Z) = hi(fvy;zuf(xl 55;’ Z)a e 7f(xarity(ci) 75;’ Z)) (l € I) (General Safe ReCUrSiOH)

To see the difficulty of this question, consider a term rewrite system (TRS for short) &% over the construc-
tors {€,c,0,s} consisting of the following rules with the argument separation indicated in the rules.
g(esz) >z glc(ixy):z) = c(iglxiz),g(viz)) f(O,ys) =€ f(s(ix),y:) = g(y:f(x,y3))
Under a natural interpretation, g(x,y) generates the binary tree appending the tree y to every leaf of the
tree x, and f(s”(0),x) generates a tree consisting of exponentially many copies of the tree x measured by
m. Namely, rewriting in the TRS % results in normal forms of exponential size measured by the size of
starting terms. This problem cannot be solved by simple sharing. The authors of [[7] solved this problem,
showing that the equation of general safe recursion can be expressed by an infinite set of unfolding
graph rewrite rules. In the present work, we propose complexity analysis by means of termination orders
over sequences of terms (Section [3) together with a successful embedding (Section), sharpening the
complexity result obtained in [7] (Corollary [I)). Missing details can be found in a technical report [8].

*The author is supported by Grant-in-Aid for JSPS Fellows (Grant No. 25 -726) that is granted at Graduate School of
Science, Chiba University, Japan.

(© Naohi Eguchi
This work is licensed under the
Creative Commons Attribution License.

TERMGRAPH 2014 VSL proceedings 18
A. Middeldorp & F. van Raamsdonk (eds.)

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

Naohi Eguchi 19

2 Unfolding graph rewrite rules for general safe recursion

In this section we specify the shape of unfolding graph rewrite rules which is compatible with the schema
of (General Safe Recursion). We present basics of term graph rewriting following [5]. Let .# be a
signature, a finite set of function symbols, and let arity : .% — N where arity(f) is called the arity of
f. We assume that .# is partitioned into the set ¢ of constructors and the set & of defined symbols. A
labeled graph is a triple (G,labg,succg) of an acyclic directed graph G = (Vg,Eg), a partial labeling
function labg : Vg — % and a (total) successor function succg : Vg — V5, mapping a node v € Vi
to a sequence of nodes of length arity(labg). In case succg(v) = vi,...,v, the node v; is called the
Jjth successor of v for every j € {1,...,k}. A labeled graph (G,labg,succg) is closed if the labeling
function labg is total. Given two labeled graphs G and H, a homomorphism from G to h is a mapping
¢ : Vg — Vi such that labgy (¢ (v)) = labg(v) for each v € dom(labg) C Vg, and for each v € dom(labg),
if succg(v) = vi,..., v, then succy(@(v)) = @(vi),...,@(v). A quadruple (G,labg,succg,roots) is
a term graph if (G,labg,succg) is a labeled graph and rootg is the root of G. We write 7Y (.7) to
denote the set of term graphs over a signature .%. For a labeled graph G = (G, succg, labg) and a node
v € Vg, G | v denotes the sub-term graph of G rooted at v. A homomorphism ¢ from a term graph G
to another term graph H is a homomorphism ¢ such that rooty = @(rootg). A graph rewrite rule is a
triple p = (G, 1,r) of a labeled graph G and distinct two nodes / and r respectively called the left and
right root. A redex in a term graph G is a pair (R, @) of a rewrite rule R = (H,/,r) and a homomorphism
¢:H[Il— G. Aset¥ of graph rewrite rules is called a graph rewrite system (GRS for short). A graph
rewrite rule (G,l,r) is called a constructor one if labg(l) € & and labg(v) € € for any v € Vg \ {/}
whenever labg(v) is defined. A GRS is called a constructor one if it consists only of constructor rewrite
rules. The rewrite relation defined by a GRS ¥ is denoted as —« and its m-fold iteration is denoted as
—rg. The corresponding innermost rewrite relations %g and %@ are defined accordingly.

Definition 1 (Unfolding graph rewrite rules [7]) Let £ and ® be two disjoint signatures in bijective
correspondence by ¢ : ¥ — O. For a fixed k € N, suppose that arity(¢(g)) = 2arity(g) + k for each
g €L Let f LU0 be a fresh function symbol such that arity(f) = 1+ k. An unfolding graph rewrite
rule over ¥ and © defining f is a graph rewrite rule p = (G,[,r) where G = (Vg, Eg,succg, labg) is a
labeled graph over a signature .# 2 XU O, for the set V; of vertices consists of 1+ 2m + k elements
Vs ViseeosVims Wiy-nns Wiy X1,-..,X, that fulfills the following conditions: (i) [=y, r = wy, labg(y) =
f, succg(y) = vi,X1,...,X, and labg(x;) is undefined for all j € {1,...,k}. (i) Vgp, = {vi,...,vm},
and, for each j € {1,...,m}, labg(v;) € X and succi(v;) € {vi,...,vn}*. (iil) For each j € {1,...,m},
labg(w;) = @(labg(v})), and succG(W;) = Vj ;... s Vjs X1, s Xk, Wiy 5o - o, W), if sSUCCG(vj) = vjy,. .., V),

Example 1 Let £ = {0,s}, ® = {g,h}, ¢ : £ — O be a bijection defined as 0 — g and s — h, and
f € XU O, where the arities of 0,s, g, h,f are respectively 0, 1, 1, 3 and 2. The equations f(0,x) — g(x),
f(s(y),x) — h(y,x,f(y,x)) for primitive recursion can be expressed by the infinite set of unfolding graph
rewrite rules over .# = XU®U {f} defining f, which includes the following rewrite rules.

0 i 8]

O<—Ww

20 Proving Termination of Unfolding Graph Rewriting for General Safe Recursion

In the examples, the left root is written in a circle while the right root is in a square. Undefined nodes are
indicated as L. As seen from the pictures, the unfolding graph rewrite rules express the infinite instances
f(0,x) — g(x), f(s(0),x) — h(0,x,g(x)), f(s(s(0)),x) — h(s(0),x,h(0,x,g(x))),....

In [7] a GRS ¥ is called polytime presentable if there exists a deterministic polytime algorithm which,
given a term graph G, returns a term graph H such that G i@ H if such a term graph exists, or the
value false if otherwise. A GRS ¥ is polynomially bounded if there exists a polynomial p such that
max{m, |H|} < p(|G|) holds whenever G -3 H holds. The main result in [7] is restated as follows.

Theorem 1 (Dal Lago, Martini and Zorzi [7]) Every general safe recursive function can be represented
by a polytime presentable and polynomially bounded constructor GRS.

In the proof, the case that the function is defined by (General Safe Recursion) is witnessed by an
infinite set of unfolding graph rewrite rules in a specific shape compatible with the argument separation as
indicated in the schema (General Safe Recursion). According to the idea of safe recursion, we assume
that the argument positions of every function symbol are separated into the normal and safe ones, writing
Sty o Xk Xkt 1, - - -, Xkg) to denote k normal and / safe arguments. We take the argument separation
into labeled graphs in such a way that for every successor u of a node v we write u € nrm(v) if u is
connected to a normal argument position of labg(v), and u € safe(v) if otherwise. Notationally, we write
succg(V) =Vi,.. oy Vi3Vl - - -, Vips to express the separation that vy, ..., v € nrm(v) and vy 1, ..., Vg €
safe(v). We assume that any homomorphism preserves the argument separation.

Definition 2 (Safe recursive unfolding graph rewrite rules) We call an unfolding graph rewrite rule
safe recursive if the following constraints imposed on the clause (i) and (iii) in Definition [I| are satisfied.
(a) In the clause (i), vi € nrm(y), and in the clause (iii), vj,,...,vj, € nrm(w;) and wj,,...,w;, € safe(w;).
(b) For each j € {1,...,k}, x; € nrm(y) if and only if x; € nrm(w;) forall i € {1,...,m}.

3 Termination orders on sequences of terms

In this section we consider a termination order >, indexed by a positive natural £ over sequences of terms,
which is essentially the same as small polynomial path orders on sequences [3] but without recursive
comparison. It can be shown that, for any fixed ¢, the length of any >-reduction sequence can be
linearly bounded measured by the size of a starting term but polynomially bounded if measured by ¢. Let
F =€ U2 be asignature. The set of terms over .# (and the set ¥ of variables) is denoted as .7 (.#,¥),
and the set of closed terms is denoted as .7 (.%). We write s>t to express that s is a proper super-term of
t. A precedence > is a well founded partial binary relation on .%. The rank rk : . % — N is defined to be
compatible with >: rk(f) > rk(g) < f > g. To form sequences of terms, assume an auxiliary function
symbol o whose arity is finite but arbitrary. A term of the form o(zy,...,#) will be called a sequence if
...ty € T(F,V), denoted as [t; --- t]. We will write a,b,c, ... for both terms and sequences. We
also write [s; --- sx|”[f1 --- #;] to denote the concatenation [s] --- st -+ 1;].

Definition 3 Let > be a precedence on a signature .% . Suppose that £ € N and 1 < /. Then a >/ b holds
if one of the following three cases holds:

(i)a:f(sl,...,sk),b:g(tl,...,tl),f,geﬁ,f>g, f(S1,...,Sk)Dl‘j for all j € {1,...,]{}, and [< /.
() a=f(si,...,s), f€F, b=[t1---1;], f(s1,...,8¢) >¢tjforall je{l,...,1},and | < /L.

(iii) a = [s1--- sk], b= [t ---1;] and there exists a permutation 7 : {1,...,/} — {1,... I}, and there exist
terms or sequences b; (j =1,...,k) such that by - "by = [ty 1)+ tzq)], 5; Z¢ bj forall j € {1,... k},
and s; >, b; for some i € {1,...,k}. In case some b; is a term 7, the concatenation ---~b;” - - - should be
understood as - -+ "[£]7 .

Naohi Eguchi 21

Definition 4 G/(a) := max{k € N |3ay,...,a; such thata >, ay >y --- >y a}.

Lemma 1 Ler ¢ > 1 and max{arity(f) | f € %} <d. Then, for any function symbol f € F with arity k <
¢ and for any closed terms s,...,sy € T(€), Go(f(s1,...,5¢)) <d™*U) - (1+40)*) . (1 +Z];:1 dp(s;))
holds, where dp(t) denotes the depth of a term t in the standard tree representation.

4 Predicative embedding of safe recursive unfolding graph rewriting

In this section we present the predicative interpretation of term graphs into sequences of terms, showing
that, by the interpretation, rewriting sequences by safe recursive unfolding graph rewrite rules can be
embedded into the termination order >, presented in the previous section. This yields that the length of
any rewriting sequence by safe recursive unfolding graph rewrite rules starting with a term graphs whose
arguments are already normalised can be bounded by a polynomial in the sizes of the normal argument
subgraphs only, sharpening the complexity result obtained in [7]. The predicative interpretation is defined
modifying the predicative interpretations for terms employed in [} 4} 2, 3]].

Definition 5 (Interpretation of term graphs into unlabeled graphs) A list (vi,my,...,vg_1,mg_1,Vx)
consisting of nodes vy,..., v, of a term graph G and naturals my,...,my_1 is called a path from v; to vy
if v, is the m;th successor of v; for each j € {1,...,k—1}. We call a path (vi,my,...,vi_1,mg_1,v)

in a term graph G a safe one if v, | € safe(v;) forall j € {1,...,k—1}.

To define the predicative interpretation, we define an auxiliary interpretation _¢# of term graphs into
unlabeled graphs. For a term graph G, # (G) denotes the directed graph (V (), E #(g)) with the root
root s (g) = rootg consisting of the set V »(g) = Vi of vertices, and the set E ;) of edges defined as
follows. For an edge (u,v) € Eg, (u,v) € E 4 () holds if either (i) or (ii) holds.

(i) There are no distinct two safe paths from rootg to v.

(ii) The edge (u,v) lies on a safe path (uj,my,...,ux_1,m;_1,v) from rootg to v, i.e., u; = rootg and
ux—1 = u, and, for any distinct safe path (vi,ni,..., v;_1,n;_1,v) from rootg to v, m; < nj holds whenever
u; = v; and m; # n;. Namely, a safe path is kept by the interpretation _# only if it is the leftmost one.

For each symbol f € .%# with k normal argument positions, let f,, denote a fresh function symbol
with arity(f,) = k. For a term graph G, we write term(G) to denote the standard term representation of
G. For two successors vo, v of a node v, we write vo < vy if v; is the k;th successor for each j € {0,1}
and ko < k1. We extend the notation G | v to unlabeled (acyclic) directed graphs in the most natural way.

Definition 6 (Predicative interpretation) For a closed term graph G over a signature . = % U 2, let
f =labg(rootg) and succG(rootG) = Vi, ..., ViiVisi,-- -, Varity(s)- Suppose that {uy,...,u,} = {v € Vg |
v € safe(rootg) and (rootg,v) € E y(g)} and u < -+ < u,. Then, .#(G) := [] (the empty sequence) if
G e TY(€), or otherwise & (G) := [fn(term(G [v1),...,term(G [w))|” (G [u1)” -+~ (G | uy).

For a signature . = ¢ U 2, we define a subset 7Y m(F) C TY(F). Let G € TY(F) with
succG(rootg) = vi,...,ViiVitl,---, Vit Then G € TG nm(F) if either G € TY(€), or G | v; €
TY(€) foreach je {l,...,k} and G [v; € TG nm(F) foreach j € {k+1,...,k+1}. In addition, G
is called basic if labg(rootg) € Z and G [vj € TY (%) forall j € {1,...,k+1}.

Lemma 2 Let & be a set of constructor safe recursive unfolding graph rewrite rules over a signature
F. Suppose that G —,, H is induced by a redex (R, @) in a closed basic term graph G € TGy (F) for
arule R=(G',1,r) €4 and a homomorphism ¢ : G' | | — G. Let ¥’ € Vi denote the node corresponding
tor € Vg. Then, (G | @(1)) >; F(H | ') holds for { = max({|G’ | r|} U{arity(f) | f € F}).

22 Proving Termination of Unfolding Graph Rewriting for General Safe Recursion

Theorem 2 Let & be a set of constructor safe recursive unfolding graph rewrite rules over a signature
F. Suppose that max{arity(f) | f € #} <d and that Gy € TY(.F) is a closed basic term graph such
that succg, (rootG,) = Vi,...,Vik;Vitls---,Virr. Then, in any & rewriting starting with Gy, if G —4 H,
then .9 (G) >y . (H) holds for ¢ =2| UI;':1 VGov;| +d.

The following corollary is a consequence of Lemma [T and Theorem [2}
Corollary 1 For any set G of constructor safe recursive unfolding graph rewrite rules over a signature

F, there exists a polynomial p such that, for any closed basic term graph G € TG (F) such that
succG (rootg) = vi,..., ViiVir1s-- - Viers, if G =% H for some H, then m < p(| U’j‘-zl Vaiv,|) holds.

In contrast to Theorem the upper bound p(| U];:1 Vv;|) depends only on the size | Ul;: 1 Ve, | (of
the union) of the subgraphs connected to the normal argument positions. Moreover, innermost rewriting
is not assumed as long as rewriting starts with a (closed) basic term graph. In this paper, every GRS ¥ is
restricted to a set of unfolding graph rewrite rules, but the restriction can be relaxed so that & contains a
finite number of additional graph rewrite rules in certain shapes ([8, Section 6]).

5 Conclusion

Motivated by former works [} 14, 2, 3], we introduced a termination order over sequences of terms
together with an interpretation of term graphs. Unfolding graph rewrite rules expressing the equation
of (General Safe Recursion) can be embedded into the termination order by the interpretation, which
enables us to sharpen the result obtained in [7]] about the runtime complexity of those unfolding graph
rewrite rules. All the results presented in this paper have been obtained in the technical report [8] by the
author. For further investigation, it would be natural to look into the possibility of new criteria for the
polynomial runtime complexity of infinite graph rewriting based on the current approach.

References

[1] T. Arai & G. Moser (2005): Proofs of Termination of Rewrite Systems for Polytime Functions. In: Proceedings
of the 25th FSTTCS, LNCS 3821, pp. 529-540.

[2] M. Avanzini, N. Eguchi & G. Moser (2011): A Path Order for Rewrite Systems that Compute Exponential
Time Functions. In: Proceedings of the 22nd RTA, LIPIcs 10, pp. 123-138.

[3] M. Avanzini, N. Eguchi & G. Moser (2012): A New Order-theoretic Characterisation of the Polytime Com-
putable Functions. In: Proceedings of the 10th APLAS, LNCS 7705, pp. 280-295.

[4] M. Avanzini & G. Moser (2008): Complexity Analysis by Rewriting. In: Proceedings of the 9th FLOPS,
LNCS 4989, pp. 130-146.

[5] H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, R. Kennaway, M. J. Plasmeijer & M. R. Sleep
(1987): Term Graph Rewriting. In: Proceedings of PARLE 1987, Volume II, LNCS 259, pp. 141-158.

[6] S. Bellantoni & S. A. Cook (1992): A New Recursion-theoretic Characterization of the Polytime Functions.
Computational Complexity 2(2), pp. 97-110.

[7] U. Dal Lago, S. Martini & M. Zorzi (2010): General Ramified Recurrence is Sound for Polynomial Time. In
Patrick Baillot, editor: Proceedings of DICE 2010, pp. 47-62.

[8] N. Eguchi (2014): Proving Termination of Unfolding Graph Rewriting for General Safe Recursion. Available
athttp://arxiv.org/abs/1404.6196v3l Technical report, arXiv:1404.6196v3.

[9] D. Leivant (1995): Ramified Recurrence and Computational Complexity I: Word Recurrence and Poly-time.

In Peter Clote & Jeffrey B. Remmel, editors: Feasible Mathematics 1I, Progress in Computer Science and
Applied Logic, 13, Birkhéauser Boston, pp. 320-343.

http://arxiv.org/abs/1404.6196v3

	Introduction
	Unfolding graph rewrite rules for general safe recursion
	Termination orders on sequences of terms
	Predicative embedding of safe recursive unfolding graph rewriting
	Conclusion

