
A New Path Order for Exponential Time∗

Martin Avanzini
Institute of Computer Science

University of Innsbruck, Austria
martin.avanzini@uibk.ac.at

Naohi Eguchi
School of Information Science

Japan Advanced Institute of Science and Technology, Japan
n-eguchi@jaist.ac.jp

Abstract

In this note we present the Exponential Path Order EPO?. Inspired by a novel term rewriting
characterisation of the exponential time functions FEXP, this order is carefully trimmed so that we
believe that compatibility of TRSs implies exponentially bounded runtime complexity. Moreover,
the order is complete in the sense that every exponential time function can be expressed by a TRS
compatible with an instance of EPO?.

The work on EPO? is still unfinished, but we strongly believe that above mentioned results are
correct.

1 Introduction

Bellantoni and Cook [4] define the class B as the least class of functions containing certain initial func-
tions, and which is closed under the schemes of safe recursion on notation and safe composition. In this
spirit, exactly the polytime computable functions FP are generated, i.e., the class B coincides with the
class FP. Unlike previous definitions of FP (for instance, the recursion-theoretic characterisation given
by Cobham [5]), the class B is defined without explicitly referring to any externally imposed resource
bounds. Instead, the strength of the recursion scheme is broken by a syntactic separation of arguments
positions into safe and normal ones. To highlight this separation, we write f(~x;~y) instead of f(~x,~y)
for normal arguments ~x and safe arguments ~y. Suppose functions g,h0 and h1 as well as functions h, ~r
and ~s are definable in B. Then a new function f is defined either by safe recursion on notation via the
equations

f(ε,~x;~y) = g(~x;~y)
f(zi,~x;~y) = hi(z,~x;~y,f(z,~x;~y)), i ∈ {0,1} (SNR)

or by safe composition via the equation

f(~x;~y) = h(~r(~x;);~s(~x;~y)) . (SNC)

The purpose of the separation is to disallow recursion on recursively computed results: The recursion
parameter in (SNR) is taken from a normal argument position, whereas the recursively computed result
f(z,~x;~y) is substituted into a safe argument position of the stepping function hi. For instance, it is not
possible to define an exponentiation like function exp via the equations

double(ε) = ε double(zi) = double(z)ii exp(ε) = 1 exp(zi) = double(exp(z)) .

Since the function double is defined by recursion, the single argument of double needs to be normal.
Consequently, the function double cannot be used in the definition of exp. The additional restrictions
on argument positions imposed by scheme (SNC) ensures that safe arguments cannot influence normal
ones.

Inspired by the results of Bellantoni and Cook, Arai and the second author define in [1] the class N
as the least class containing the initial functions of B and that is closed under the (modified) scheme of
safe composition

f(~x;~y) = h(xi1 , . . . ,xik ;~s(~x;~y)) , (SNC2)
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and safe nested recursion on notation

f(~ε,~x;~y) = g(~x;~y) (SNRN)

f(~z,~x;~y) = hτ(~z)(~v1,~x;~y,f(~v1,~x;~tτ(~z)(~v2,~x;~y,f(~v2,~x;~y)))) .

In the recursion scheme, recursion is preformed simultaneously on multiple arguments. The functions
hτ(~z) and ~tτ(~z) are previously defined functions, chosen in terms of τ(~z) ∈ Σk0 where k is the length of
~z (Σk0 refers to the set of binary strings of length k). Further, ~v1 and ~v2 are unique predecessors of ~z
defined in terms of τ , satisfying ~v1 <lex ~z and ~v2 <lex ~z. Observe that the scheme (SNRN) is a syntactic
extension of the scheme (SNR). Note also, that the modification of safe composition is necessary as
FEXP is, opposed to FP, not closed under composition. For missing details on the definition of the
scheme (SNRN) we kindly refer the reader to [1]. Instead, we give an illustrating example. The simplest
exponentially growing function definable by safe nested recursion on notation is

f(ε;y) = y1 f(xi;y) = f(x;f(x;y)) (i= 0,1) .

Then it can be verified that f(x;y) = y12|x| where 1n denotes n times concatenation of the symbol 1. Let
FEXP denote the class of functions computable in exponential time. In [1] it is proved that the class N
coincides with FEXP 1. As a consequence, we conclude f ∈ FEXP for above defined function f .

Hofbauer has shown that multiset path orders (MPOs for short) induce primitive recursive bounds
on the length of derivations (see [7]). The schemes of safe recursion on notation suitably tames primitive
recursion so that only polytime computable functions are generated. Combining those two observation,
Moser and the first author have shown that the separation of safe and normal argument positions can
suitable tame MPO so that the induced innermost runtime complexity is polynomially bounded (see [2]
for the polynomial path order POP?, a restriction of MPO). Here the runtime complexity of a TRS
measures the maximal number of rewrite steps as a function in the size of the initial term, where the
initial terms are basic terms, i.e., of the form f(t1, . . . , tn) for constructor terms ti. More precisely,
define the derivation height of a terminating term t with respect to a finitely branching and well-founded
relation→ as

dh(t,→) = max{` | t→ t1→ ··· → t`} .

Let i−→R denote the innermost rewrite relation as induced by a TRS R. Then the innermost runtime
complexity of a terminating TRSR is defined as

rciR(n) = max{dh(t, i−→R) | t is basic and |t|6 n} .

In this paper we present the exponential path order EPO?, a miniaturisation of the lexicographic path
order (LPO for short). We hope that the same idea exploited in [2] carries over to this miniaturisation, in
the sense that by enforcing the scheme of safe nested recursion on notation the multiple recursive bound
on derivation lengths induced by LPOs (see [8]) can be broken down to exponential bounds on innermost
derivations, whenever the starting term is basic. Hence we aim for an order that

1. induces exponential bounds on the innermost runtime complexity of compatible TRSs, and

2. that is complete in the sense that every exponential time function is expressible by a TRS compat-
ible with EPO?.

Up to now, we are able to verify the second property. The first property still needs further investigations.

1A function may even be defined by safe nested recursion on notation with more than two nested recursive calls. In fact, at
least three layers are needed to capture the class FEXP, compare [1]. We avoid this complication to simplify the presentation.
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2 Exponential Path Order EPO?

In this section we present the exponential path order EPO?. We fix a finite but else arbitrary signature F ,
partitioned into defined symbolsD and constructors C. We use %=�]≈ to denote an admissible quasi-
precedence, i.e. a quasi-precedence where constructors are minimal. The separation of safe and normal
argument positions is taken into account by the notion of safe mapping. A safe mapping safe is a function
that associates with every n-ary function symbol f the set of safe argument positions. For constructors
f ∈ C we require that all argument positions are safe. The argument positions not included in safe(f) are
called normal and denoted by nrm(f). To simplify the presentation, we write f(ti1 , . . . , tik ; tj1 , . . . , tjl)
for the term s = f(t1, . . . , tn) with safe(f) = {i1, . . . , ik} and nrm(f) = {j1, . . . , jl}. We use ≈s to
denote term equivalence as induced by %. Moreover, we suppose≈s respects the separation of argument
positions, compare [3].

The exponential path order EPO? >epo? is based on an auxiliary order Aepo? defined as follows.

(1)
si wepo? t

f(s1, . . . ,sl;sl+1, . . . ,sm)Aepo? t
f ∈ C and some 1 6 i6m

(2)
si wepo? t

f(s1, . . . ,sl;sl+1, . . . ,sm)Aepo? t
f ∈ D and some 1 6 i6 l

Here wepo? := Aepo?∪≈s. The split into two orders is necessary, as we must carefully control compo-
sition and recursion of functions according to the schemes (SNC2) and (SNRN). Note that due to the
restrictive definition of case (2), one can show f(~x;~y) Aepo? xi, but one cannot show f(~x;~y) Aepo? yi.
Based on the auxiliary order Aepo?, we define for s = f(s1, . . . ,sl;sl+1, . . . ,sm) the exponential path
order EPO? >epo? as follows.

(1)
si ≥epo? t

f(s1, . . . ,sl;sl+1, . . . ,sm)>epo? t
for some 1 6 i6m

(2)
sAepo? t1 · · · sAepo? tk s >epo? tk+1 · · · s >epo? tn
f(s1, . . . ,sl;sl+1, . . . ,sm)>epo? g(t1, . . . , tk; tk+1, . . . , tn)

for f � g

(3)
s1 = t1 · · · s1 = ti−1 si Aepo? ti sAepo? ti+1 · · · sAepo? tl s >epo? tk+1 · · · s >epo? tn

f(s1, . . . ,sl;sl+1, . . . ,sm)>epo? g(t1, . . . , tk; tk+1, . . . , tn)

for f ≈ g and some 1 6 i6 min(l,k)

It is easy to see that Aepo? ⊆ >epo? ⊆ >lpo, hence compatibility of a TRS with >epo? implies ter-
mination, and moreover, a multiply recursive bound on the length of derivations [8]. Note that in order
to show s >epo? g(t1, . . . , tk; tk+1, . . . , tn) by case (2), we need to prove s Aepo? ti for 1 6 i 6 k instead
of s >epo? ti. By the above observation on >epo?, we can only compare normal arguments of s with ti.
This is in accordance with the scheme (SNC2).

In [6], the second author introduces the exponential path order EPO, a restriction of LPO that induce
exponential bounds on the innermost runtime complexity of TRSs. Although the order is complete for
FEXP in principle, its application is very restricted on naturally formulated TRSs. The idea of the current
research on EPO? is to lift this limitation. Besides the order EPO, a term rewriting characterisationRN
of the class FEXP is presented [6]. This characterisation is inspired by the schemes from [1], we use
it below to show completeness of EPO?. The scheme of rewrite rules RN consists of the rules drawn
below. For clarification of this scheme of rewrite rules, we kindly refer the reader to [6]. Binary words
are formed from the constructor symbols ε,S0 and S1. The function symbols Ok,l, Ik,lr ,P,C correspond
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to the initial functions of the class N . The function symbols SUB[g, i1, . . . , ik,~h] are used to denote the
function obtained by composing functions g and ~h according to the scheme (SNC2). Finally, function
symbols SNRN[g,hw′ , ~tw′ , ~sw′ (w

′ ∈ Σk0)] correspond to the functions defined by safe nested recursion
on notation in accordance to scheme (SNRN). We highlight the separation of safe and normal argument
positions directly in the rules.

(1) Ok,l(~x;~y)→ ε

(2) Ik,lr (~x;~y)→ xr for 1 6 r 6 k

(3) Ik,lr (~x;~y)→ yr−k for k < r 6 l+k

(4) P(;ε)→ ε

(5) P(; Si(;x))→ x

(6) C(;ε,y0,y1)→ y0

(7) C(; Si(;x),y0,y1)→ y1

(8) SUB[g, i1, . . . , ik,~h](~x;~y)→ g(xi1 , . . . ,xik ;~h(~x;~y))

(9) SNRN[g,hw′ , ~tw′ , ~sw′ (w
′ ∈ Σ

k
0)](~ε,~x;~y)→ g(~x;~y)

(10) SNRN[g,hw′ , ~tw′ , ~sw′ (w
′ ∈ Σ

k
0)](Si1(;z1), . . . ,Sik(;zk),~x;~y)→

hw(~v1,~x;~y,SNRN[g,hw′ , ~tw′ , ~sw′ (w
′ ∈ Σ

k
0)](~v1,~x;~a))

[ ~tw(~v2,~x;~y,SNRN[g,hw′ , ~tw′ , ~sw′ (w
′ ∈ Σ

k
0)](~v2,~x;~b))/~a]

[ ~sw(~v3,~x;~y,SNRN[g,hw′ , ~tw′ , ~sw′ (w
′ ∈ Σ

k
0)](~v3,~x;~y))/~b] ij ∈ {0,1}, for 1 6 j 6 k

In (10) we use ~v1 and ~v2 for specific predecessors of the arguments to SNRN[g,hw′ , ~tw′ , ~sw′ (w
′ ∈ Σk0)],

compare the scheme (SNRN). By the results of [1], it follows that for each f ∈ FEXP there exists a finite
restrictionRf ⊆RN such thatRf computes the function f (compare [6]).

Theorem 1. LetRf be a finite restriction ofRN . ThenRf ⊆>epo? for some instance of EPO?.

Proof. Define lh(g) for symbol g appearing in Rf as follows. Set lh(g) = 1 for g ∈ {Ok,l, Ik,lr ,P,C}.
Define

lh(SUB[g, i1, . . . , ik,~h]) = max{lh(g), lh(~h)}+1

and
lh(SNRN[g,hw′ , ~tw′ , ~sw′ (w

′ ∈ Σ
k
0)]) = max{lh(g), lh( ~tw′), lh( ~sw′) | w′ ∈ Σ

k
0}+1 .

Define the safe mapping safe as indicated by the schemata RN , and define f > g in the precedence if
lh(f) > lh(g). Then it can be shown that Rf ⊆>epo?. We show the most interesting case, namely we
orient the final rule. The general case easily follows from this. For notational reasons, we only consider
two levels of nestings, that is we show

f(Si1(;z1), . . . ,Sik(;zk),~x;~y)>epo? hw(~v1,~x;~y, f(~v1,~x; ~tw(~v2,~x;~y, f(~v2,~x;~y))))

where f abbreviate SNRN[g,hw′ , ~tw′ , ~sw′ (w
′ ∈ Σk0)]. Set u := f(Si1(;z1), . . . ,Sik(;zk),~x;~y). By one

application of rule (1) in the definition of >epo? we obtain u >epo? yi for yi ∈ ~y, similar one application
of rule (2) of Aepo? yields uAepo? xi for xi ∈ ~x. Recall that terms ~v3 encode <lex-predecessors of words
corresponding to terms ~z (compare the remarks below scheme (SNRN)). From this observation we see
that for ~v3 = v1, . . . ,vk and some 1 6 i6 k,

Si1(z1) = v1, . . . ,Sii−1(zi−1) = vi−1, Sii(zi)Aepo? vi and Sii+1(zi+1)wepo? vi+1, . . . ,Sii+1(zk)wepo? vk .
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Thus by one application of rule (3) of >epo? we are able to conclude u >epo? f(~v2,~x;~y). Note that by the
above inequalities, also uAepo? vi for 1 6 i6 k, and thus due to rule (2) of >epo? we further obtain

u >epo? ~tw(~v2,~x;~y, f(~v2,~x;~y)) .

Carrying over the observations on ~v2 to ~v1, the latter inequality gives us

u >epo? f(~v1,~x; ~tw(~v2,~x;~y, f(~v2,~x;~y)))

by another application of rule (3). We conclude with a final application of rule (2).

We want to point out that compatibility with EPO? does not induce exponential runtime complexity.
Consider the TRSR consisting of the rules

d(;x)→ c(;x,x) f(0;y)→ y f(s(;x);y)→ f(x;d(; f(x;y))) .

Then R⊆>epo? for the precedence f > d and safe mapping as indicated in the definition ofR. Still, we
conjecture the following:

Conjecture 1. Suppose R is a constructor TRS compatible with >epo?. Then the innermost runtime
complexity rciR(n) is bounded by an exponential.

Our belief in this conjecture is based on the proof of completeness of exponential path orders EPO as
put forward in [6]. Completeness of the order is shown by embedding derivations of finite restrictions of
Rf ⊂RN into EPO via suitable term interpretations. The definition of the employed term interpretation
takes the separation of safe and normal argument positions into account. By the close correspondence
between the schemeRN with the ordering constraints imposed by>epo?, compatibilityR⊆>epo? should
give enough information to embed R derivations into instances of EPO in a similar spirit. Whether this
truly holds is subject to further research.
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