

Characterising Complexity Classes by Fixed Point Axioms

Naohi Eguchi

Institute of Computer Science University of Innsbruck Austria

19 September 2013, Swansea University

Introduction (1/2)

- Many of computable functions can be already computed with some realistic computation resources (in realistic time, with realistic space).
- Attempts to find limits of realistic computations have given rise to open problems about complexity classes, e.g. $P \neq ?NP$.
- In many cases it is difficult to compare complexity classes.

Fact

- 1. $P \subseteq NP \subseteq PH \subseteq PSPACE$.
- 2. $P \subset \#P \subset PCH \subset PSPACE$.

(PH: Polynomial hierarchy, #P: Polynomial counting, PCH: Counting hierarchy) No strict inclusion is known.

Introduction (2/2)

Definition

- 1. P: the class of polynomial-time computable functions.
- 2. PSPACE: the class of polynomial-space computable functions.
 - It is not known if $P \subseteq \#P \subseteq PSPACE$, e.g.
 - 1. PSPACE is closed under summation:

$$f(x, \vec{y}) = \sum_{i=0}^{x} g(i, \vec{y}).$$

- 2. It is not known if P is closed under summation.
- To know much about complexity classes:
 Machine-independent logical characterisations.

Outline

- There can be many characterisations of one complexity class. (Recursion-theoretic, Model-theoretic, Proof-theoretic, ...)
- What is the most essential principle to uniformly define functions in a given complexity class?
 Given a complexity class F, find an axiom Ax s.t.

$$f \in \mathcal{F} \iff \mathrm{T} + \mathsf{Ax} \vdash \forall x \exists ! y f(x) = y.$$

(T: a base axiomatic system)

Inductive definition (monotone case)

Example

 $\mathbb N$ is the smallest set containing 0 closed under $x\mapsto x+1$. More precisely: define an operator $F:\mathcal P(V)\to\mathcal P(V)$ by $x\in F(X):\Leftrightarrow x=0 \ \forall \ \exists y\in X(x=y+1).$

See:

- \mathbb{N} is the least fixed point of F:
 - $F(\mathbb{N}) \subseteq \mathbb{N}$ (Fixed point) • $\forall X \subseteq V[F(X) \subseteq X \to \mathbb{N} \subseteq X]$ (Leastness)
- The least fixed point exists since *F* is monotone:

$$X \subseteq Y \Rightarrow F(X) \subseteq F(Y)$$

Inductive definition (general case)

Let α : an ordinal number.

Definition

$$\begin{cases}
F^0 &:= \emptyset \\
F^{\alpha+1} &:= F(F^{\alpha}) \\
F^{\gamma} &:= \bigcup_{\alpha < \gamma} F^{\alpha} \quad (\gamma : \text{limit})
\end{cases}$$

See: $\exists \alpha_0 < \# \mathcal{P}(V)$ such that $F^{\alpha_0+1} = F(F^{\alpha_0}) = F^{\alpha_0}$.

Example

$$x \in F(X) : \Leftrightarrow x = 0 \lor \exists y \in X(x = y + 1).$$

See: $\mathbb{N} = F^{\alpha_0}$ for $\alpha_0 = \min\{\alpha : \text{ ordinal } | F^{\alpha+1} = F^{\alpha}\}.$

Finitary inductive definitions

Let
$$F: \mathcal{P}(S) \to \mathcal{P}(S)$$
 ($\#S < \omega$).
Define F^m by
$$\begin{cases} F^0 := \emptyset \\ F^{m+1} := F(F^m) \end{cases}$$

Definition

If F is inflationary if $X \subseteq F(X)$ for any $X \subseteq S$.

- $\exists k \leq \#S$ such that $F^{k+1} = F^k$ if F is inflationary.
- $\exists k \leq \#S$ s.t. $F^{k+1} = F^k$ does not hold in general.
- However $\exists k < 2^{\#S}$, $\exists l \neq 0$ such that $\forall n > k$. $F^{n+l} = F^n$.
 - Otherwise there exist $2^{\#S} + 1$ subsets of S.
 - This contradicts $\#\{M \mid M \subseteq S\} = 2^{\#S}$.

Connection to time-complexity

Suppose:

- 1. A function f(X) is computable in T(X) steps.
- 2. TAPE^k denotes the tape description at the kth step in computing f(X);

$$\mathsf{TAPE}^0 = \boxed{ B \mid i_1 \mid \cdots \mid i_{|X|} \mid B \mid \cdots \mid B }$$

$$(X = i_1 \cdots i_{|X|} \text{ (input)}, \ i_1, \ldots, i_{|X|} \in \{0, 1\})$$

• Then TAPE $^{T(X)+1} = \text{TAPE}^{T(X)}$.

$$\mathsf{TAPE}^{T(X)} = \boxed{B \mid i_1 \mid \cdots \mid i_{|f(X)|} \mid B \mid \cdots \mid B}$$

$$(f(X) = i_1 \cdots i_{|f(X)|} \text{ (output)}, i_1, \dots, i_{|f(X)|} \in \{0, 1\})$$

• Furthermore $\forall k \geq T(X)$, TAPE^k = TAPE^{T(X)}.

Motivation: Finite model theory

Model-theoretic characterisations of P, PSPACE.

Theorem (Immerman '82, Vardi '82)

Over finite structures, the following are equivalent.

- 1. A predicate $L \in P$.
- 2. L can be expressed by the first order predicate logic (FO) with the fixed point predicate of a FO definable inflationary operator, i.e. $X \subseteq F(X)$.

Theorem (Immerman et al.)

Over finite structures, the following are equivalent.

- 1. A predicate $L \in PSPACE$.
- 2. L can be expressed by FO with the fixed point predicate of a FO definable non-inflationary operator.

Bounded arithmetic (1/3)

Introducing an axiom (ID) of inductive definitions such that

$$f \in \mathcal{F} \iff \mathrm{T} + (\mathsf{ID}) \vdash \forall X \exists ! Y f(X) = Y.$$

where $\mathcal{F} = P$ or $\mathcal{F} = PSPACE$.

- The base system T must be weak: $T \not\vdash (ID)$.
- Bounded arithmetic seems suitable for T.
- A system of bounded arithmetic is:
 - a weak subsystem of Peano arithmetic PA;
 - suitable for finitary mathematics.

Bounded arithmetic (2/3)

Second order bounded arithmetic:

- Language \mathcal{L}^2_{BA} : 0, 1, +, · and |X|.
- First order elements x, y, z, ...: natural numbers with upper bounds of \mathcal{L}^2_{RA} -terms, i.e. polynomials.
- Second order elements X, Y, Z, ...: finite sets of naturals. Interpretable into $\{0, 1\}$ -strings, i.e. exponentials.
- |X| denotes the number of elements of X, or equivalently the binary length of X.
- Axioms: Induction, Comprehension, ..., Inductive definitions.

Bounded arithmetic (3/3)

Question. Why second order formulation? Reason. To avoid inessential string encoding.

- (Turing) computations are "rewriting of finite strings".
- In classical formulation: encoding finite strings with exponentials e.g. $[a_1 a_2 \cdots a_k] = 2^{[a_1]} \cdot 3^{[a_2]} \cdot \cdots \cdot p_k^{[a_k]}$.
- Conversely: numerical functions can be regarded as functions over {0,1}-strings.

Question. Why first order elements necessary?

Reason. To rewrite strings without encoding but with: $\forall X \exists Y (\forall i < |Y|) (i \in Y \leftrightarrow \varphi(i,X)) \qquad \text{(Comprehension)}$ Meaning: $i \in X \iff \text{the } i \text{th element of } X \text{ is } 1$ $(i \notin X \iff \text{the } i \text{th element of } X \text{ is } 0)$

Axiom of Inductive Definitions

Definition (Axiom of Inductive Definitions)

 $\forall x, \exists X, Y \text{ s.t. } |X|, |Y| \leq x, Y \neq \emptyset \text{ (}\emptyset\text{: empty string) and}$

- 1. $\forall j < x(\frac{P_{\varphi}^{\emptyset}}{\varphi}(j) \leftrightarrow i \in \emptyset)$
- 2. $\forall Z, \forall j < x(P_{\varphi}^{S(Z)}(j) \leftrightarrow \varphi(j, P_{\varphi}^{Z}))$
- 3. $\forall j < x(P_{\varphi}^{X+Y}(j) \leftrightarrow P_{\varphi}^{X}(j))$

 $(P_{\varphi}^{X}(j))$: fresh predicate, S: string successor $X \mapsto X + 1$) Recall:

- 1. $F^0 = \emptyset$
- 2. $F^{m+1} = F(F^m)$
- 3. $\exists k < 2^{\#S}, \exists l \neq 0 \text{ s.t. } F^{k+l} = F^k$

Main results

Definition

- 1. (FO-ID): Axiom of inductive definitions for some FO φ .
- 2. (FO-IID): (FO-ID) if additionally φ is inflationary, i.e., if $\forall X, \forall i < |X| (i \in X \to \varphi(i, X))$ holds.

Let V^0 be a base system of bounded arithmetic.

 $\exists^2 \mathsf{FO}$ formula: $\exists X (|X| \leq t \land \psi)$ and ψ FO formula, known as Σ_1^B .

Theorem

- 1. $f \in P$ if and only if $V^0 + (FO\text{-}IID) \vdash \forall X \exists ! Y f(X) = Y$ and "f(X) = Y" can be expressed by a $\exists^2 FO$ formula with P_{φ}^X .
- 2. $f \in \text{PSPACE}$ if and only if $V^0 + (FO\text{-}ID) \vdash \forall X \exists ! Y f(X) = Y$ & "f(X) = Y" can be expressed by a $\exists^2 FO$ formula with P_{φ}^X .

Connection to time-complexity

Suppose:

- 1. A function f(X) is computable in T(X) steps.
- 2. TAPE^k denotes the tape description at the kth step in computing f(X);

$$\mathsf{TAPE}^0 = \boxed{ B \mid i_1 \mid \cdots \mid i_{|X|} \mid B \mid \cdots \mid B }$$

$$(X = i_1 \cdots i_{|X|} \text{ (input), } i_1, \ldots, i_{|X|} \in \{0,1\})$$

• Then TAPE $^{T(X)+1} = \text{TAPE}^{T(X)}$.

$$\mathsf{TAPE}^{T(X)} = \boxed{B \mid i_1 \mid \cdots \mid i_{|f(X)|} \mid B \mid \cdots \mid B}$$

$$(f(X) = i_1 \cdots i_{|f(X)|} \text{ (output)}, i_1, \dots, i_{|f(X)|} \in \{0, 1\})$$

• Further $\forall k \geq T(X)$, TAPE^k = TAPE^{T(X)}.

Proof of "only if" of Theorem 2

Theorem 2

 $f \in \mathrm{PSPACE}$ if and only if $\mathrm{V}^0 + (\mathrm{FO-ID}) \vdash \forall X \exists ! Y f(X) = Y$ and "f(X) = Y" can be expressed by a $\exists^2 \mathrm{FO}$ formula with some P_{ω}^X .

Proof of "only if" of Theorem 2.

Suppose: $f \in PSPACE$.

$$\exists p$$
: polynomial s.t. $\begin{cases} f(X) \text{ is computable in } 2^{p(|X|)} \text{steps} \\ |\mathsf{TAPE}^L| \leq p(|X|) \end{cases}$

See: $TAPE^L \mapsto TAPE^{L+1}$: expressed by a FO formula.

By (FO-ID) $\exists K, \exists L \text{ s.t. } \mathsf{TAPE}^{K+L} = \mathsf{TAPE}^{K}$

See: $TAPE^{K}$ denotes the final tape description.

$$f(X) = Y \Leftrightarrow \exists K, L \text{ s.t. } \begin{cases} |K|, |L| \le p(|X|), \mathsf{TAPE}^{K+L} = \mathsf{TAPE}^K \\ \& Y = \mathsf{output}(\mathsf{TAPE}^K). \end{cases}$$

Hence $V^0 + (FO-ID) \vdash \forall X \exists ! Yf(X) = Y$.

"If" of Theorem 1 & 2 (1/2)

Proofs of "if" direction of Theorem 1 & 2 are based on:

Theorem (Zambella '96)

 $f \in P$ if and only if $V^0 + (\exists^2 FO\text{-IND}) \vdash \forall X \exists ! Y f(X) = Y$ and "f(X) = Y" can be expressed by a $\exists^2 FO$ formula.

Theorem (Skelley '06)

 $f \in \mathrm{PSPACE}$ if and only if $\mathrm{V}^0 + (\exists^3 SO\text{-}IND) \vdash \forall X \exists ! Y f(X) = Y$ and "f(X) = Y" can be expressed by a $\exists^3 SO$ formula. ($\exists^3 SO$: third order $\exists \mathcal{X} \psi$ for some second order ψ known as $\Sigma_1^{\mathcal{B}}$)

Proof of "if" of Theorem 1 & 2.

Theorem 1: Show $V^0 \vdash (\exists^2 \mathsf{FO}\text{-}\mathsf{IND}) \to (\mathsf{FO}\text{-}\mathsf{IID}).$

Theorem 2: Show $V^0 \vdash (\exists^3 SO\text{-IND}) \rightarrow (FO\text{-ID})$.

"If" of Theorem 1 & 2 (2/2)

Proof of "if" of Theorem 1 & 2.

Theorem 1: Show $V^0 \vdash (\exists^2 FO\text{-IND}) \rightarrow (FO\text{-IID})$.

Theorem 2: Show $V^0 \vdash (\exists^3 SO\text{-IND}) \rightarrow (FO\text{-ID})$.

This is not enough.

Lemma (Eliminating fixed point predicates)

- 1. If $V^0 + (FO\text{-}IID) \vdash \psi : \exists^2 FO$ with P_{φ} , then $\exists \psi' : \exists^2 FO$ without P_{φ} such that $V^0 + (\exists^2 FO\text{-}IND) \vdash \psi'$ and $\psi \Leftrightarrow \psi'$ under a standard interpretation.
- 2. If $V^0 + (FO-ID) \vdash \psi : \exists^2 FO$ with P_{φ} , then $\exists \ \psi' : \exists^3 SO$ without P_{φ} such that $V^0 + (\exists^3 SO-IND) \vdash \psi'$ and $\psi \Leftrightarrow \psi'$ under a standard interpretation.

Remarks

Theorem (Zambella '96)

 $f \in P$ if and only if $V^0 + (\exists^2 FO\text{-IND}) \vdash \forall X \exists ! Y f(X) = Y$ and "f(X) = Y" can be expressed by a $\exists^2 FO$ formula.

Proof is based on a recursion-theoretic characterisation of P by A. Cobham ('64).

• E.g. if f(X) is defined by (bounded) recursion on |X|, then $\exists Y f(X) = Y$ is inferred by $\exists^2 FO$ -IND on |X|.

Conclusion

Summary: Axioms of inflationary/non-inflationary inductive definitions are introduced.

- New machine-independent characterisations of P & PSPACE.
- P vs. PSPACE problem can be reduced to the distinction between inflationary/non-inflationary inductive definitions.
- Classical recursion-theoretic characterisations of P & PSPACE are connected to model-theoretic characterisations.

Observation:

- In contrast to infinitary ones, the axiom of finitary inductive definitions is logically close to Pigeon Hole Principle. "If n+1 pigeons in n holes, then there is a pair of pigeons"
- Indeed (FO-ID) implies a specific form of PHP.

Further research

Possible extension:

- It seems possible to extend the characterisation of P to the polynomial hierarchy, e.g., NP.
- Extension to EXP would be also possible.
 (Recall it is not known if NP ⊊ PSPACE ⊊ EXP)

In terms of bounded reverse mathematics:

- $V^0 \vdash (FO\text{-}IID) \rightarrow (\exists^2 FO\text{-}IND)$? Equivalently $V^0 \vdash (FO\text{-}IID) \rightarrow (\exists^2 FO\text{-}CA)$?
- $V^0 \vdash (FO\text{-ID}) \rightarrow (\exists^3 SO\text{-IND})$? Equivalently $V^0 \vdash (FO\text{-ID}) \rightarrow (\exists^3 SO\text{-CA})$?

References

Characterising Complexity Classes by Inductive Definitions in Bounded Arithmetic

Naohi Eguchi

Technical report, arXiv: 1306.5559 [math.LO], 2013.

Thank you for your attention!

Speaker is supported by JSPS postdoctoral fellowships for young scientists.