

Infinite Games in the Cantor Space over Admissible Set Theories

Naohi Eguchi

Institute of Computer Science University of Innsbruck Austria

February 20, 2014, CTFM2014, Tokyo, Japan

Introduction

- Axiom of determinacy for infinite games: Set-theoretic statement over second order language stemming from descriptive set theory.
- This work: A fine-grained analysis of Δ_2^0 -definable games in the Cantor space over admissible set theories.
 - Why $\Delta_2^0\text{-}games?$ The first class for which the different hierarchy makes sense.
 - Why in the Cantor space? The logical strength of the axiom gets weaker than in the Baire space $(\Pi_1^1-TR_0 \text{ to } ATR_0)$.
 - Why admissible set theories? A natural hierarchy reaching ATR_0 is known.

Two players game A:
$$(x_0, x_1, \ldots y_0, y_1, \cdots \in X)$$

Player I	<i>x</i> ₀		x_1		
Player II		<i>Y</i> 0		y_1	

- A strategy σ for Player I is a partial function $X^{<\mathbb{N}} \to X$ s.t. $\sigma(\langle x_0, y_0, \dots, x_{j-1}, y_{j-1} \rangle) = x_j$.
- A strategy σ for Player II is a partial function $X^{<\mathbb{N}} \to X$ s.t. $\sigma(\langle x_0, y_0, \dots, x_{j-1}, y_{j-1}, x_j \rangle) = y_j.$

Player I wins the game $A \iff \langle x_0, y_0, x_1, y_1, \ldots \rangle \in A$ for any strategy for Player II. Player II wins the game $A \iff \langle x_0, y_0, x_1, y_1, \ldots \rangle \notin A$

for any strategy for Player I.

Let Φ : class of sets.

Axiom of determinacy: Either Player I or II wins the game $A \in \Phi$.

- 1. Φ -Det: In case $X = \mathbb{N}$.
- 2. Φ -Det^{*}: In case $X = 2 = \{0, 1\}$.

Theorem (Nemoto-MedSalem-Tanaka '07)

- 1. $\operatorname{RCA}_0 \vdash \Sigma_1^0 \operatorname{-Det}^* \leftrightarrow \operatorname{WKL}_0$.
- 2. $\operatorname{RCA}_0 \vdash \Delta_2^0 \operatorname{-Det}^* \leftrightarrow \operatorname{ATR}_0$.

Any Δ_2^0 set can be approximated by the symmetric difference of recursively enumerable sets.

Theorem (Shoenfield)

For any Δ_2^0 -set, there exists a recursive function $f : \mathbb{N} \times \mathbb{N} \to \{0, 1\}$ such that $\lim_s f(x, s) = A(x)$. $(A(x) \Leftrightarrow x \in A \Leftrightarrow \chi_A(x) = 1)$

This induces the Ershov hierarchy, the symmetric difference of *a* recursively enumerable sets for an element *a* of Klneene's ordinal notation system O.

Kleene's \mathcal{O}

Definition (Kleene's \mathcal{O})

The set $\mathcal{O} \subseteq \mathbb{N}$ of notations, a function $|\cdot|_{\mathcal{O}} : \mathcal{O} \to Ord$ and a strict partial order $<_{\mathcal{O}}$ on \mathcal{O} are defined simultaneously.

1.
$$1 \in \mathcal{O}$$
 and $|1|_{\mathcal{O}} = 0$.

- 2. If $a \in \mathcal{O}$ and $|a|_{\mathcal{O}} = \alpha$, then $2^a \in \mathcal{O}$ and $|2^a|_{\mathcal{O}} = \alpha + 1$.
- 3. If e is a code of a total recursive function such that $|\{e\}(n)|_{\mathcal{O}} = \alpha_n$ and $\{e\}(n) <_{\mathcal{O}} \{e\}(n+1)$ hold for all $n \in \mathbb{N}$, then $3 \cdot 5^e \in \mathcal{O}$ and $|3 \cdot 5^e|_{\mathcal{O}} = \lim_{n \to \infty} \alpha_n$.

Fact

- 1. $<_{\mathcal{O}}$ and \mathcal{O} are Π_1^1 -definable sets.
- 2. $<_{\mathcal{O}}$ is a well-founded partial order on \mathcal{O} .
- 3. $<_{\mathcal{O}}$ is a linear order for any $a \in \mathcal{O}$, .

Definition (a-r.e. sets)

Let $a \in \mathcal{O}$. $A \subseteq \mathbb{N}$ is *a*-r.e. if there exist recursive functions $f : \mathbb{N} \times \mathbb{N} \to \{0, 1\}$ and $o : \mathbb{N} \times \mathbb{N} \to \mathcal{O}$ s.t. 1. f(x, 0) = 0 and $o(x, 0) <_{\mathcal{O}} a$ for all x. 2. $o(x, s + 1) \leq_{\mathcal{O}} o(x, s)$ for all x and s. 3. For all x and for all s, if $f(x, s + 1) \neq f(x, s)$, then $o(x, s + 1) <_{\mathcal{O}} o(x, s)$.

4. $\lim_{s} f(x,s) = A(x)$ for all x.

Theorem (Stephan-Yang-Yu '10)

For any Δ_2^0 set $A \subseteq \mathbb{N}$, there exists $a \in \mathcal{O}$ such that $|a|_{\mathcal{O}} = \omega^2$ and A is an a-r.e. set.

- Original idea: to layer the Δ_2^0 -Det* by the Ershov hierarchy.
- Oversight of the speaker: The theorem fails for A ⊆ 2^N (addressed by T. Kihara).
 - Δ_2^0 subsets of $2^{\mathbb{N}}$ will not be exhausted at ω^2 .
 - The Ershov hierarchy might not be appropriate for fine-grained analysis of determinacy of Δ_2^0 -definable games.
- This talk presents very partial results.

$(\Sigma_1^0)_a$ -formula

Definition

Let $a \in \mathcal{O}$. Assume the relation $\langle_{\mathcal{O}}|^{\uparrow} a$ can be expressed in an underlying formal system. Then we say a formula is $(\Sigma_{1}^{0})_{a}$ -formula if it is of the form $(\exists b <_{\mathcal{O}} a) [\varphi(b) \land (\forall c <_{\mathcal{O}} b) \neg \varphi(c)]$ for some Σ_{1}^{0} -formula φ .

Intuitively, a $(\Sigma_1^0)_a$ -formula expresses:

$$(\exists b <_{\mathcal{O}} a) [\exists s \ f(s, b) = 0 \land (\forall c <_{\mathcal{O}} b) \forall s \ f(s, c) = 1]$$

A system KPu^0 of admissible set theory: Weak subsystem of ZF without (Power) over $\mathcal{L}_{\mathrm{ZF}} \cup \{\mathsf{Ad}\}$ s.t.

- 1. Axiom of Separation is limited to Δ_0 -formulas.
- 2. Axiom of Replacement is limited the axiom of Collection for $\Delta_{0^{\text{-}}}$ formulas.
- 3. Axioms for Ad: Ad(z) means z is an admissible set, i.e., z satisfies (Δ_0 -Sep) and (Δ_0 -Col).

Note:

- $\mathrm{KPu}^0\vdash\Delta_1^1\mathrm{-CA}_0.$ Hence KPu^0 is strong enough for a base system.
- Unlike ${\rm KPu}$ (or ${\rm KP}),$ transfinite induction holds in ${\rm KPu}^0$ only for $\Delta_0\text{-}formulas.$

$$\mathrm{KPu}^{0} + (\mathcal{U}_{n}) \text{ (over } \mathcal{L}_{\mathrm{ZF}} \cup \{\mathsf{Ad}\} \cup \{d_{0}, \ldots, d_{n-1}\}):$$

 $\operatorname{Ad}(d_0) \wedge \cdots \wedge \operatorname{Ad}(d_{n-1}) \wedge d_0 \in d_1 \wedge \cdots \wedge d_{n-2} \in d_{n-1} \qquad (\mathcal{U}_n)$

The set d_0 could be interpreted as $L_{\omega_1^{CK}}$.

Theorem (Jäger '84)

|T|: maximal order type of recursive well ordering provable in T. $(\alpha, \beta) \mapsto \varphi(\alpha, \beta)$: Veblen function.

1.
$$|\mathrm{KPu}^0 + (\mathcal{U}_1)| = \varphi(\varepsilon_0, 0).$$

2.
$$|\mathrm{KPu}^0 + (\mathcal{U}_{n+2})| = \varphi(|\mathrm{KPu}^0 + (\mathcal{U}_{n+1})|, 0).$$

Therefore $|\bigcup_{n<\omega} \mathrm{KPu}^0 + (\mathcal{U}_n)| = |\mathrm{ATR}_0| = \Gamma_0.$

Admissible sets have a closure property: The fixed point axiom for arithmetically definably operators holds in $\bigcup_{n < \omega} \text{KPu} + (\mathcal{U}_n)$.

Lemma (Jäger '84)

 $\varphi(X, \vec{Y}, x)$: X-positive arithmetical formula.

$$\mathrm{KPu}+(\mathcal{U}_{n+1})\vdash (\forall\vec{Y}\in \textit{d}_{n-1})(\exists X\in\textit{d}_n)(\forall x)\left(x\in X\leftrightarrow \varphi(X,\vec{Y},x)\right)$$

(Hence at most n-fold iterated application of fixed point axiom is possible)

Note: due to absence of transfinite recursion, the leastness of the fixed point is not provable.

ATR_0 holds in $\bigcup_{n < \omega} KPu + (\mathcal{U}_n)$

ATR₀ holds in $\bigcup_{n < \omega} \text{KPu}^0 + (\mathcal{U}_n)$.

Lemma (Jäger '84)

 φ : arithmetical formula.

$$\begin{aligned} (\forall <, \vec{Y} \in d_n) \\ & \text{WO}(<) \rightarrow \\ & (\exists X \in d_n)(\forall \alpha \in \mathsf{field}(<))\forall x \left(x \in X_\alpha \leftrightarrow \varphi(X_{<\alpha}, \vec{Y}, x)\right) \\ & \text{holds in KPu}^0 + (\mathcal{U}_{n+1}). \end{aligned}$$

Well-ordering of $<_{\mathcal{O}}$ up to $\omega \cdot n$

Lemma

Let
$$n < \omega$$
 and $a_n = 3 \cdot 5^{e_n} \in \mathcal{O}$ represent $\omega \cdot (n+1)$.

1.
$$<_{\mathcal{O}} \upharpoonright a_n$$
 of $<_{\mathcal{O}}$ is definable in KPu + (\mathcal{U}_{n+1}) .

2. KPu +
$$(\mathcal{U}_{n+1}) \vdash WO(\langle \mathcal{O} | a_n).$$

Proof.

By *n*-fold application of FP axiom, define a relation $<_n \in d_n$:

$$b <_{0} a \iff (b = 1 \land a = 2^{1}) \lor \exists c (b \leq_{0} c \land a = 2^{c})$$

$$b <_{n+1} a \iff \begin{cases} b <_{n} a \lor \exists c (b \leq_{n+1} c \land a = 2^{c}) \lor \\ [a = a_{n} \land \forall m(\{e_{n}\}(m) <_{n} \{e_{n}\}(m+1)) \land \\ \exists m(b <_{n} \{e_{n}\}(m))] \end{cases}$$

See $<_n = <_{\mathcal{O}} \upharpoonright a_n$. Show $\operatorname{KPu} + (\mathcal{U}_{n+1}) \vdash \operatorname{WO}(<_n)$ by ind on n. \Box

Theorem

Let $1 \leq n$. Suppose that $a \in \mathcal{O}$ is a notation for $\omega \cdot n$. Then $\mathrm{KPu}^0 + (\mathcal{U}_n) \vdash (\Sigma_1^0)_a$ - Det^* .

Outline of Proof.

Given a $(\Sigma_1^0)_a$ formula $\varphi(f)$, define a set $W_b \in d_{n-1}$ $(b <_{\mathcal{O}} \upharpoonright a)$ of winning positions $s \in 2^{<\mathbb{N}}$ by (ATR): $s \in W_b \leftrightarrow \psi(s, W_{<_{\mathcal{O}}b})$, where $\psi \in \Pi_1^0$ is defined from φ . Define a new Σ_1^0 game $\varphi'(f) :\equiv \exists m(\exists b <_{\mathcal{O}} a) \langle f(0), \dots, f(2m-1) \rangle \in W_b$. 1. If Player I wins $\varphi'(f)$, then I wins $\varphi(f)$. 2. If Player II wins $\varphi'(f)$, then II wins $\varphi(f)$. Note: Σ_1^0 -Det* holds in KPu⁰ + (\mathcal{U}_n) .

Conclusion

Summary

- Aiming fine-grained analysis of determinacy of $\Delta_2^0\text{-definable}$ games in the Cantor space.
- Layering based on the Ershov hierarchy, which turns out to be questionable.
- Obtained partial results strongly rely on the definability and provability of the well ordering of <_O↾ a.
- This observation is consistent with the results about $(\Sigma_1^0)_{\alpha}$ -Det^{*} ($\alpha < \Gamma_0$) by Nemoto-Sato.

Thank you for your listening!

Speaker is supported by JSPS postdoctoral fellowships for young scientists.