
A New Term Rewriting Characterisation of
ETIME functions

Martin Avanzini and Naohi Eguchi

Institute of Computer Science
University of Innsbruck

Austria

April 5, 2014, DICE 2014, Grenoble

http://cl-informatik.uibk.ac.at


Introduction 1/2

The class of primitive recursive functions is closed under several
non-trivial recursion schemata (R. Péter, 1967), e.g.:

• Primitive recursion with parameter substitution (PRP):
(PRP) f (x + 1, y) = h(x , y , f (x , p(x , y)))

• A general form of (PRP) known as unnested multiple
recursion (UMR):
(UMR) f (x + 1, y + 1) = h(x , y , f (x , p(x , y)), f (x + 1, y))

• Simple nested recursion (SNR):
(SNR) f (x + 1, y) = h(x , y , f (x , p(x , y , f (x , y))))

• More general form (GSNR) of (SNR) with more than one
recursion arguments:
f (x + 1, y + 1, z) = h(x , y , z , f (x , p(x , y , z), f (x + 1, y , z)))

Martin Avanzini and Naohi Eguchi (CL @ ICS @ UIBK)A New Characterisation of ETIME 2/17



Introduction 2/2

In predicative formulation (or tiered formulation) these recursion
schemata make some difference.

• The class of poly-time functions can be captured with
predicative (primitive) recursion.

(Bellantoni-Cook ’92, Leivant ’95)

• The class of PSPACE functions can be captured with the
predicative form of (UMR). (Leivant-Marion, ’95)

• The class of EXPTIME functions can be captured with the
predicative form of (GSNR). (Arai-E. ’09)

• Observation: The predicative form of (SNR) is sound for
ETIME, i.e. 2O(n)-time functions of exponential growth rates.

Martin Avanzini and Naohi Eguchi (CL @ ICS @ UIBK)A New Characterisation of ETIME 3/17



Outline 1/2

• To assess complexity of a given function, it is natural to look
at the maximal length of rewriting sequences - runtime
complexity - in the corresponding rewrite system.

• Runtime complexity can be exponentially related to complexity
of the given function. (Cichon-Weiermann ’97)

• (Innermost) runtime complexity can be polynomially related to
complexity of the given function. (A.-Moser ’10)

• Template: For a time-complexity class F of functions
including polytime, find a termination order > such that

1. Every function in F can be represented by a rewrite system
orientable with >. (Completeness)

2. Runtime complexity of every rewrite system orientable with >
lies in F . (Soundness)

Martin Avanzini and Naohi Eguchi (CL @ ICS @ UIBK)A New Characterisation of ETIME 4/17



Outline 2/2

Term-rewriting, path-ordering, characterisations of complexity
classes corresponding to recursion-theoretic ones.

• The class of poly-time functions can be captured with
polynomial path order (POP*). (A.-Moser ’08)

• The class of PSPACE functions can be captured with light
lexicographic path order (LLPO).

(Cichon-Marion, unpublished)

• The class of EXPTIME functions can be captured with
exponential path order EPO* (A.-E.-Moser ’11).

• This talk: The class of ETIME functions can be captured with
path order for ETIME (POE*).

Martin Avanzini and Naohi Eguchi (CL @ ICS @ UIBK)A New Characterisation of ETIME 5/17



Predicative recursion

Example (Addition)

add(0, y) → y
add(s(x), y) → s(add(x , y))

add(x , y) computes the standard addition x + y .
In this example a specific argument separation is possible:

add(0; y)→ y add(s(x); y)→ s(; add(x ; y))

• Called predicative recursion. (Bellantoni & Cook ’92)

• Intuition: f (recursion performed; recursion term substituted):{
f (0, ~y ;~z) = g(~y ;~z)

f (s(x), ~y ;~z) = h(x , ~y ;~z , f (x , ~y ;~z))

• Aim: to weaken the power of primitive recursion.

Martin Avanzini and Naohi Eguchi (CL @ ICS @ UIBK)A New Characterisation of ETIME 6/17



Polynomial path order

• Polytime functions can be characterised with predicative
recursion. (Bellantoni-Cook ’92)

• Generalisation of predicative recursion with polynomial path
order (POP*). (A.-Moser ’08)
f (s(x), ~y ;~z) >pop∗ h(x , ~y ;~z , f (x , ~y ;~z))

Theorem (A.-Moser ’08)

1. Every polytime function can be represented by a rewrite
system orientable with POP*. (Completeness)

2. The length of every (innermost) rewriting sequence (starting
with an argument-normalized term) in a rewrite system
orientable with POP* can be bounded by a polynomial in the
size of the starting term. (Soundness)

Martin Avanzini and Naohi Eguchi (CL @ ICS @ UIBK)A New Characterisation of ETIME 7/17



Path order for ETIME (1/2)

Introducing Path Order for ETIME (POE*) >poe∗ .

• A path order is a binary relation over terms induced by a
precedence.

• A precedence is a well-founded binary relation on a signature.
• Intuitively f > h means f is defined using h.

• Mostly a path order includes the sub-term relation �.

• E.g. recursive path orders, Knuth-Bendix order, etc.

Definition (An auxiliary relation �n)

f (s1, . . . , sk ; sk+1, . . . , sk+l) �
n t if si �

n t for some i ∈ {1, . . . , k}.

Martin Avanzini and Naohi Eguchi (CL @ ICS @ UIBK)A New Characterisation of ETIME 8/17



Path order for ETIME (2/2)

Assume a precedence > on an underlying signature.

Definition (Path order for ETIME)

s = f (s1, . . . , sk ; sk+1, . . . , sk+l) >poe∗ t if one of 1–3 holds.

1. si >poe∗ t for some i ∈ {1, . . . , k + l}.
2. t = g(t1, . . . , tm; tm+1, . . . , tm+n),

• f > g ,
• s �n tj for all j ∈ {1, . . . ,m}, and
• s >poe∗ tj for all j ∈ {m + 1, . . . ,m + n}.

3. t = f (t1, . . . , tk ; tk+1, . . . , tk+l),
• sj >poe∗ tj for all j ∈ {1, . . . , k},
• si >poe∗ ti for some i ∈ {1, . . . , k}, and
• s >poe∗ tj for all j ∈ {k + 1, . . . , k + l}.

Martin Avanzini and Naohi Eguchi (CL @ ICS @ UIBK)A New Characterisation of ETIME 9/17



Examples (1/4)

Example (Addition)

add(0; y) → y
add(s(; x); y) → s(; add(x ; y))

add(x , y) computes the standard addition x + y .
Let add > s. Orientation of the second rule:

1. s(; x) >poe∗ x and add(s(; x); y) >poe∗ y .

2. add(s(; x); y) >poe∗ add(x ; y). (by 1)

3. add(s(; x); y) >poe∗ s(; add(x ; y)). (by f > s and 2)

Example (Multiplication)

mul(0, y ; ) → 0
mul(s(; x), y ; ) → add(y ;mul(x , y ; ))

Orientation is possible in the same way.
Martin Avanzini and Naohi Eguchi (CL @ ICS @ UIBK)A New Characterisation of ETIME 10/17



Examples (2/4)

Example (Exponential)

exp(0; y) → s(; y)
exp(s(; x); y) → exp(x ; exp(x ; y))

exp(x , y) computes 2x + y .
Orientation of the second rule:

1. s(; x) >poe∗ x and exp(s(; x); y) >poe∗ y .

2. exp(s(; x); y) >poe∗ exp(x ; y). (by 1)

3. exp(s(; x); y) >poe∗ exp(x ; exp(x ; y)).
(by s(; x) >poe∗ x and 2)

Martin Avanzini and Naohi Eguchi (CL @ ICS @ UIBK)A New Characterisation of ETIME 11/17



Examples (3/4)

Example (Linear exponential)

exp1(0, y ; z) → exp(y ; z)
exp1(x , 0; z) → exp(x ; z)

exp1(s(; x), s(; y); z) → exp1(x , s(; y); exp1(x , s(; y); z))

exp1(x , y , z) computes 2x+y + z .
Orientation of the third rule:

1. s(; x) >poe∗ x and s(; y) >poe∗ s(; y).

2. exp1(s(; x), s(; y); z) >poe∗ z .

3. exp1(s(; x), s(; y); z) >poe∗ exp1(x , s(; y); z). (by 1 & 2)

4. exp1(s(; x), s(; y); z) >poe∗ exp1(x , s(; y); exp1(x , s(; y); z)).
(by 1 & 3)

Martin Avanzini and Naohi Eguchi (CL @ ICS @ UIBK)A New Characterisation of ETIME 12/17



Examples (4/4)

Example (Quadratic exponential)

exp2(0, y , z ;w) → exp(z ;w)
exp2(x , 0, z ;w) → exp(z ;w)

exp2(x , y , s(; z);w) → exp2(x , y , z ; exp2(x , y , z ;w))
exp2(s(; x), s(; y), 0;w) → exp2(s(; x), y , s(; x);w)

exp2(x , y , z ,w) computes 2x ·y+z + w .

• Orientation of the fourth rule is not possible.

• Because element-wise comparison of (s(; x), s(; y), 0) and
(s(; x), y , s(; x)) fails.

Martin Avanzini and Naohi Eguchi (CL @ ICS @ UIBK)A New Characterisation of ETIME 13/17



Complexity result

Theorem (Main result)

POE* is sound and complete for ETIME functions, 2O(n)-time
computable exponential functions, in the same sense as POP*.

Note:

• The class of ETIME functions is less common than the class
ETIME of predicates.

• POE* is strictly intermediate between small polynomial path
order (sPOP*) and exponential path order (EPO*).

1. sPOP* is sound and complete for polytime functions.
(A.-E.-Moser ’12)

2. EPO* is sound and complete for EXPTIME functions.
(A.-E.-Moser ’11)

• All of sPOP*, POE* and EPO* are weak sub-relations of
recursive path orders.

Martin Avanzini and Naohi Eguchi (CL @ ICS @ UIBK)A New Characterisation of ETIME 14/17



Contrast to related path orders

The difference among sPOP*, POE* and EPO* lies only in case of
recursive comparison f (· · · ; · · · ) >poe∗ f (· · · ; · · · ):

Complexity Comparison

sPOP* nO(1) f (element-wise ; element-wise)

POE* 2O(n) f (element-wise ; full comparison)

EPO* 2n
O(1)

f (lexicographic ; full comparison)

sPOP* POE* EPO*

add , mul 3 3 3

exp, exp1 — 3 3

exp2 — — 3

(—: not orientable, 3: orientable)

Martin Avanzini and Naohi Eguchi (CL @ ICS @ UIBK)A New Characterisation of ETIME 15/17



Summary

• The class of primitive recursive functions is closed under
several non-trivial recursion schemata.

• But those recursion schemata might make a difference for
smaller classes - complexity classes - in the predicative setting.

• Predicative primitive recursion corresponds to polytime
functions.

• Predicative simple nested recursion corresponds to ETIME
functions.

• Predicative simple nested recursion with more than one
recursion arguments corresponds to EXPTIME functions.

• Path orders sPOP*, POE* and EPO* essentially encodes
these predicative recursion schemata.

Martin Avanzini and Naohi Eguchi (CL @ ICS @ UIBK)A New Characterisation of ETIME 16/17



Conclusion

• Based on a close connection between time-complexity and
runtime complexity, a new path order POE* is introduced
characterising ETIME computable functions.

• Asking whether there is a uniform machinery to characterise
complexity classes independent of machine models.

• Further question: Is there is a uniform soundness proof e.g.
for sPOP*, POE* and EPO*?

Thank you for your attention!

Speaker is supported by JSPS postdoctoral fellowships for young
scientists.

Martin Avanzini and Naohi Eguchi (CL @ ICS @ UIBK)A New Characterisation of ETIME 17/17


