Introduction 1/2

Complexity Analysis of Unfolding Graph Rewriting
 Polynomial Complexity

Naohi Eguchi

Institute of Computer Science
University of Innsbruck
Austria
June 18, 2014, Computational Logic Seminar

Introduction 2/2

Example

$$
\begin{aligned}
\mathcal{R}: \begin{aligned}
g(\epsilon, z) & \rightarrow z \\
f(0, y) & \rightarrow \epsilon
\end{aligned} \quad g(c(x, y), z) & \rightarrow c(g(x, z), g(y, z)) \\
f(s(x), y) & \rightarrow g(y, f(x, y))
\end{aligned}
$$

Let $c^{0}(\epsilon)=\epsilon, c^{n+1}(\epsilon)=c\left(c^{n}(\epsilon), c^{n}(\epsilon)\right)$.
$f\left(s^{m}(0), c^{n}(\epsilon)\right) \rightarrow_{\mathcal{R}}^{*} g\left(c^{n}(\epsilon), \ldots, g\left(c^{n}(\epsilon), \epsilon\right)\right) \quad$ in m steps
$\rightarrow_{\mathcal{R}}^{*} g\left(c^{n}(\epsilon), \ldots, c^{n}(\epsilon)\right) \quad$ in $O\left(2^{n}\right)$ steps

$$
\rightarrow_{\mathcal{R}}^{*} c^{m n}(\epsilon) \quad \text { in }(m-1) O\left(2^{n}\right) \text { steps }
$$

- $f\left(s^{m}(0), c^{n}(\epsilon)\right) \rightarrow_{\mathcal{R}}^{k} c^{m n}(\epsilon), k \in O\left(m 2^{n}\right)=O\left(\left|s^{m}(0) \| c^{n}(\epsilon)\right|\right)$.
- $\left|c^{m n}(\epsilon)\right| \in O\left(2^{m n}\right)=O\left(2^{\left|s^{m}(0)\right|} \cdot\left|c^{n}(\epsilon)\right|\right)$.

Namely, rewriting in \mathcal{R} leads to a normal form of exponential size in a polynomial step (measured by the sizes of starting terms).
This does not happen on Turing machines.

- Discussing computation resources (on Turing machines), underlying constructors are (implicitly) limited to simple ones: nat \rightarrow nat,
word \rightarrow word,
nat \times list(nat) \rightarrow list(nat), etc.
- Namely tree $\times \cdots \times$ tree \rightarrow tree is not allowed.
- On the side of (sub-)recursive function theory, (primitive) recursion is limited to:

$$
\begin{aligned}
f(s(x), \vec{y}) & =h(x, \vec{y}, f(x, \vec{y})) \\
f(a(x), \vec{y}) & =h_{\mathrm{a}}(x, \vec{y}, f(x, \vec{y})) \\
f(\operatorname{cons}(x, x s), \vec{y}) & =h(x, x s, \vec{y}, f(x s, \vec{y}))
\end{aligned}
$$

- But the general form of primitive recursion is not considered: $f\left(c\left(x_{1}, \ldots, x_{k}\right), \vec{y}\right)=h_{c}\left(x_{1}, \ldots, x_{k}, \vec{y}, f\left(x_{1}, \vec{y}\right), \ldots, f\left(x_{k}, \vec{y}\right)\right)$

Overview

- Direct complexity analysis of the general primitive recursion?
- Representing the general primitive recursion with infinite graph rewrite rules (Dal Lago, Martini and Zorzi).
- Precedence termination (Middeldorp, Ohsaki and Zantema).
- This work: Precedence termination with argument separation. \Rightarrow Polynomial runtime complexity analysis of infinite graph rewrite systems.

Direct complexity analysis? $1 / 2$

Complexity of TRSs refers to runtime complexity: $\mathrm{rC}_{\mathcal{R}}(n)=\max \left\{k\left|(\exists s, t) s \rightarrow_{\mathcal{R}}^{k} t,|s| \leq n, s\right.\right.$: argument-normalised $\}$

Example

$\mathcal{R}: \begin{array}{llll}g(\epsilon, z) & >_{\text {rpo }} z & g(c(x, y), z) & >_{\text {rpo }} c(g(x, z), g(y, z))\end{array}$

$$
f(0, y)>_{\text {rpo }} \epsilon \quad f(s(x), y)>_{\text {rpo }} g(y, f(x, y))
$$

By Hofbauer's theorem, the runtime complexity of \mathcal{R} is at most primitive recursive.
Polynomial runtime complexity? (or polytime computability?)

- Polynomial path order (Avanzini-Moser): $g(c(x, y), z) \ngtr_{\text {pop }} c(g(x, z), g(y, z))$
- Light multiset path order (Marion): $g(c(x, y), z)>_{\text {Impo }} c(g(x, z), g(y, z))$
But LMPO induces polytime computability of compatible TRSs over simple constructors only.

Unfolding graph rewriting 1/2

Representing the general primitive recursion with infinite graph rewrite rules.
围 General Ramified Recurrence is Sound for Polynomial Time Dal Lago, Martini and Zorzi. Proc. DICE '10.
Idea of unfolding rewrite rules:

- Express equations
$f(\epsilon, z) \rightarrow g(z), f(c(x, y), z) \rightarrow h(x, y, z, f(x, z), f(y, z))$
of general primitive recursion with infinite instances:
$f(\epsilon, z) \rightarrow g(z)$,
$f(c(\epsilon, \epsilon), z) \rightarrow h(\epsilon, \epsilon, z, g(z), g(z))$.
$f(c(c(\epsilon, \epsilon), c(\epsilon, \epsilon)), z) \rightarrow$
$h(c(\epsilon, \epsilon), c(\epsilon, \epsilon), z, h(\epsilon, \epsilon, z, g(z), g(z)), h(\epsilon, \epsilon, z, g(z), g(z))) \ldots$
- But then graph representation is more convenient.

Direct complexity analysis? $2 / 2$

Example

$$
\text { R: } \begin{array}{rlrl}
g(\epsilon, z) & \rightarrow z & g(c(x, y), z) & \rightarrow c(g(x, z), g(y, z)) \\
f(0, y) & \rightarrow \epsilon & f(s(x), y) & \rightarrow g(y, f(x, y))
\end{array}
$$

Polynomial interpretation possible?
Seems difficult.

- It must be $[c](x, y)=x+y+k$ for some constant $k \in \mathbb{N}$.

圆 Algorithms with Polynomial Interpretation Termination Proof
Bonfante, Cichon, Marion and Touzet. 2001.

- Hence 3^{x+y+k} seems necessary for $[g](x, y)$ to have:
$[g(c(x, y), z)]=[g](x+y+k, z)$

$$
>[g](x, z)+[g](y, z)+k=[c(g(x, z), g(y, z))]
$$

Unfolding graph rewriting 2/2

$h(c(\epsilon, \epsilon), c(\epsilon, \epsilon), z, h(\epsilon, \epsilon, z, g(z), g(z)), h(\epsilon, \epsilon, z, g(z), g(z)))$
This term is expressed by the the following term graph.
Note:

- Definition of unfolding graph rewrite rules does not depend on the underlying TRS.
- They can be defined uniformly, independent of recursion terms.
- \exists polytime algorithm s.t.

$$
\lceil G\rceil \mapsto\lceil H\rceil \text { if } G \stackrel{i}{\rightarrow}_{\mathcal{G}} H .
$$

Theorem (Dal Lago-Martini-Zorzi '10)

$\forall f$: tiered recursive function $\exists \mathcal{G}$: infinite GRS defining $f \exists p$: poly. s.t. $G \xrightarrow[\mathcal{G}_{\mathcal{G}}^{k}]{i} H \Longrightarrow \max \{k,|H|\} \leq p(|G|)$.

Precedence termination $1 / 2$

Complexity Analysis of Unfolding Graph Rewriting: Primitive Recursive Complexity Eguchi. Preprint.

- Primitive recursive (runtime) complexity analysis of infinite GRSs based on unfolding graph rewriting.
- Submitted to a Japanese workshop (PPL '14), but rejected due to many mistakes.
- A reviewer pointed out every unfolding graph rewrite rule is precedence terminating in the sense of:

嗇 Transforming Termination by Self-Labeling Middeldorp, Ohsaki and Zantema. Proc. CADE '96.

Precedence termination with argument separation $1 / 4$

Separation of argument positions of functions. (Safe recursion)
墻 A New Recursion-theoretic Characterization of the Polytime Functions
Bellantoni and Cook. 1992.
Example

$$
\begin{aligned}
& \mathcal{R}: \begin{aligned}
g(\epsilon ; z) & \rightarrow z \\
f(0, y ;) & \rightarrow \epsilon \\
& g(c(x, y) ; z)
\end{aligned} \rightarrow c(; g(x ; z), g(y ; z)) \\
& f(s(x), y ;) \rightarrow g(y ; f(x, y ;))
\end{aligned}
$$

$f\left(x_{1}, \ldots, x_{k} ; x_{k+1}, \ldots, x_{k+1}\right)$: called normal arguments of f. Observation. Starting with an argument-normalised term:

- Terms in normal argument positions are always normalised.
- Rewriting occurs only in non-normal positions.
- Note: the argument separation is not always possible.

Precedence termination 2/2

Precedence: well-founded binary relation over function symbols.

Definition (Middeldorp-Ohsaki-Zantema)

Let >: precedence.
A rewrite rule $f(\vec{t}) \rightarrow r$ is precedence terminating if
$f>g$ for any $g \in\{h$: function symbol $\mid h$ appears in $r\}$.
$f(c(\epsilon, \epsilon), z) \rightarrow h(\epsilon, \epsilon, z, g(z), g(z))$: precedence terminating if
$f>h, f>g$ and $f>\epsilon$.

- For finite TRSs, precedence termination only induces exponential runtime complexity.
- Precedence terminating infinite TRSs cover (more than) all the primitive recursive functions.
- Question. \mathcal{R} : prec. termination + ?? $\Rightarrow \mathrm{rc}_{\mathcal{R}}$: polynomial.

Precedence termination with argument separation 2/4

Definition

Let >: precedence. A rewrite rule $f(\vec{s} ; \vec{t}) \rightarrow r$ is precedence terminating with argument separation if:

1. $f(\vec{s} ; \vec{t}) \rightarrow r$ is precedence terminating.
2. $\forall g(\vec{u} ; \vec{v})$: subterm of r appearing in a non-normal position, \vec{u} are sub-terms of \vec{s}.
The definition can be modified for graph rewrite rules.

Theorem

Suppose $\forall L \rightarrow R \in \mathcal{G}$ GRS prec. terminating with argument sep.:

1. Variable nodes are maximally shared in R.
2. $|R| \leq|L|+m$. (m: size of subgraphs of L connected to normal positions of root ${ }_{L}$)
Then \exists p: poly. s.t. $G \rightarrow{ }_{G}^{k} H \Rightarrow \max \{k,|H|\} \leq p(|G|)$.

Note:

- In Theorem: \mathcal{G} is restricted to a constructor GRS and G to an argument-normalised term graph.
- Every precedence terminating TRS is precedence terminating with the trivial argument separation $f\left(; x_{1}, \ldots, x_{k}\right)$.
- Hence the assumption 2 on size is essential.
- Weaker assumption $|R| \leq 2|L|$ only implies ptimitive recursive runtime complexity.
Every tiered recursive function can be expressed by a constructor GRS precedence terminating with argument separation that fulfills the assumptions 1 and 2 in Theorem. Hence:
- Fact by Dal Lago et al. can be reproved by the new method.
- Unlike the fact, innermost rewriting is not necessary as long as rewriting starts with an argument-normalised term graph.

Example

- $L \rightarrow R$: precedence terminating with argument separation if $f>h, f>g, f>c$ and $f>\epsilon$.
- $|L|=5,|R|=6, m=3$. Hence $|R| \leq 8=|L|+m$.
$\forall L \rightarrow R \in \mathcal{G},|R| \leq|L|+m$ (m : size of subgraphs of L connected to normal positions of root_{L})

Conclusion

- Direct polynomial runtime complexity analysis of the general of primitive recursion is not known.
$f\left(c\left(x_{1}, \ldots, x_{k}\right), \vec{y}\right) \rightarrow h_{c}\left(x_{1}, \ldots, x_{k}, \vec{y}, f\left(x_{1}, \vec{y}\right), \ldots, f\left(x_{k}, \vec{y}\right)\right)$
- Unfolding graph rewriting: infinite graph rewriting by which the general recursion can be related to polytime computability.
- This work: Complexity analysis of infinite GRSs based on unfolding graph rewriting.

Proving Termination of Unfolding Graph Rewriting for General Safe Recursion
N. Eguchi. Preprint, arXiv:1404.6196 (will be replaced soon!).

