_ @mpumrionnl -
ogic

Complexity Analysis of Unfolding Graph

Rewriting
Polynomial Complexity

Naohi Eguchi

Institute of Computer Science
University of Innsbruck
Austria

June 18, 2014, Computational Logic Seminar

Introduction 2/2

r. 862) = 2z g(c(x,y).2) — c(g(x,2).8(y,2))
CfOy) e f(s(x).y) — &ly.f(xy)
Let c%(c) = ¢, ¢"*1(€) = c(c"(€), c"(€))

F(s™(0). () % £(cM(e).. - &(c"(c).c)) in m steps

% g(c"(€), .., c™(€)) in O(2") steps
5 c™(e) in (m—1)0(2") steps

* f(s™(0). "(€)) % ¢™(e), k € O(m2") = O(|s™(0)[|c"(e)))-
o [em(e)] € 02 = 02O - [e7(e))).
Namely, rewriting in R leads to a normal form of exponential size
in a polynomial step (measured by the sizes of starting terms).
This does not happen on Turing machines.

Discussing computation resources (on Turing machines),
underlying constructors are (implicitly) limited to simple ones:
nat — nat,

word — word,

nat x list(nat) — list(nat), etc.

X tree — tree is not allowed.

.

Namely tree x ---

On the side of (sub-)recursive function theory, (primitive)
recursion is limited to:

f(s(x).y) = h(x.¥,f(x,7)

f(a(x).7) = ha(x.¥.f(x,7))

f(cons(x,xs),y) = h(x,xs,y,f(xs,¥))
But the general form of primitive recursion is not considered:
fle(xt oy %), ¥) = he(x, o, Vo F (31, 7)o F (300 7))

1

Direct complexity analysis of the general primitive recursion?

* Representing the general primitive recursion with infinite
graph rewrite rules (Dal Lago, Martini and Zorzi).

Precedence termination (Middeldorp, Ohsaki and Zantema).

.

This work: Precedence termination with argument separation.
= Polynomial runtime complexity analysis of infinite graph
rewrite systems.



http://cl-informatik.uibk.ac.at

Direct complexity analysis? 1,

Complexity of TRSs refers to runtime complexity:
reg(n) = max{k | (3s,t)s =% t.|s| < n.s: argument-normalised}

. 862) >we 2 g(c(xv).2) >mo c(g(x.2).g(y:2))
T f0.y) >po € f(s(x).y) >mo &ly.f(x.y))

By Hofbauer's theorem, the runtime complexity of R is at most
primitive recursive.
Polynomial runtime ? (or polytime cc ility?)
* Polynomial path order (Avanzini-Moser):
£(c(x.¥),2) #popr c(g(x,2),8(y,2))
o Light multiset path order (Marion):
£(c(x,¥): 2) >impo c(&(x,2),8(y,2))
But LMPO induces polytime computability of compatible
TRSs over simple constructors only.

Unfolding graph rewriting

Representing the general primitive recursion with infinite graph
rewrite rules.
[ General Ramified Recurrence is Sound for Polynomial Time
Dal Lago, Martini and Zorzi. Proc. DICE '10.
Idea of unfolding rewrite rules:
« Express equations
f(e,z) — g(z), f(c(x,y),z) = h(x,y.z.f(x.2),f(y,z))
of general primitive recursion with infinite instances:
f(e,z) — g(2),
f(cle,€),z) = h(e e, 2,8(2),8(2)),
fle(cle €), cle,€)), z) =
hlc(e.€). cle.€). 2 h(e. €. 2. £(2). £(2)). h(e. . 2. (2). £(2)) -
e But then graph representation is more convenient.

Direct complexity analysis? 2/2

Example

glc(xy),2) = c(g(x.2).8(y,2))
f(s(x),y) = 8y flxy))

Polynomial interpretation possible?

Seems difficult.

. 8lez) = z
CF0y) — e

o It must be [c](x.y) = x + y + k for some constant k € N.

B Algorithms with Polynomial Interpretation Termination
Proof
Bonfante, Cichon, Marion and Touzet. 2001.
o Hence 3**Y+ seems necessary for [g](x, y) to have:
lg(c(x.y).2)] = [gl(x +y + k.2)
> lgl(x:2) + [glly, 2) + k = [c(g(x,2).8(y, 2))]
ool I

Unfolding graph rewriting 2/2

h(c(e, ). cle.€), 2, h(e. €, 2, 8(2). £(2)), hle, €, 2, 8(2), £(2)))
This term is expressed by the the following term graph.
Note:

o Definition of unfolding graph rewrite rules h
does not depend on the underlying TRS. ‘// x
e They can be defined uniformly, c

independent of recursion terms. ( (

h

)

* 3 polytime algorithm s.t.
i z~—¢g

[G] s [Hif G b5 H. €

Theorem (Dal Lago-Martini-Zorzi '10)

Vf: tiered recursive function 3G infinite GRS defining f 3p: poly.
s.t. G L H = max{k, |H|} < p(|G|).




Precedence termination 1/2

[ Complexity Analysis of Unfolding Graph Rewriting: Primitive

Recursive Complexity
Eguchi. Preprint.

 Primitive recursive (runtime) complexity analysis of infinite
GRSs based on unfolding graph rewriting.

* Submitted to a Japanese workshop (PPL '14), but rejected
due to many mistakes.

* A reviewer pointed out every unfolding graph rewrite rule is
precedence terminating in the sense of:
[ Transforming Termination by Self-Labeling

Middeldorp, Ohsaki and Zantema. Proc. CADE '96.

Naohi Eguchi (CL @ ICS © UIBK)

Precedence termination with argument separation 1/4

1
Precedence termination 2/2

Precedence: well-founded binary relation over function symbols.

Definition (Middeldorp-Ohsaki-Zantema)
Let >: precedence.
A rewrite rule f(£) — r is precedence terminating if
f > g for any g € {h: function symbol | h appears in r}.
f(c(e €),z) = h(e, e, z,g(z), g(2)): precedence terminating if
f>hf>gandf>e
« For finite TRSs, precedence termination only induces
exponential runtime complexity.
o Precedence terminating infinite TRSs cover (more than) all
the primitive recursive functions.
* Question. R: prec. termination + ?? = rcg: polynomial.

Precedence termination with argument separation 2/4

Separation of argument positions of functions. (Safe recursion)

B A New Recursion-theoretic Characterization of the Polytime
Functions
Bellantoni and Cook. 1992.

g(62) =z glclxy)z) = c(g(x2).e(vi2)
f0.y;) — € f(s(x).y;) — glvif(x.y:))
F(X1. - Xk Xt L, -+, Xkt 1): called normal arguments of .
Observation. Starting with an argument-normalised term:
e« Terms in normal argument positions are always normalised.
* Rewriting occurs only in non-normal positions.
* Note: the argument separation is not always possible.

Naohi Eguchi (CL @

Let >: precedence. A rewrite rule f(s;t) — ris
precedence terminating with argument separation if:

1. f(5 ) — r is precedence terminating.
2. Vg(i; v): subterm of r appearing in a non-normal position,
i are sub-terms of §.
The definition can be modified for graph rewrite rules.
Suppose VL — R € G GRS prec. terminating with argument sep.:
1. Variable nodes are maximally shared in R.
2. |R| < |L| + m. (m: size of subgraphs of L connected to
normal positions of root; )
Then 3p: poly. s.t. G — H = max{k. |H|} < p(|G]).

ity Analy Rewriting




Precedence termination with argument separation 3/4

Precedence termination with argument separation 4/4

Note:
® In Theorem: G is restricted to a constructor GRS and G to an
argument-normalised term graph.
o Every precedence terminating TRS is precedence terminating
with the trivial argument separation f(; xi,.... Xi)-
* Hence the assumption 2 on size is essential.
* Weaker assumption |R| < 2|L| only implies ptimitive recursive
runtime complexity.
Every tiered recursive function can be expressed by a constructor
GRS precedence terminating with argument separation that fulfills
the assumptions 1 and 2 in Theorem. Hence:
o Fact by Dal Lago et al. can be reproved by the new method.
o Unlike the fact, innermost rewriting is not necessary as long as
rewriting starts with an argument-normalised term graph.

Naohi Eguchi (CL @ ICS © UIBK)

Example

fxiv) c—r

BN
2%

* L — R: precedence terminating with argument separation if
f>h f>g,f>candf>e
o |L| =5, |R| =6, m=3. Hence |R| <8 =|L| + m.

VL— ReG, |R| <|L|+ m (m: size of subgraphs of L connected
to normal positions of root;)

Conclusio

« Direct polynomial runtime complexity analysis of the general
of primitive recursion is not known.
fle(a, - %), ¥) = he(xa, o 3w, 7, (3, 9), - F (%, ¥))

« Unfolding graph rewriting: infinite graph rewriting by which
the general recursion can be related to polytime computability.

* This work: Complexity analysis of infinite GRSs based on
unfolding graph rewriting.

[ Proving Termination of Unfolding Graph Rewriting for General
Safe Recursion
N. Eguchi. Preprint, arXiv:1404.6196 (will be replaced soon!).

Thank you for your listening!




