
Complexity Analysis of Unfolding Graph
Rewriting

Polynomial Complexity

Naohi Eguchi

Institute of Computer Science
University of Innsbruck

Austria

June 18, 2014, Computational Logic Seminar

Introduction 1/2

• Discussing computation resources (on Turing machines),
underlying constructors are (implicitly) limited to simple ones:
nat→ nat,
word→ word,
nat× list(nat)→ list(nat), etc.

• Namely tree× · · · × tree→ tree is not allowed.

• On the side of (sub-)recursive function theory, (primitive)
recursion is limited to:

f (s(x), ~y) = h(x , ~y , f (x , ~y))
f (a(x), ~y) = ha(x , ~y , f (x , ~y))

f (cons(x , xs), ~y) = h(x , xs, ~y , f (xs, ~y))

• But the general form of primitive recursion is not considered:
f (c(x1, . . . , xk), ~y) = hc(x1, . . . , xk , ~y , f (x1, ~y), . . . , f (xk , ~y))

Naohi Eguchi (CL @ ICS @ UIBK) Complexity Analysis of Graph Rewriting 2/15

Introduction 2/2

Example

R :
g(ε, z) → z g(c(x , y), z) → c(g(x , z), g(y , z))
f (0, y) → ε f (s(x), y) → g(y , f (x , y))

Let c0(ε) = ε, cn+1(ε) = c(cn(ε), cn(ε)).
f (sm(0), cn(ε)) →∗R g(cn(ε), . . . , g(cn(ε), ε)) in m steps

→∗R g(cn(ε), . . . , cn(ε)) in O(2n) steps
→∗R cmn(ε) in (m − 1)O(2n) steps

• f (sm(0), cn(ε))→k
R cmn(ε), k ∈ O(m2n) = O(|sm(0)||cn(ε)|).

• |cmn(ε)| ∈ O(2mn) = O(2|s
m(0)| · |cn(ε)|).

Namely, rewriting in R leads to a normal form of exponential size
in a polynomial step (measured by the sizes of starting terms).
This does not happen on Turing machines.

Naohi Eguchi (CL @ ICS @ UIBK) Complexity Analysis of Graph Rewriting 3/15

Overview

• Direct complexity analysis of the general primitive recursion?

• Representing the general primitive recursion with infinite
graph rewrite rules (Dal Lago, Martini and Zorzi).

• Precedence termination (Middeldorp, Ohsaki and Zantema).

• This work: Precedence termination with argument separation.
⇒ Polynomial runtime complexity analysis of infinite graph
rewrite systems.

Naohi Eguchi (CL @ ICS @ UIBK) Complexity Analysis of Graph Rewriting 4/15

http://cl-informatik.uibk.ac.at

Direct complexity analysis? 1/2

Complexity of TRSs refers to runtime complexity:
rcR(n) = max{k | (∃s, t)s →k

R t, |s| ≤ n, s: argument-normalised}

Example

R :
g(ε, z) >rpo z g(c(x , y), z) >rpo c(g(x , z), g(y , z))
f (0, y) >rpo ε f (s(x), y) >rpo g(y , f (x , y))

By Hofbauer’s theorem, the runtime complexity of R is at most
primitive recursive.
Polynomial runtime complexity? (or polytime computability?)

• Polynomial path order (Avanzini-Moser):
g(c(x , y), z) 6>pop∗ c(g(x , z), g(y , z))

• Light multiset path order (Marion):
g(c(x , y), z) >lmpo c(g(x , z), g(y , z))
But LMPO induces polytime computability of compatible
TRSs over simple constructors only.

Naohi Eguchi (CL @ ICS @ UIBK) Complexity Analysis of Graph Rewriting 5/15

Direct complexity analysis? 2/2

Example

R :
g(ε, z) → z g(c(x , y), z) → c(g(x , z), g(y , z))
f (0, y) → ε f (s(x), y) → g(y , f (x , y))

Polynomial interpretation possible?
Seems difficult.

• It must be [c](x , y) = x + y + k for some constant k ∈ N.

Algorithms with Polynomial Interpretation Termination
Proof
Bonfante, Cichon, Marion and Touzet. 2001.

• Hence 3x+y+k seems necessary for [g](x , y) to have:

[g(c(x , y), z)] = [g](x + y + k , z)
> [g](x , z) + [g](y , z) + k = [c(g(x , z), g(y , z))]

Naohi Eguchi (CL @ ICS @ UIBK) Complexity Analysis of Graph Rewriting 6/15

Unfolding graph rewriting 1/2

Representing the general primitive recursion with infinite graph
rewrite rules.

General Ramified Recurrence is Sound for Polynomial Time
Dal Lago, Martini and Zorzi. Proc. DICE ’10.

Idea of unfolding rewrite rules:

• Express equations
f (ε, z)→ g(z), f (c(x , y), z)→ h(x , y , z , f (x , z), f (y , z))
of general primitive recursion with infinite instances:
f (ε, z)→ g(z),
f (c(ε, ε), z)→ h(ε, ε, z , g(z), g(z)),
f (c(c(ε, ε), c(ε, ε)), z)→
h(c(ε, ε), c(ε, ε), z , h(ε, ε, z , g(z), g(z)), h(ε, ε, z , g(z), g(z))),...

• But then graph representation is more convenient.

Naohi Eguchi (CL @ ICS @ UIBK) Complexity Analysis of Graph Rewriting 7/15

Unfolding graph rewriting 2/2

h(c(ε, ε), c(ε, ε), z , h(ε, ε, z , g(z), g(z)), h(ε, ε, z , g(z), g(z)))
This term is expressed by the the following term graph.

h

�� ww

��

''
��

c

�� ��

h

}}
ss

�� �� ��
ε z goo

Note:

• Definition of unfolding graph rewrite rules
does not depend on the underlying TRS.

• They can be defined uniformly,
independent of recursion terms.

• ∃ polytime algorithm s.t.
dGe 7→ dHe if G i−→G H.

Theorem (Dal Lago-Martini-Zorzi ’10)

∀f : tiered recursive function ∃G: infinite GRS defining f ∃p: poly.
s.t. G i−→k

G H =⇒ max{k , |H|} ≤ p(|G |).

Naohi Eguchi (CL @ ICS @ UIBK) Complexity Analysis of Graph Rewriting 8/15

Precedence termination 1/2

Complexity Analysis of Unfolding Graph Rewriting: Primitive
Recursive Complexity
Eguchi. Preprint.

• Primitive recursive (runtime) complexity analysis of infinite
GRSs based on unfolding graph rewriting.

• Submitted to a Japanese workshop (PPL ’14), but rejected
due to many mistakes.

• A reviewer pointed out every unfolding graph rewrite rule is
precedence terminating in the sense of:

Transforming Termination by Self-Labeling
Middeldorp, Ohsaki and Zantema. Proc. CADE ’96.

Naohi Eguchi (CL @ ICS @ UIBK) Complexity Analysis of Graph Rewriting 9/15

Precedence termination 2/2

Precedence: well-founded binary relation over function symbols.

Definition (Middeldorp-Ohsaki-Zantema)

Let >: precedence.
A rewrite rule f (~t)→ r is precedence terminating if
f > g for any g ∈ {h : function symbol | h appears in r}.

f (c(ε, ε), z)→ h(ε, ε, z , g(z), g(z)): precedence terminating if
f > h, f > g and f > ε.

• For finite TRSs, precedence termination only induces
exponential runtime complexity.

• Precedence terminating infinite TRSs cover (more than) all
the primitive recursive functions.

• Question. R: prec. termination + ?? ⇒ rcR: polynomial.

Naohi Eguchi (CL @ ICS @ UIBK) Complexity Analysis of Graph Rewriting 10/15

Precedence termination with argument separation 1/4

Separation of argument positions of functions. (Safe recursion)

A New Recursion-theoretic Characterization of the Polytime
Functions
Bellantoni and Cook. 1992.

Example

R :
g(ε; z) → z g(c(x , y); z) → c(; g(x ; z), g(y ; z))

f (0, y ;) → ε f (s(x), y ;) → g(y ; f (x , y ;))

f (x1, . . . , xk ; xk+1, . . . , xk+l): called normal arguments of f .
Observation. Starting with an argument-normalised term:

• Terms in normal argument positions are always normalised.

• Rewriting occurs only in non-normal positions.

• Note: the argument separation is not always possible.

Naohi Eguchi (CL @ ICS @ UIBK) Complexity Analysis of Graph Rewriting 11/15

Precedence termination with argument separation 2/4

Definition

Let >: precedence. A rewrite rule f (~s;~t)→ r is
precedence terminating with argument separation if:

1. f (~s;~t)→ r is precedence terminating.

2. ∀g(~u;~v): subterm of r appearing in a non-normal position,
~u are sub-terms of ~s.

The definition can be modified for graph rewrite rules.

Theorem

Suppose ∀L→ R ∈ G GRS prec. terminating with argument sep.:

1. Variable nodes are maximally shared in R.

2. |R| ≤ |L|+ m. (m: size of subgraphs of L connected to
normal positions of rootL)

Then ∃p: poly. s.t. G −→k
G H ⇒ max{k , |H|} ≤ p(|G |).

Naohi Eguchi (CL @ ICS @ UIBK) Complexity Analysis of Graph Rewriting 12/15

Precedence termination with argument separation 3/4

Note:

• In Theorem: G is restricted to a constructor GRS and G to an
argument-normalised term graph.

• Every precedence terminating TRS is precedence terminating
with the trivial argument separation f (; x1, . . . , xk).

• Hence the assumption 2 on size is essential.

• Weaker assumption |R| ≤ 2|L| only implies ptimitive recursive
runtime complexity.

Every tiered recursive function can be expressed by a constructor
GRS precedence terminating with argument separation that fulfills
the assumptions 1 and 2 in Theorem. Hence:

• Fact by Dal Lago et al. can be reproved by the new method.

• Unlike the fact, innermost rewriting is not necessary as long as
rewriting starts with an argument-normalised term graph.

Naohi Eguchi (CL @ ICS @ UIBK) Complexity Analysis of Graph Rewriting 13/15

Precedence termination with argument separation 4/4

Example

f (x ; y) c

�� ��

foo

��

h

		 yy

��

&&
��

h(x , y ; z , u, v) c

�� ��

−→ c

�� ��

h

~~
ss

�� �� ��
g(; x) ε z ε z goo

• L→ R: precedence terminating with argument separation if
f > h, f > g , f > c and f > ε.

• |L| = 5, |R| = 6, m = 3. Hence |R| ≤ 8 = |L|+ m.

∀L→ R ∈ G, |R| ≤ |L|+ m (m: size of subgraphs of L connected
to normal positions of rootL)

Naohi Eguchi (CL @ ICS @ UIBK) Complexity Analysis of Graph Rewriting 14/15

Conclusion

• Direct polynomial runtime complexity analysis of the general
of primitive recursion is not known.
f (c(x1, . . . , xk), ~y)→ hc(x1, . . . , xk , ~y , f (x1, ~y), . . . , f (xk , ~y))

• Unfolding graph rewriting: infinite graph rewriting by which
the general recursion can be related to polytime computability.

• This work: Complexity analysis of infinite GRSs based on
unfolding graph rewriting.

Proving Termination of Unfolding Graph Rewriting for General
Safe Recursion
N. Eguchi. Preprint, arXiv:1404.6196 (will be replaced soon!).

Thank you for your listening!

Naohi Eguchi (CL @ ICS @ UIBK) Complexity Analysis of Graph Rewriting 15/15

