Complexity Analysis of Unfolding Graph Rewriting: The first step

Naohi Eguchi

Institute of Computer Science
University of Innsbruck
Austria
27 November 2013, Seminar 1

Introduction 1/2

Example (Recursion over free algebras)

General form of primitive recursion:

$$
\begin{aligned}
f(0, \vec{y}) & =g(\vec{y}) \\
f\left(c\left(x_{1}, \ldots, x_{k}\right), \vec{y}\right) & =h\left(\vec{x}, \vec{y}, f\left(x_{1}, \vec{y}\right), \ldots, f\left(x_{k}, \vec{y}\right)\right)
\end{aligned}
$$

Fact

For any general ramified function f there exists $F \in \mathrm{FP}$ such that

$$
F(\lceil\operatorname{graph}(c)\rceil)=\lceil\operatorname{graph}(f(c))\rceil
$$

for any value c over an underlying vocabulary.
Reneral Ramified Recurrence is Sound for Polynomial Time U. Dal Lago, S. Martini and M. Zorzi. Proc. DICE 2010.

Introduction 2/2

Example (Set-theoretic recursion)

Primitive recursion on (hereditarily) finite sets:

$$
\begin{aligned}
f(\emptyset, \vec{y}) & =g(\vec{y}) \\
f\left(\left\{x_{1}, \ldots, x_{k}\right\}, \vec{y}\right) & =h\left(\{\vec{x}\}, \vec{y},\left\{f\left(x_{1}, \vec{y}\right), \ldots, f\left(x_{k}, \vec{y}\right)\right\}\right)
\end{aligned}
$$

Fact

For any $f \in \mathrm{PCSF}$ there exists $F \in \mathrm{FP}$ such that

$$
F(\lceil G\rceil)=\lceil\operatorname{graph}(f(\operatorname{set}(G)))\rceil
$$

for any directed acyclic graph G.
Predicatively Computable Functions on Sets
T. Arai. Submitted.

Outline

Fact (Dal Lago-Martini-Zorzi, 2010)

For any general ramified function f there exists $F \in \mathrm{FP}$ such that

$$
F(\lceil\operatorname{graph}(c)\rceil)=\lceil\operatorname{graph}(f(c))\rceil
$$

for any value c over an underlying vocabulary.

- Unfolding graph rewriting is employed to show the fact.
- (As far as the speaker knows) no complexity analysis of unfolding rewriting is known.
- This talk: primitive recursive complexity analysis of unfolding graph rewriting.

Motivating example $1 / 2$

Example (A rewrite system \mathcal{R})

(1) $h(x, y) \rightarrow c(x, y)$ (3) $\quad f(s(x)) \rightarrow h(f(x), f(x))$
(2) $\quad f(0) \rightarrow 0$
(4) $f(c(x, y)) \rightarrow h(f(x), f(y))$

The following (innermost) rewriting is possible:

$$
\begin{array}{rlll}
f\left(c\left(s^{n}(0), 0\right)\right) & \rightarrow_{\mathcal{R}} & h\left(f\left(s^{n}(0)\right), f(0)\right) & \text { by (4) } \tag{4}\\
& \rightarrow_{\mathcal{R}} & h\left(f\left(s^{n}(0)\right), 0\right) & \text { by }(2) \\
& \rightarrow_{\mathcal{R}} & h\left(h\left(f\left(s^{n-1}(0)\right), f\left(s^{n-1}(0)\right)\right)\right) & \text { by }(3) \\
& \cdots & \left(2^{n-1} \text { times application of }(3)\right) & \\
& \rightarrow_{\mathcal{R}} & h\left(h^{n}(0), 0\right) & \text { by }(3) \\
& \cdots_{\mathcal{R}} & \left(2^{n} \text { times application of }(1)\right) & \\
& c\left(c^{n}(0), 0\right) & \text { by }(1)
\end{array}
$$

where $h^{0}(0,0)=0$ and $h^{k+1}(0)=h\left(h^{k}(0), h^{k}(0)\right)$.

Motivating example 2/2

Example (A rewrite system \mathcal{R})

(1) $h(x, y) \rightarrow c(x, y)$
(3) $\quad f(s(x)) \rightarrow h(f(x), f(x))$
(2) $f(0) \rightarrow 0$
(4) $f(c(x, y)) \rightarrow h(f(x), f(y))$

Observe: the length of the rewriting sequence is $2+2^{n}+2^{n}$:

$$
f\left(c\left(s^{n}(0), 0\right)\right) \rightarrow_{\mathcal{R}} \cdots \rightarrow_{\mathcal{R}} c\left(c^{n}(0), 0\right)
$$

Derivational complexity (or even the innermost runtime complexity) of \mathcal{R} is optimally exponential.

Representing by an infinite rewrite system

An infinite rewrite system \mathcal{R}^{*} unfolding \mathcal{R} :

$$
\begin{align*}
h(x, y) & \rightarrow c(x, y) \tag{1}\\
f(0) & \rightarrow 0 \tag{2}\\
f(s(0)) & \rightarrow h(0,0) \tag{3.1}\\
f(s(s(0))) & \rightarrow h(h(0,0) h(0,0)) \tag{3.2}\\
& \cdots \tag{4.1}\\
f(c(0,0)) & \rightarrow h(0,0)) \tag{4.2}\\
f(c(s(0), 0)) & \rightarrow h(h(0,0), 0) \tag{4.3}\\
f(c(c(0,0), 0)) & \rightarrow h(h(0,0), 0)
\end{align*}
$$

Observe:

- \mathcal{R}^{*} collects all the possible instances of the rules (3) \& (4).
- Derivational complexity of \mathcal{R}^{*} is still exponential.
- Because terms of the form $h(\cdots, \cdots)$ are duplicated.

Unfolding graph rewriting 1/4

Example (A rewrite system \mathcal{R})

(1) $h(x, y) \rightarrow c(x, y)$
(3) $\quad f(s(x)) \rightarrow h(f(x), f(x))$
(2) $\quad f(0) \rightarrow 0$
(4) $f(c(x, y)) \rightarrow h(f(x), f(y))$

The unfolding graph rewrite system $\mathcal{G}_{\mathcal{R}}$ contains:

$$
\underset{x}{h} \underset{x}{h} \underset{x}{\downarrow}{\underset{y}{c}}_{\substack{c \\ x}}^{\left({\underset{x}{x}}_{h}^{h}\right.} \underset{x}{(1.2)}
$$

Unfolding graph rewriting 2/4

Example (A rewrite system \mathcal{R})

(1) $h(x, y) \rightarrow c(x, y)$ (3) $\quad f(s(x)) \rightarrow h(f(x), f(x))$
(2) $\quad f(0) \rightarrow 0$
(4) $f(c(x, y)) \rightarrow h(f(x), f(y))$

The unfolding graph rewrite system $\mathcal{G}_{\mathcal{R}}$ also contains:

Unfolding graph rewriting 3/4

Example (A rewrite system \mathcal{R})

(1) $h(x, y) \rightarrow c(x, y)$
(3) $\quad f(s(x)) \rightarrow h(f(x), f(x))$
(2) $\quad f(0) \rightarrow 0$
(4) $f(c(x, y)) \rightarrow h(f(x), f(y))$

The unfolding graph rewrite system $\mathcal{G}_{\mathcal{R}}$ finally contains:

Unfolding graph rewriting 4/4

Example (A rewrite system \mathcal{R})

(1) $h(x, y) \rightarrow c(x, y)$
(3) $\quad f(s(x)) \rightarrow h(f(x), f(x))$
(2) $\quad f(0) \rightarrow 0$
(4) $f(c(x, y)) \rightarrow h(f(x), f(y))$

The unfolding graph rewrite system $\mathcal{G}_{\mathcal{R}}$ is:

- an infinite graph rewrite system unfolding the rules (3) \& (4). (More precisely, the rule (1) should be also unfolded)
- every term graph in the rules is maximally shared..

Observe:
The maximal length of (innermost) rewriting sequences in $\mathcal{G}_{\mathcal{R}}$ can be bounded by $O(n)$. (n : the size of a starting graph)

Term graphs $1 / 2$

Definition (Term graphs)

Formally a term graph is a directed acyclic graph $G=(V, E)$ with a unique root root_{G} equipped with

- an attachment function $\operatorname{att}_{G}: V \rightarrow V^{*}$ and
- a labeling function $\operatorname{lab}_{G}: V \rightarrow \mathcal{F} \cup \mathcal{V}$.

$$
\begin{aligned}
& \operatorname{root}_{G}=v_{0} \quad \operatorname{att}_{G}\left(v_{0}\right)=\left\langle v_{1}, v_{2}\right\rangle \\
& \operatorname{att}_{G}\left(v_{1}\right)=\left\langle v_{2}, v_{2}\right\rangle
\end{aligned}
$$

G is written as H if $\operatorname{lab}_{G}\left(v_{j}\right)=f_{j}$ for each $j=0,1,2$.

Term graphs 2/2

Definition (Initial sub-graphs)

Let $G=(V, E)$ and $v \in V$. Then an initial sub-graph $G \upharpoonright v$ is the maximal sub-graph of G whose root is v.

Complexity analysis $1 / 3$: Reduction orders

Structure of unfolding rewrite systems is rather simple. Hence reduction orders might help.

Definition

Suppose G, H are term graphs such that $\operatorname{lab}_{G}: V_{G} \rightarrow \mathcal{F} \cup \mathcal{V}$ and $l_{\text {lab }}^{H}: V_{H} \rightarrow \mathcal{F} \cup \mathcal{V}$.
Let $>_{\mathcal{F}}$: a precedence on \mathcal{F}.
Suppose $\operatorname{att}_{G}\left(\right.$ root $\left._{G}\right)=\left\langle u_{1}, \ldots, u_{k}\right\rangle$.
Then $G>H$ if one of the following two cases hold:

1. $G \upharpoonright u_{i} \geqslant H$ for some $i \in\{1, \ldots, k\}$.
2. The following three conditions are fulfilled.

- $\operatorname{lab}_{G}\left(\operatorname{root}_{G}\right)>_{\mathcal{F}} \operatorname{lab}_{H}\left(\operatorname{root}_{H}\right)$.
- $\operatorname{att}_{H}\left(\operatorname{root}_{H}\right)=\left\langle v_{1}, \ldots, v_{l}\right\rangle$ where $G>H \upharpoonright v_{j}$ for all $j \in\{1, \ldots, l\}$.
- $\operatorname{lab}_{G}\left(\operatorname{root}_{G}\right)$ does not appear in the image $\left\{f \in \mathcal{F} \mid \exists v \in V_{H}\left(\operatorname{lab}_{H}(v)=f\right)\right\}$ of lab $_{H}$.

Complexity analysis 2/3: Interpretation

Definition (Bounding primitive recursive functions)

Let d : a natural number such that $2 \leq d$.

$$
\begin{aligned}
F_{0}(n) & =d(1+n) \\
F_{m+1}(n) & =F_{m}^{d(1+n)}(n)
\end{aligned}
$$

Recall: rank $\mathrm{rk}: \mathcal{F} \rightarrow \mathbb{N}$ is defined as $f>_{\mathcal{F}} g \Leftrightarrow \operatorname{rk}(f)>\operatorname{rk}(g)$.
Definition (Interpretation of term graphs)
Suppose $>_{\mathcal{F}}$: a precedence on \mathcal{F}.
Let G : (closed) term graph such that $\operatorname{att}_{G}\left(\operatorname{root}_{G}\right)=\left\langle v_{1}, \ldots, v_{k}\right\rangle$. Let $\operatorname{lab}_{G}\left(\operatorname{root}_{G}\right)=f \in \mathcal{F}$.

$$
\mathcal{I}(G):=F_{\mathrm{rk}(f)}^{|G|}\left(\sum_{j=1}^{k} \mathcal{I}\left(G \upharpoonright v_{j}\right)\right) \quad(|G|: \text { the size of } G)
$$

Complexity analysis $3 / 3$: Interpretation theorem

Lemma (Main lemma)

Let G, H : term graphs over a signature \mathcal{F} such that $|H| \leq d(1+|G|)$.
Let σ : a substitution.
Suppose max $\{\operatorname{arity}(f) \mid f \in \mathcal{F}\} \leq d$.
If $G>H$, then, for the interpretation \mathcal{I} induced by d, $\mathcal{I}(G \sigma)>\mathcal{I}(H \sigma)$.

Theorem (Interpretation theorem)

Let \mathcal{G} : a (possibly infinite) graph rewrite system over \mathcal{F} such that $L>R$ for any $L \Rightarrow R \in \mathcal{G}$.
Suppose $|R| \leq d(1+|L|)$ for any $L \Rightarrow R \in \mathcal{G}$.
Suppose max $\{\operatorname{arity}(f) \mid f \in \mathcal{F}\} \leq d$.
If $G \Rightarrow_{\mathcal{G}} H$, then $\mathcal{I}(G)>\mathcal{I}(H)$ for the interpretation induced by d.

Application 1/5

Example (A rewrite system \mathcal{R})

(1) $h(x, y) \rightarrow c(x, y)$
(3) $\quad f(s(x)) \rightarrow h(f(x), f(x))$
(2) $f(0) \rightarrow 0$
(4) $f(c(x, y)) \rightarrow h(f(x), f(y))$

Define a precedence by $f>_{\mathcal{F}} h>_{\mathcal{F}} c, s, 0$.
(1.1)
(1.2)
(2)
${\underset{x}{x}}_{h}^{\substack{h}} \underset{x}{c} \underset{y}{c}$

Application 2/5

Example (A rewrite system \mathcal{R})

(1) $h(x, y) \rightarrow c(x, y)$ (3) $\quad f(s(x)) \rightarrow h(f(x), f(x))$
(2) $\quad f(0) \rightarrow 0$
(4) $f(c(x, y)) \rightarrow h(f(x), f(y))$

Define a precedence by $f>_{\mathcal{F}} h>_{\mathcal{F}} c, s, 0$.

Application 3/5

Example (A rewrite system \mathcal{R})

(1) $h(x, y) \rightarrow c(x, y)$
(3) $\quad f(s(x)) \rightarrow h(f(x), f(x))$
(2) $\quad f(0) \rightarrow 0$
(4) $f(c(x, y)) \rightarrow h(f(x), f(y))$

Define a precedence by $f>_{\mathcal{F}} h>_{\mathcal{F}} c, s, 0$.

Application 4/5

Theorem (Interpretation theorem)

Let \mathcal{G} : a (possibly infinite) graph rewrite system over \mathcal{F} such that $L>R$ for any $L \Rightarrow R \in \mathcal{G}$.
Suppose $|R| \leq d(1+|L|)$ for any $L \Rightarrow R \in \mathcal{G}$.
Suppose max $\{\operatorname{arity}(f) \mid f \in \mathcal{F}\} \leq d$.
If $G \Rightarrow_{\mathcal{G}} H$, then $\mathcal{I}(G)>\mathcal{I}(H)$ for the interpretation induced by d.
Observe:

$$
\begin{aligned}
& \text { 1. }|R| \leq|L| \text { for any } L \Rightarrow R \in \mathcal{G}_{\mathcal{R}} \text {. } \\
& \text { 2. } \max \{\operatorname{arity}(g) \mid g \in \mathcal{F}\} \leq 2 .
\end{aligned}
$$

By Interpretation theorem, the length of any graph rewriting sequence in $\mathcal{G}_{\mathcal{R}}$ starting with a closed G is bounded by $\mathcal{I}(G)$.

Application 5/5

Example:

$$
G=\operatorname{graph}\left(f\left(c\left(s^{n}(0), 0\right)\right)\right)=f \longrightarrow c \longrightarrow s \longrightarrow \cdots s \longrightarrow 0
$$

See:

1. $|G|=n+3$.
2. $\operatorname{rk}(f)=2, \operatorname{rk}(c)=\operatorname{rk}(s)=\operatorname{rk}(0)=0$.

Can be shown: $\mathcal{I}(G) \leq F_{3}^{2}(|G|)$.
Unfortunately:

- The upper bound F_{3}^{2} is not tight.
- Because $\left.2^{n} \leq F_{1}(n), 2^{.2}\right\} n \leq F_{2}(n), \ldots$

Conclusion

Summary:

- Graph representation is more appropriate than term representation to discuss about computational complexity of some functions over specific structures (set-theoretic functions, functions over free algebras, etc.).
- Duplication can be avoided by unfolding graph rewriting.
- This work: primitive recursive complexity analysis of unfolding graph rewriting.
Future work:
- Polynomial complexity analysis of unfolding graph rewriting.

References

Predicatively Computable Functions on Sets Toshiyasu Arai
Submitted. Available at arXiv: 1204.558.
Reneral Ramified Recurrence is Sound for Polynomial Time Ugo Dal Lago, Simone Martini and Margherita Zorzi Proc. DICE 2010.

Thank you for your attention!

