

Complexity Analysis of Unfolding Graph Rewriting: The first step

Naohi Eguchi

Institute of Computer Science University of Innsbruck Austria

SIG

27 November 2013, Seminar 1

Introduction 1/2

Example (Recursion over free algebras)

General form of primitive recursion:

$$f(0, \vec{y}) = g(\vec{y}) f(c(x_1, ..., x_k), \vec{y}) = h(\vec{x}, \vec{y}, f(x_1, \vec{y}), ..., f(x_k, \vec{y}))$$

Fact

For any general ramified function f there exists $F \in \mathsf{FP}$ such that

 $F(\lceil \operatorname{graph}(c) \rceil) = \lceil \operatorname{graph}(f(c)) \rceil$

for any value c over an underlying vocabulary.

General Ramified Recurrence is Sound for Polynomial Time U. Dal Lago, S. Martini and M. Zorzi. Proc. DICE 2010.

Naohi Eguchi (CL @ ICS @ UIBK)

Introduction 2/2

Example (Set-theoretic recursion)

Primitive recursion on (hereditarily) finite sets:

$$f(\emptyset, \vec{y}) = g(\vec{y})$$

$$f(\{x_1, \dots, x_k\}, \vec{y}) = h(\{\vec{x}\}, \vec{y}, \{f(x_1, \vec{y}), \dots, f(x_k, \vec{y})\})$$

Fact

For any $f \in \mathsf{PCSF}$ there exists $F \in \mathsf{FP}$ such that

$$F(\lceil G \rceil) = \lceil \operatorname{graph}(f(\operatorname{set}(G))) \rceil$$

for any directed acyclic graph G.

Predicatively Computable Functions on Sets T. Arai. Submitted.

Naohi Eguchi (CL @ ICS @ UIBK)

Fact (Dal Lago-Martini-Zorzi, 2010)

For any general ramified function f there exists $F \in \mathsf{FP}$ such that

 $F(\lceil \operatorname{graph}(c) \rceil) = \lceil \operatorname{graph}(f(c)) \rceil$

for any value c over an underlying vocabulary.

- Unfolding graph rewriting is employed to show the fact.
- (As far as the speaker knows) no complexity analysis of unfolding rewriting is known.
- This talk: primitive recursive complexity analysis of unfolding graph rewriting.

The following (innermost) rewriting is possible:

$$\begin{array}{rcl} f(c(s^n(0),0)) & \rightarrow_{\mathcal{R}} & h(f(s^n(0)),f(0)) & \text{by (4)} \\ & \rightarrow_{\mathcal{R}} & h(f(s^n(0)),0) & \text{by (2)} \\ & \rightarrow_{\mathcal{R}} & h(h(f(s^{n-1}(0)),f(s^{n-1}(0)))) & \text{by (3)} \\ & \cdots & (2^{n-1} \text{ times application of (3))} \\ & \rightarrow_{\mathcal{R}} & h(h^n(0),0) & \text{by (3)} \\ & \cdots & (2^n \text{ times application of (1))} \\ & \rightarrow_{\mathcal{R}} & c(c^n(0),0) & \text{by (1)} \end{array}$$

where $h^0(0,0) = 0$ and $h^{k+1}(0) = h(h^k(0), h^k(0))$.

Observe: the length of the rewriting sequence is $2 + 2^n + 2^n$:

$$f(c(s^n(0),0)) \rightarrow_{\mathcal{R}} \cdots \rightarrow_{\mathcal{R}} c(c^n(0),0)$$

Derivational complexity (or even the innermost runtime complexity) of \mathcal{R} is optimally exponential.

An infinite rewrite system \mathcal{R}^* unfolding \mathcal{R} :

Observe:

f

- \mathcal{R}^* collects all the possible instances of the rules (3) & (4).
- Derivational complexity of \mathcal{R}^* is still exponential.
- Because terms of the form $h(\cdots, \cdots)$ are duplicated.

The unfolding graph rewrite system $\mathcal{G}_{\mathcal{R}}$ contains:

$$(1.1)$$
 (1.2) (2)

$$\begin{pmatrix} h & c \\ () \\ x & y \end{pmatrix} \Rightarrow \begin{pmatrix} c \\ y \\ x & y \end{pmatrix} \qquad \begin{pmatrix} h & c \\ () \\ x & y \end{pmatrix} \Rightarrow \begin{pmatrix} f \\ y \\ x \end{pmatrix} \Rightarrow \begin{pmatrix} f \\ 0 \end{pmatrix} \Rightarrow 0$$

Unfolding graph rewriting 2/4

Example (A rewrite system \mathcal{R})

The unfolding graph rewrite system $\mathcal{G}_{\mathcal{R}}$ also contains:

Unfolding graph rewriting 3/4

Example (A rewrite system \mathcal{R})

The unfolding graph rewrite system $\mathcal{G}_{\mathcal{R}}$ finally contains:

. . .

The unfolding graph rewrite system $\mathcal{G}_\mathcal{R}$ is:

- an infinite graph rewrite system unfolding the rules (3) & (4). (More precisely, the rule (1) should be also unfolded)
- every term graph in the rules is maximally shared..

Observe:

The maximal length of (innermost) rewriting sequences in $\mathcal{G}_{\mathcal{R}}$ can be bounded by O(n). (*n*: the size of a starting graph)

Term graphs 1/2

Definition (Term graphs)

Formally a term graph is a directed acyclic graph G = (V, E) with a unique root root_G equipped with

- an attachment function $\operatorname{att}_{G}: V \to V^*$ and
- a labeling function $lab_G: V \to \mathcal{F} \cup \mathcal{V}$.

$$\begin{array}{ccc} \operatorname{root}_{G} = & v_{0} & \operatorname{att}_{G}(v_{0}) = \langle v_{1}, v_{2} \rangle & & f_{0} \\ & & & \downarrow \\ &$$

Naohi Eguchi (CL @ ICS @ UIBK)

Definition (Initial sub-graphs)

Let G = (V, E) and $v \in V$. Then an initial sub-graph $G \upharpoonright v$ is the maximal sub-graph of G whose root is v.

$$G = \bigvee_{\substack{v_1 \\ (v_1) \\ v_2 \\ v_2 \\ v_2 \\ v_2 \\ v_2 \\ v_1 = v_1 \\ (v_1 = v_1 \\ (v_1 = v_1 \\ v_2 \\ v_2$$

Complexity analysis 1/3: Reduction orders

Structure of unfolding rewrite systems is rather simple. Hence reduction orders might help.

Definition

Suppose G, H are term graphs such that $lab_G : V_G \to \mathcal{F} \cup \mathcal{V}$ and $lab_H : V_H \to \mathcal{F} \cup \mathcal{V}$.

Let $>_{\mathcal{F}}$: a precedence on \mathcal{F} .

Suppose
$$\operatorname{att}_G(\operatorname{root}_G) = \langle u_1, \ldots, u_k \rangle$$
.

Then G > H if one of the following two cases hold:

- 1. $G \upharpoonright u_i \ge H$ for some $i \in \{1, \ldots, k\}$.
- 2. The following three conditions are fulfilled.
 - $lab_G(root_G) >_{\mathcal{F}} lab_H(root_H)$.
 - $\operatorname{att}_H(\operatorname{root}_H) = \langle v_1, \ldots, v_l \rangle$ where $G > H \upharpoonright v_j$ for all $j \in \{1, \ldots, l\}$.
 - $lab_G(root_G)$ does not appear in the image $\{f \in \mathcal{F} \mid \exists v \in V_H(lab_H(v) = f)\}$ of lab_H .

Complexity analysis 2/3: Interpretation

Definition (Bounding primitive recursive functions)

Let d: a natural number such that $2 \le d$.

$$F_0(n) = d(1+n)$$

 $F_{m+1}(n) = F_m^{d(1+n)}(n)$

Recall: rank $\mathsf{rk} : \mathcal{F} \to \mathbb{N}$ is defined as $f >_{\mathcal{F}} g \Leftrightarrow \mathsf{rk}(f) > \mathsf{rk}(g)$.

Definition (Interpretation of term graphs)

Suppose $>_{\mathcal{F}}$: a precedence on \mathcal{F} .

Let G: (closed) term graph such that $\operatorname{att}_G(\operatorname{root}_G) = \langle v_1, \ldots, v_k \rangle$. Let $\operatorname{lab}_G(\operatorname{root}_G) = f \in \mathcal{F}$.

$$\mathcal{I}(G) := F_{\mathsf{rk}(f)}^{|G|} (\sum_{j=1}^k \mathcal{I}(G \upharpoonright v_j)) \qquad (|G|: ext{ the size of } G)$$

Lemma (Main lemma)

Let G, H: term graphs over a signature \mathcal{F} such that $|\mathcal{H}| \leq d(1 + |G|)$. Let σ : a substitution. Suppose max{arity(f) | $f \in \mathcal{F}$ } $\leq d$. If G > H, then, for the interpretation \mathcal{I} induced by d, $\mathcal{I}(G\sigma) > \mathcal{I}(H\sigma)$.

Theorem (Interpretation theorem)

Let \mathcal{G} : a (possibly infinite) graph rewrite system over \mathcal{F} such that L > R for any $L \Rightarrow R \in \mathcal{G}$. Suppose $|R| \le d(1 + |L|)$ for any $L \Rightarrow R \in \mathcal{G}$. Suppose max{arity(f) | $f \in \mathcal{F}$ } $\le d$. If $G \Rightarrow_{\mathcal{G}} H$, then $\mathcal{I}(G) > \mathcal{I}(H)$ for the interpretation induced by d.

Define a precedence by $f >_{\mathcal{F}} h >_{\mathcal{F}} c, s, 0$.

(1.1) (1.2) (2)

Application 2/5

Example (A rewrite system \mathcal{R})

Define a precedence by $f >_{\mathcal{F}} h >_{\mathcal{F}} c, s, 0$.

Application 3/5

Example (A rewrite system \mathcal{R})

Define a precedence by $f >_{\mathcal{F}} h >_{\mathcal{F}} c, s, 0$.

Theorem (Interpretation theorem)

Let \mathcal{G} : a (possibly infinite) graph rewrite system over \mathcal{F} such that L > R for any $L \Rightarrow R \in \mathcal{G}$. Suppose $|R| \le d(1 + |L|)$ for any $L \Rightarrow R \in \mathcal{G}$. Suppose $\max\{\operatorname{arity}(f) \mid f \in \mathcal{F}\} \le d$. If $G \Rightarrow_{\mathcal{G}} H$, then $\mathcal{I}(G) > \mathcal{I}(H)$ for the interpretation induced by d.

Observe:

- 1. $|R| \leq |L|$ for any $L \Rightarrow R \in \mathcal{G}_{\mathcal{R}}$.
- 2. $\max{\{\operatorname{arity}(g) \mid g \in \mathcal{F}\}} \le 2$.

By Interpretation theorem, the length of any graph rewriting sequence in $\mathcal{G}_{\mathcal{R}}$ starting with a closed G is bounded by $\mathcal{I}(G)$.

Application 5/5

Example:

$$G = \operatorname{graph}(f(c(s^n(0), 0))) = f \longrightarrow c \xrightarrow{\hspace{1cm}} s \xrightarrow{\hspace{1cm}} 0$$

See:

- 1. |G| = n + 3. 2. rk(f) = 2, rk(c) = rk(s) = rk(0) = 0. Can be shown: $\mathcal{I}(G) \le F_3^2(|G|)$. Unfortunately:
 - The upper bound F_3^2 is not tight.

• Because
$$2^n \le F_1(n), 2^{n^2}$$
 $n \le F_2(n), ...$

Conclusion

Summary:

- Graph representation is more appropriate than term representation to discuss about computational complexity of some functions over specific structures (set-theoretic functions, functions over free algebras, etc.).
- Duplication can be avoided by unfolding graph rewriting.
- This work: primitive recursive complexity analysis of unfolding graph rewriting.

Future work:

• Polynomial complexity analysis of unfolding graph rewriting.

References

Predicatively Computable Functions on Sets Toshiyasu Arai Submitted. Available at arXiv: 1204.558.

General Ramified Recurrence is Sound for Polynomial Time Ugo Dal Lago, Simone Martini and Margherita Zorzi Proc. DICE 2010.

Thank you for your attention!