Seminar 2, June 12, 2013

Characterising Complexity Classes by Fixed Point Axioms

Naohi Eguchi
Institute of Computer Science, University of Innsbruck

Introduction 1/3

- Many computable functions can be already computed with some realistic computation resources (realistic time, realistic space).
- Attempts to find limits of realistic computations have given rise to open problems about complexity classes, e.g. $\mathbf{P} \neq$?NP.
- In many cases it is difficult to compare complexity classes.

Introduction 2/3

- P: the class of polynomial-time computable funcs.
- PSPACE: the class of polynomial-space computable functions.
Facts

1. $\mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P H} \subseteq \mathbf{P S P A C E}$.
2. $\mathbf{P} \subseteq \# \mathbf{P} \subseteq \mathbf{P C H} \subseteq \mathbf{P S P A C E}$.
(PH: Polynomial hierarchy, \#P: Polynomial counting, $\mathbf{P C H}$: Counting hierarchy)
Any strict inclusion is not known.

Introduction 3/3

- It is not known if $\mathbf{P} \subsetneq \# \mathbf{P} \subsetneq \mathbf{P S P A C E}$, e.g. 1. PSPACE is closed under summation: If $g \in$ PSPACE, then $f \in$ PSPACE, where

$$
f(x, \vec{y})=\sum_{i=0}^{x} g(i, \vec{y})
$$

2. It is not known if \mathbf{P} is closed under summation.

- To know more about complexity classes:

Machine-independent logical characterisations.
(Recursion-theoretic, Model-theoretic,
Proof-theoretic, Term-rewriting, ...)

Outline

- There may be many characterisations of one class.
- What is the most essential principle to uniformly defines functions in a complexity class?

Outline

- There may be many characterisations of one class.
- What is the most essential principle to uniformly defines functions in a complexity class?
Given a complexity class \mathcal{F} find an axiom Ax s.t.

1. $f \in \mathcal{F} \Longrightarrow \mathbf{T}+\mathrm{Ax} \vdash \forall x \exists!y f(x)=y$.
2. $\mathrm{T}+\mathrm{A} \times \forall \boldsymbol{\vdash} \exists$! $y f(x)=\boldsymbol{y} \Longrightarrow f \in \mathcal{F}$.
(T : a base axiomatic system)

Outline

- There may be many characterisations of one class.
- What is the most essential principle to uniformly defines functions in a complexity class?
Given a complexity class \mathcal{F} find an axiom Ax s.t.

1. $f \in \mathcal{F} \Longrightarrow \mathbf{T}+\mathrm{Ax} \vdash \forall x \exists!y f(x)=y$.
2. $\mathrm{T}+\mathrm{A} \times \forall \boldsymbol{\vdash} \exists$! $y f(x)=\boldsymbol{y} \Longrightarrow f \in \mathcal{F}$.
(T: a base axiomatic system)

- This work: $\mathcal{F}=\mathbf{P}$ or $\mathcal{F}=\mathbf{P S P A C E}$, Ax is Fixed Point axiom.

Fixed Point principle

Let $\boldsymbol{F}: \boldsymbol{S} \rightarrow \boldsymbol{S}(\# \boldsymbol{S}<\boldsymbol{\omega})$.
Define \boldsymbol{F}^{m} by $\left\{\begin{aligned} \boldsymbol{F}^{0} & :=\emptyset \\ \boldsymbol{F}^{m+1} & :=\boldsymbol{F}\left(\boldsymbol{F}^{m}\right)\end{aligned}\right.$

Fixed Point principle

Let $\boldsymbol{F}: \boldsymbol{S} \rightarrow \boldsymbol{S}(\# \boldsymbol{S}<\boldsymbol{\omega})$.
Define \boldsymbol{F}^{m} by $\left\{\begin{aligned} \boldsymbol{F}^{0} & :=\emptyset \\ \boldsymbol{F}^{m+1} & :=\boldsymbol{F}\left(\boldsymbol{F}^{m}\right)\end{aligned}\right.$

- $\exists k<2^{\# S}, \exists l>0$ such that

$$
\forall n \geq k, F^{n+l}=F^{n}
$$

- Otherwise there exist $2^{\# S}+1$ subsets of S.
- This contradicts $\#\{M \mid M \subseteq S\}=2^{\# S}$.

Connection to time-complexity

Suppose:

1. A function $\boldsymbol{f}(\boldsymbol{x})$ is computable in $\boldsymbol{T}(\boldsymbol{x})$ steps.
2. TAPE^{l} denotes the tape description at the l th step in computing $f(x)$;

$$
\begin{aligned}
& \mathrm{TAPE}^{0}=\begin{array}{|l|l|l|l|l|l|l|}
\hline \boldsymbol{B} & \boldsymbol{i}_{1} & \cdots & i_{|x|} & B & \cdots & B \\
\left(x=i_{1} \cdots i_{|x|} \text { (input), } i_{1}, \ldots, i_{|x|} \in\{0,1\}\right)
\end{array} \\
& \hline
\end{aligned}
$$

Connection to time-complexity

Suppose:

1. A function $f(x)$ is computable in $\boldsymbol{T}(\boldsymbol{x})$ steps.
2. TAPE ${ }^{l}$ denotes the tape description at the l th step in computing $f(\boldsymbol{x})$;

$$
\begin{aligned}
& \mathrm{TAPE}^{0}=\begin{array}{|c|c|c|c|c|c|c|}
\hline \boldsymbol{B} & i_{1} & \cdots & i_{|x|} & B & \cdots & B \\
\left(\boldsymbol{x}=\boldsymbol{i}_{1} \cdots \boldsymbol{i}_{|x|} \text { (input), } \boldsymbol{i}_{1}, \ldots, \boldsymbol{i}_{|x|} \in\{0,1\}\right)
\end{array}
\end{aligned}
$$

Connection to time-complexity

Suppose:

1. A function $\boldsymbol{f}(\boldsymbol{x})$ is computable in $\boldsymbol{T}(\boldsymbol{x})$ steps.
2. TAPE ${ }^{l}$ denotes the tape description at the l th step in computing $f(x)$;

$$
\begin{aligned}
& \text { TAPE }^{0}=\begin{array}{|l|l|l|l|l|l|l|}
\hline \boldsymbol{B} & i_{1} & \cdots & i_{|x|} & \boldsymbol{B} & \cdots & \boldsymbol{B} \\
\left(\boldsymbol{x}=\boldsymbol{i}_{1} \cdots \boldsymbol{i}_{|x|} \text { (input), } \boldsymbol{i}_{1}, \ldots, \boldsymbol{i}_{|x|} \in\{\mathbf{0}, \mathbf{1}\}\right)
\end{array}
\end{aligned}
$$

Then

- $\operatorname{TAPE}^{T(x)+1}=\operatorname{TAPE}^{T(x)}$.
- Further $\forall l \geq T(x)$, TAPE $^{l}=\operatorname{TAPE}^{T(x)}$.

Finite model theory

Model-theoretic characterisations of P, PSPACE.
Thm (N. Immerman et al.)

1. A predicate $L \in \mathbf{P} \Leftrightarrow \boldsymbol{L}$ can be expressed by the first order predicate logic (FO) with the fixed point predicate of a FO definable increasing operator, i.e. $\boldsymbol{X} \subseteq \boldsymbol{F}(\boldsymbol{X})$.
2. A predicate $L \in \mathbf{P S P A C E} \Leftrightarrow \boldsymbol{L}$ can be expressed by FO with the fixed point predicate of a FO definable operator.

Bounded arithmetic 1/2

- Introducing a fixed point axiom (FP) s.t. 1. $f \in \mathcal{F} \Longrightarrow \mathrm{~T}+(\mathrm{FP}) \vdash \forall x \exists$! $y f(x)=y$. 2. $\mathrm{T}+\mathrm{FP} \vdash \forall \boldsymbol{x} \exists$! $\boldsymbol{y} f(\boldsymbol{x})=\boldsymbol{y} \Longrightarrow f \in \mathcal{F}$. where $\mathcal{F}=\mathbf{P}$ or $\mathcal{F}=\mathbf{P S P A C E}$.
- The base system \mathbf{T} must be weak: $\mathbf{T} \nvdash(F P)$.
- Bounded arithmetic seems suitable for \mathbf{T}.

A system of bounded arithmetic is:

- a weak subsystem of Peano arithmetic PA;
- suitable for finitary mathematics.

Bounded arithmetic 2/2

Second order bounded arithmetic:

- Language $\mathcal{L}_{\mathrm{BA}}^{2}: \mathbf{0}, \mathbf{1},+, \cdot$ and $|\boldsymbol{X}|$
- First order elements $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \ldots$ natural numbers with upper bounds of $\mathcal{L}_{\mathrm{BA}}^{2}$-terms.
- Second order elements $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}, \ldots$: finite sets of naturals. Interpretable into $\{\mathbf{0}, \mathbf{1}\}$-strings.
- $|\boldsymbol{X}|$ denotes the number of elements of \boldsymbol{X}, or equivalently the binary length of \boldsymbol{X}.
- Axioms: Induction, Comprehension, ...

Fixed point axiom

Def $\forall \boldsymbol{x}, \exists \boldsymbol{X}, \boldsymbol{Y}$ s.t. $|\boldsymbol{X}|,|\boldsymbol{Y}| \leq \boldsymbol{x}, \boldsymbol{Y} \neq \emptyset$ and 1. $\forall j<\boldsymbol{x}\left(P_{\varphi}^{\emptyset}(j) \leftrightarrow \emptyset(i)\right)$ (\emptyset : empty string)
2. $\forall \mathbb{Z}, \forall j<x\left(\mathbb{P}_{\varphi}^{S(Z)}(j) \leftrightarrow \varphi\left(j, \mathbb{P}_{\varphi}^{Z}\right)\right)$
3. $\forall j<x\left(P_{\varphi}^{X+Y}(j) \leftrightarrow P_{\varphi}^{X}(j)\right)$
(P_{φ}^{X} : fresh predicate, S : string successor $\left.X \mapsto X+1\right)$ Recall:

1. $\boldsymbol{F}^{\mathbf{0}}=\emptyset$
2. $\boldsymbol{F}^{m+1}=\boldsymbol{F}\left(\boldsymbol{F}^{m}\right)$
3. $\exists k<2^{\# S}, \exists l \neq 0$ s.t. $F^{k+l}=F^{k}$

Fixed point axiom

Def $\forall \boldsymbol{x}, \exists \boldsymbol{X}, \boldsymbol{Y}$ s.t. $|\boldsymbol{X}|,|\boldsymbol{Y}| \leq \boldsymbol{x}, \boldsymbol{Y} \neq \emptyset$ and 1. $\forall j<x\left(P_{\varphi}^{\emptyset}(j) \leftrightarrow \emptyset(i)\right)$ ($\emptyset:$ empty string)
2. $\forall Z, \forall j<x\left(P_{\varphi}^{S(Z)}(j) \leftrightarrow \varphi\left(j, P_{\varphi}^{Z}\right)\right)$
3. $\forall j<x\left(P_{\varphi}^{X+Y}(j) \leftrightarrow P_{\varphi}^{X}(j)\right)$
(P_{φ}^{X} : fresh predicate, S : string successor $\left.X \mapsto X+1\right)$ Recall:

1. $\boldsymbol{F}^{\mathbf{0}}=\emptyset$
2. $\boldsymbol{F}^{m+1}=\boldsymbol{F}\left(\boldsymbol{F}^{m}\right)$
3. $\exists k<2^{\# S}, \exists l \neq 0$ s.t. $F^{k+l}=F^{k}$

Fixed point axiom

Def $\forall \boldsymbol{x}, \exists \boldsymbol{X}, \boldsymbol{Y}$ s.t. $|\boldsymbol{X}|,|\boldsymbol{Y}| \leq \boldsymbol{x}, \boldsymbol{Y} \neq \emptyset$ and 1. $\forall j<x\left(P_{\varphi}^{\emptyset}(j) \leftrightarrow \emptyset(i)\right)$ (\emptyset : empty string)
2. $\forall Z, \forall j<x\left(P_{\varphi}^{S(Z)}(j) \leftrightarrow \varphi\left(j, P_{\varphi}^{Z}\right)\right)$
3. $\forall j<x\left(P_{\varphi}^{X+Y}(j) \leftrightarrow P_{\varphi}^{X}(j)\right)$
($\boldsymbol{P}_{\varphi}^{\boldsymbol{X}}$: fresh predicate, S : string successor $\left.\boldsymbol{X} \mapsto X+1\right)$ Recall:

1. $\boldsymbol{F}^{\mathbf{0}}=\emptyset$
2. $\boldsymbol{F}^{m+1}=\boldsymbol{F}\left(\boldsymbol{F}^{m}\right)$
3. $\exists k<2^{\# S}, \exists l \neq 0$ st. $F^{k+l}=F^{k}$

Main results

Def (FO-FP): Fixed point axiom for some FO φ.
Def (FO-IFP): (FO-FP) and additionally
$\forall X, \forall i<|X|(i \in X \rightarrow \varphi(i, X))$ holds.

Main results

Def (FO-FP): Fixed point axiom for some FO φ.
Def (FO-IFP): (FO-FP) and additionally $\forall X, \forall i<|X|(i \in X \rightarrow \varphi(i, X))$ holds.

Let $\mathbf{T}_{\mathbf{0}}$ be a base system of bounded arithmetic.
Thm $1 f \in \mathbf{P}$ if and only if
$\mathbf{T}_{0}+($ FO-IFP $) \vdash \forall X \exists!Y f(X)=Y$.
Thm $2 f \in$ PSPACE if and only if $\mathrm{T}_{0}+($ FO-FP $) \vdash \forall \boldsymbol{X} \exists!\boldsymbol{Y} f(X)=Y$.

Connection to time-complexity

Suppose:

1. A function $\boldsymbol{f}(\boldsymbol{x})$ is computable in $\boldsymbol{T}(\boldsymbol{x})$ steps.
2. TAPE ${ }^{l}$ denotes the tape description at the l th step in computing $f(x)$;

$$
\begin{aligned}
& \text { TAPE }^{0}=\begin{array}{|l|l|l|l|l|l|l|}
\hline \boldsymbol{B} & i_{1} & \cdots & i_{|x|} & B & \cdots & B \\
\left(x=i_{1} \cdots i_{|x|}\right. \\
\text { (input), } \left.\boldsymbol{i}_{1}, \ldots, i_{|x|} \in\{0,1\}\right)
\end{array}
\end{aligned}
$$

Then

- $\operatorname{TAPE}^{T(x)+1}=\operatorname{TAPE}^{T(x)}$.
- Father $\forall l \geq \boldsymbol{T}(\boldsymbol{x}), \mathrm{TAPE}^{l}=\operatorname{TAPE}^{T(x)}$.

Proof of "only if" of Theorem 2

Suppose: $f \in$ PSPACE.
$\exists p$: poly $\left\{f(X)\right.$ is computable in $2^{p(|X|)}$ steps \mid TAPE $^{L} \mid \leq p(|X|)$
See: $\operatorname{TAPE}^{L} \mapsto \operatorname{TAPE}^{L+1}$: FO-definable.
By $\left(\exists^{2}\right.$ FO-FP $) \exists K, \exists L$ s.t. TAPE $^{K+L}=\operatorname{TAPE}^{K}$
See: TAPE K must be in the accepting state.
So $\boldsymbol{f}(\boldsymbol{X})=\boldsymbol{Y} \Leftrightarrow \exists \boldsymbol{K}, L$ st. $|\boldsymbol{K}|,|L| \leq p(|X|)$, $\operatorname{TAPE}^{K+L}=\operatorname{TAPE}^{K} \wedge \boldsymbol{Y}=$ output(TAPE $\left.{ }^{K}\right)$
Hence $\mathbf{T}_{\mathbf{0}}+($ FO-FP $) \vdash \forall \boldsymbol{X} \exists!\boldsymbol{Y} \boldsymbol{f}(\boldsymbol{X})=\boldsymbol{Y}$.

Proof of "only if" of Theorem 2

Suppose: $f \in$ PSPACE.
$\exists p$: poly $\left\{f(X)\right.$ is computable in $2^{p(|X|)}$ steps \mid TAPE $^{L} \mid \leq p(|X|)$
See: $\operatorname{TAPE}^{L} \mapsto$ TAPE $^{L+1}:$ FO-definable. By (\exists^{2} FO-FP $) \exists K, \exists L$ s.t. TAPE $^{K+L}=\operatorname{TAPE}^{K}$ See: TAPE ${ }^{K}$ must be in the accepting state. So $f(\boldsymbol{X})=\boldsymbol{Y} \Leftrightarrow \exists \boldsymbol{K}, L$ s.t. $|\boldsymbol{K}|,|L| \leq p(|X|)$, $\operatorname{TAPE}^{K+L}=\operatorname{TAPE}^{K} \wedge \boldsymbol{Y}=$ output(TAPE $\left.{ }^{K}\right)$
Hence $\mathbf{T}_{\mathbf{0}}+($ FO-FP $) \vdash \forall \boldsymbol{X} \exists!\boldsymbol{Y} \boldsymbol{f}(\boldsymbol{X})=\boldsymbol{Y}$.

Proof of "only if" of Theorem 2

Suppose: $f \in$ PSPACE.
$\exists p$: poly $\left\{f(X)\right.$ is computable in $2^{p(|X|)}$ steps \mid TAPE $^{L} \mid \leq p(|X|)$
See: TAPE $^{L} \mapsto$ TAPE $^{L+1}$: FO-definable. By (FO-FP) $\exists \boldsymbol{K}, \exists \boldsymbol{L}$ s.t. $\mathrm{TAPE}^{K+L}=$ TAPE K See: TAPE^{K} must be in the accepting state. So $f(X)=Y \Leftrightarrow \exists K, L$ s.t. $|K|,|L| \leq p(|X|)$, $\operatorname{TAPE}^{K+L}=\operatorname{TAPE}^{K} \wedge \boldsymbol{Y}=$ output(TAPE $\left.{ }^{K}\right)$ Hence $\mathbf{T}_{\mathbf{0}}+($ FO-FP $) \vdash \forall \boldsymbol{X} \exists!\boldsymbol{Y} \boldsymbol{f}(\boldsymbol{X})=\boldsymbol{Y}$.

Proof of "only if" of Theorem 2

Suppose: $f \in$ PSPACE.
$\exists p$: poly $\left\{\begin{array}{l}f(X) \text { is computable in } 2^{p(|X|)} \text { steps }\end{array}\right.$ \mid TAPE $^{L} \mid \leq p(|X|)$
See: TAPE $^{L} \mapsto$ TAPE $^{L+1}$: FO-definable. By (FO-FP) $\exists \boldsymbol{K}, \exists \boldsymbol{L}$ s.t. TAPE $^{K+L}=$ TAPE K See: TAPE K must be in the accepting state. So $\boldsymbol{f}(\boldsymbol{X})=\boldsymbol{Y} \Leftrightarrow \exists \boldsymbol{K}, L$ s.t. $|K|,|L| \leq p(|X|)$, $\operatorname{TAPE}^{K+L}=\operatorname{TAPE}^{K} \wedge \boldsymbol{Y}=$ output $\left(\operatorname{TAPE}^{K}\right)$ Hence $\mathbf{T}_{\mathbf{0}}+($ FO-FP $) \vdash \forall \boldsymbol{X} \exists!\boldsymbol{Y} \boldsymbol{f}(\boldsymbol{X})=\boldsymbol{Y}$.

Proof of "if" direction of Thm $1 \& 2$ are based on:
Thm (Zambella '96) $\boldsymbol{f} \in \mathbf{P}$ if and only if $\mathbf{T}_{\mathbf{0}}+\left(\exists^{2}\right.$ FO-IND $) \vdash \forall \boldsymbol{X} \exists!\boldsymbol{Y} \boldsymbol{f}(\boldsymbol{X})=\boldsymbol{Y}$.
(\exists^{2} FO: $\exists \boldsymbol{X} \varphi$ for some FO φ)

Thm (Skelley '06) $f \in$ PSPACE if and only if $\mathbf{T}_{\mathbf{0}}+\left(\exists^{3}\right.$ SO-IND $) \vdash \forall \boldsymbol{X} \exists!\boldsymbol{Y} \boldsymbol{f}(\boldsymbol{X})=\boldsymbol{Y}$.
(\exists^{3} SO: third order $\exists \mathcal{X} \varphi$ for some second order φ)

Proof of "if" direction of Thm $1 \& 2$ are based on:
Thm (Zambella '96) $\boldsymbol{f} \in \mathbf{P}$ if and only if $\mathbf{T}_{0}+\left(\exists^{2}\right.$ FO-IND $) \vdash \forall \boldsymbol{X} \exists!\boldsymbol{Y} \boldsymbol{f}(\boldsymbol{X})=\boldsymbol{Y}$.
(\exists^{2} FO: $\exists \boldsymbol{X} \varphi$ for some FO φ)
Show: $\mathbf{T}_{\mathbf{0}} \vdash\left(\exists^{2}\right.$ FO-IND $) \rightarrow($ FO-IFP $)$.
Thm (Skelley '06) $f \in$ PSPACE if and only if $\mathbf{T}_{\mathbf{0}}+\left(\exists^{3}\right.$ SO-IND $) \vdash \forall \boldsymbol{X} \exists!\boldsymbol{Y} \boldsymbol{f}(\boldsymbol{X})=\boldsymbol{Y}$.
($\exists^{3} \mathrm{SO}$: third order $\exists \mathcal{X} \varphi$ for some second order φ)
Show: $\mathbf{T}_{\mathbf{0}} \vdash\left(\exists^{3}\right.$ SO-IND $) \rightarrow($ FO-FP $)$.

Concluding remarks

It is not clear yet if:

1. $\mathbf{T}_{\mathbf{0}} \vdash($ FO-IFP $) \rightarrow\left(\exists^{2}\right.$ FO-IND $)$.
2. $\mathbf{T}_{\mathbf{0}} \vdash(\mathrm{FO}-\mathrm{FP}) \rightarrow\left(\exists^{3} \mathrm{SO}-\mathrm{IND}\right)$.

Concluding remarks

It is not clear yet if:

1. $\mathbf{T}_{\mathbf{0}} \vdash($ FO-IFP $) \rightarrow\left(\exists^{2}\right.$ FO-IND $)$.
2. $\mathrm{T}_{\mathbf{0}} \vdash(\mathrm{FO}-\mathrm{FP}) \rightarrow\left(\exists^{3} \mathrm{SO}-\mathrm{IND}\right)$.

Thm (Zambella '96) $\boldsymbol{f} \in \mathbf{P}$ if and only if $\mathbf{T}_{\mathbf{0}}+\left(\exists^{2}\right.$ FO-IND $) \vdash \forall \boldsymbol{X} \exists!\boldsymbol{Y} \boldsymbol{f}(\boldsymbol{X})=\boldsymbol{Y}$.
Proof is based on a recursion-theoretic characterisation of \mathbf{P} by A. Cobham ('64).
(If $\boldsymbol{f}(\boldsymbol{X})$ is defined by recursion on $|\boldsymbol{X}|$, then $\exists!\boldsymbol{Y} \boldsymbol{f}(\boldsymbol{X})=\boldsymbol{Y}$ is inferred by $\left(\exists^{2}\right.$ FO-IND) on $\left.|\boldsymbol{X}|\right)$

Summary

Fixed point axioms (FO-IFP), (FO-FP) are introduced.

- New proof-theoretic characterisations of \mathbf{P} and PSPACE.
- Classical recursion-theoretic characterisations of \mathbf{P} and PSPACE are connected to model-theoretic characterisations.

Further research

Connection to rewriting characterisations of \mathbf{P} by termination orders (Avanzini-Moser '08,
Avanzini-E.-Moser '12)?

- Example: For a termination order $\succ, \boldsymbol{f} \in \mathbf{P}$ if and only if $\mathbf{T}_{\mathbf{0}}+\mathrm{WF}(\succ) \vdash \forall \boldsymbol{X} \exists!\boldsymbol{Y} \boldsymbol{f}(\boldsymbol{X})=\boldsymbol{Y}$.
(WF (\succ)) "There is no infinite descending sequence $t_{\mathbf{0}} \succ \boldsymbol{t}_{\mathbf{1}} \succ \cdots "$)
- If so: $\mathbf{T}_{\mathbf{0}} \vdash($ FO-IFP $) \leftrightarrow W F(\succ)$?

$$
\mathbf{T}_{\mathbf{0}} \vdash\left(\exists^{2} \mathrm{FO}-\mathrm{IND}\right) \leftrightarrow \mathrm{WF}(\succ) ?
$$

Thank you for your attention!

Speaker is supported by JSPS postdoctoral fellowships for young scientists.

