
Seminar 2, June 12, 2013

Characterising Complexity Classes by Fixed

Point Axioms

Naohi Eguchi

Institute of Computer Science, University of Innsbruck

Introduction 1/3

• Many computable functions can be already

computed with some realistic computation

resources (realistic time, realistic space).

• Attempts to find limits of realistic computations

have given rise to open problems about

complexity classes, e.g. P ̸=?NP.

• In many cases it is difficult to compare complexity

classes.

Introduction 2/3

• P: the class of polynomial-time computable funcs.

• PSPACE: the class of polynomial-space

computable functions.

Facts

1. P ⊆ NP ⊆ PH ⊆ PSPACE.

2. P ⊆ #P ⊆ PCH ⊆ PSPACE.

(PH: Polynomial hierarchy, #P: Polynomial

counting, PCH: Counting hierarchy)

Any strict inclusion is not known.

Introduction 3/3

• It is not known if P ⊊ #P ⊊ PSPACE, e.g.

1. PSPACE is closed under summation:

If g ∈ PSPACE, then f ∈ PSPACE, where

f(x, y⃗) =
∑x

i=0 g(i, y⃗)

2. It is not known if P is closed under summation.

• To know more about complexity classes:

Machine-independent logical characterisations.

(Recursion-theoretic, Model-theoretic,

Proof-theoretic, Term-rewriting, ...)

Outline

• There may be many characterisations of one class.

• What is the most essential principle to uniformly

defines functions in a complexity class?

Outline

• There may be many characterisations of one class.

• What is the most essential principle to uniformly

defines functions in a complexity class?

Given a complexity class F find an axiom Ax s.t.

1. f ∈ F =⇒ T + Ax ⊢ ∀x∃!yf(x) = y.

2. T + Ax ⊢ ∀x∃!yf(x) = y =⇒ f ∈ F .

(T: a base axiomatic system)

Outline

• There may be many characterisations of one class.

• What is the most essential principle to uniformly

defines functions in a complexity class?

Given a complexity class F find an axiom Ax s.t.

1. f ∈ F =⇒ T + Ax ⊢ ∀x∃!yf(x) = y.

2. T + Ax ⊢ ∀x∃!yf(x) = y =⇒ f ∈ F .

(T: a base axiomatic system)

• This work: F = P or F = PSPACE,

Ax is Fixed Point axiom.

Fixed Point principle

Let F : S → S (#S < ω).

Define Fm by

{
F 0 := ∅

Fm+1 := F (Fm)

Fixed Point principle

Let F : S → S (#S < ω).

Define Fm by

{
F 0 := ∅

Fm+1 := F (Fm)

• ∃k < 2#S , ∃l > 0 such that

∀n ≥ k, Fn+l = Fn.

– Otherwise there exist 2#S + 1 subsets of S.

– This contradicts #{M | M ⊆ S} = 2#S .

Connection to time-complexity

Suppose:

1. A function f(x) is computable in T (x) steps.

2. TAPEl denotes the tape description at the lth

step in computing f(x);

TAPE0 = B i1 · · · i|x| B · · · B

(x = i1 · · · i|x| (input), i1, . . . , i|x| ∈ {0, 1})

Connection to time-complexity

Suppose:

1. A function f(x) is computable in T (x) steps.

2. TAPEl denotes the tape description at the lth

step in computing f(x);

TAPE0 = B i1 · · · i|x| B · · · B

(x = i1 · · · i|x| (input), i1, . . . , i|x| ∈ {0, 1})

Connection to time-complexity

Suppose:

1. A function f(x) is computable in T (x) steps.

2. TAPEl denotes the tape description at the lth

step in computing f(x);

TAPE0 = B i1 · · · i|x| B · · · B

(x = i1 · · · i|x| (input), i1, . . . , i|x| ∈ {0, 1})
Then

• TAPET (x)+1 = TAPET (x).

• Further ∀l ≥ T (x), TAPEl = TAPET (x).

Finite model theory

Model-theoretic characterisations of P, PSPACE.

Thm (N. Immerman et al.)

1. A predicate L ∈ P ⇔ L can be expressed by the

first order predicate logic (FO) with the fixed

point predicate of a FO definable increasing

operator, i.e. X ⊆ F (X).

2. A predicate L ∈ PSPACE ⇔ L can be

expressed by FO with the fixed point predicate of

a FO definable operator.

Bounded arithmetic 1/2

• Introducing a fixed point axiom (FP) s.t.

1. f ∈ F =⇒ T + (FP) ⊢ ∀x∃!yf(x) = y.

2. T + FP ⊢ ∀x∃!yf(x) = y =⇒ f ∈ F .

where F = P or F = PSPACE.

• The base system T must be weak: T ̸⊢ (FP).

• Bounded arithmetic seems suitable for T.

A system of bounded arithmetic is:

– a weak subsystem of Peano arithmetic PA;

– suitable for finitary mathematics.

Bounded arithmetic 2/2

Second order bounded arithmetic:.

• Language L2
BA: 0, 1, +, · and |X|

• First order elements x, y, z, . . . : natural

numbers with upper bounds of L2
BA-terms.

• Second order elements X,Y, Z, . . . : finite sets

of naturals. Interpretable into {0, 1}-strings.
• |X| denotes the number of elements of X, or

equivalently the binary length of X.

• Axioms: Induction, Comprehension, ...

Fixed point axiom

Def ∀x, ∃X,Y s.t. |X|, |Y | ≤ x, Y ̸= ∅ and

1. ∀j < x(P ∅
φ(j) ↔ ∅(i)) (∅: empty string)

2. ∀Z, ∀j < x(P
S(Z)
φ (j) ↔ φ(j, PZ

φ))

3. ∀j < x(PX+Y
φ (j) ↔ PX

φ (j))

(PX
φ : fresh predicate, S: string successor X 7→ X + 1)

Recall:

1. F 0 = ∅
2. Fm+1 = F (Fm)

3. ∃k < 2#S , ∃l ̸= 0 s.t. F k+l = F k

Fixed point axiom

Def ∀x, ∃X,Y s.t. |X|, |Y | ≤ x, Y ̸= ∅ and

1. ∀j < x(P ∅
φ(j) ↔ ∅(i)) (∅: empty string)

2. ∀Z, ∀j < x(P
S(Z)
φ (j) ↔ φ(j, PZ

φ))

3. ∀j < x(PX+Y
φ (j) ↔ PX

φ (j))

(PX
φ : fresh predicate, S: string successor X 7→ X + 1)

Recall:

1. F 0 = ∅
2. Fm+1 = F (Fm)

3. ∃k < 2#S , ∃l ̸= 0 s.t. F k+l = F k

Fixed point axiom

Def ∀x, ∃X,Y s.t. |X|, |Y | ≤ x, Y ̸= ∅ and

1. ∀j < x(P ∅
φ(j) ↔ ∅(i)) (∅: empty string)

2. ∀Z, ∀j < x(P
S(Z)
φ (j) ↔ φ(j, PZ

φ))

3. ∀j < x(PX+Y
φ (j) ↔ PX

φ (j))

(PX
φ : fresh predicate, S: string successor X 7→ X + 1)

Recall:

1. F 0 = ∅
2. Fm+1 = F (Fm)

3. ∃k < 2#S , ∃l ̸= 0 s.t. F k+l = F k

Main results

Def (FO-FP): Fixed point axiom for some FO φ.

Def (FO-IFP): (FO-FP) and additionally

∀X, ∀i < |X|(i ∈ X → φ(i,X)) holds.

Let T0 be a base system of bounded arithmetic.

Thm 1 f ∈ P if and only if

T0 + (FO-IFP) ⊢ ∀X∃!Y f(X) = Y .

Thm 2 f ∈ PSPACE if and only if

T0 + (FO-FP) ⊢ ∀X∃!Y f(X) = Y .

Main results

Def (FO-FP): Fixed point axiom for some FO φ.

Def (FO-IFP): (FO-FP) and additionally

∀X, ∀i < |X|(i ∈ X → φ(i,X)) holds.

Let T0 be a base system of bounded arithmetic.

Thm 1 f ∈ P if and only if

T0 + (FO-IFP) ⊢ ∀X∃!Y f(X) = Y .

Thm 2 f ∈ PSPACE if and only if

T0 + (FO-FP) ⊢ ∀X∃!Y f(X) = Y .

Connection to time-complexity

Suppose:

1. A function f(x) is computable in T (x) steps.

2. TAPEl denotes the tape description at the lth

step in computing f(x);

TAPE0 = B i1 · · · i|x| B · · · B

(x = i1 · · · i|x| (input), i1, . . . , i|x| ∈ {0, 1})
Then

• TAPET (x)+1 = TAPET (x).

• Father ∀l ≥ T (x), TAPEl = TAPET (x).

Proof of “only if” of Theorem 2

Suppose: f ∈ PSPACE.

∃p: poly
{

f(X) is computable in 2p(|X|)steps

|TAPEL| ≤ p(|X|)
See: TAPEL 7→ TAPEL+1: FO-definable.

By (∃2FO-FP) ∃K, ∃L s.t. TAPEK+L = TAPEK

See: TAPEK must be in the accepting state.

So f(X) = Y ⇔ ∃K,L s.t. |K|, |L| ≤ p(|X|),
TAPEK+L = TAPEK ∧ Y = output(TAPEK)

Hence T0 + (FO-FP) ⊢ ∀X∃!Y f(X) = Y .

Proof of “only if” of Theorem 2

Suppose: f ∈ PSPACE.

∃p: poly
{

f(X) is computable in 2p(|X|)steps

|TAPEL| ≤ p(|X|)
See: TAPEL 7→ TAPEL+1: FO-definable.

By (∃2FO-FP) ∃K, ∃L s.t. TAPEK+L = TAPEK

See: TAPEK must be in the accepting state.

So f(X) = Y ⇔ ∃K,L s.t. |K|, |L| ≤ p(|X|),
TAPEK+L = TAPEK ∧ Y = output(TAPEK)

Hence T0 + (FO-FP) ⊢ ∀X∃!Y f(X) = Y .

Proof of “only if” of Theorem 2

Suppose: f ∈ PSPACE.

∃p: poly
{

f(X) is computable in 2p(|X|)steps

|TAPEL| ≤ p(|X|)
See: TAPEL 7→ TAPEL+1: FO-definable.

By (FO-FP) ∃K, ∃L s.t. TAPEK+L = TAPEK

See: TAPEK must be in the accepting state.

So f(X) = Y ⇔ ∃K,L s.t. |K|, |L| ≤ p(|X|),
TAPEK+L = TAPEK ∧ Y = output(TAPEK)

Hence T0 + (FO-FP) ⊢ ∀X∃!Y f(X) = Y .

Proof of “only if” of Theorem 2

Suppose: f ∈ PSPACE.

∃p: poly
{

f(X) is computable in 2p(|X|)steps

|TAPEL| ≤ p(|X|)
See: TAPEL 7→ TAPEL+1: FO-definable.

By (FO-FP) ∃K, ∃L s.t. TAPEK+L = TAPEK

See: TAPEK must be in the accepting state.

So f(X) = Y ⇔ ∃K,L s.t. |K|, |L| ≤ p(|X|),
TAPEK+L = TAPEK ∧ Y = output(TAPEK)

Hence T0 + (FO-FP) ⊢ ∀X∃!Y f(X) = Y .

“if” of Theorem 1 & 2

Proof of “if” direction of Thm 1 & 2 are based on:

Thm (Zambella ’96) f ∈ P if and only if

T0 + (∃2FO-IND) ⊢ ∀X∃!Y f(X) = Y .

(∃2FO: ∃Xφ for some FO φ)

Show: T0 ⊢ (∃2FO-IND) → (FO-IFP).

Thm (Skelley ’06) f ∈ PSPACE if and only if

T0 + (∃3SO-IND) ⊢ ∀X∃!Y f(X) = Y .

(∃3SO: third order ∃Xφ for some second order φ)

Show: T0 ⊢ (∃3SO-IND) → (FO-FP).

“if” of Theorem 1 & 2

Proof of “if” direction of Thm 1 & 2 are based on:

Thm (Zambella ’96) f ∈ P if and only if

T0 + (∃2FO-IND) ⊢ ∀X∃!Y f(X) = Y .

(∃2FO: ∃Xφ for some FO φ)

Show: T0 ⊢ (∃2FO-IND) → (FO-IFP).

Thm (Skelley ’06) f ∈ PSPACE if and only if

T0 + (∃3SO-IND) ⊢ ∀X∃!Y f(X) = Y .

(∃3SO: third order ∃Xφ for some second order φ)

Show: T0 ⊢ (∃3SO-IND) → (FO-FP).

Concluding remarks

It is not clear yet if:

1. T0 ⊢ (FO-IFP) → (∃2FO-IND).

2. T0 ⊢ (FO-FP) → (∃3SO-IND).

Concluding remarks

It is not clear yet if:

1. T0 ⊢ (FO-IFP) → (∃2FO-IND).

2. T0 ⊢ (FO-FP) → (∃3SO-IND).

Thm (Zambella ’96) f ∈ P if and only if

T0 + (∃2FO-IND) ⊢ ∀X∃!Y f(X) = Y .

Proof is based on a recursion-theoretic

characterisation of P by A. Cobham (’64).

(If f(X) is defined by recursion on |X|, then
∃!Y f(X) = Y is inferred by (∃2FO-IND) on |X|)

Summary

Fixed point axioms (FO-IFP), (FO-FP) are

introduced.

• New proof-theoretic characterisations of P and

PSPACE.

• Classical recursion-theoretic characterisations of P

and PSPACE are connected to model-theoretic

characterisations.

Further research

Connection to rewriting characterisations of P by

termination orders (Avanzini-Moser ’08,

Avanzini-E.-Moser ’12)?

• Example: For a termination order ≻, f ∈ P if

and only if T0 +WF(≻) ⊢ ∀X∃!Y f(X) = Y .

(WF(≻): “There is no infinite descending

sequence t0 ≻ t1 ≻ · · · ”)
• If so: T0 ⊢ (FO-IFP) ↔ WF(≻)?

T0 ⊢ (∃2FO-IND) ↔ WF(≻)?

Thank you for your attention!

Speaker is supported by JSPS postdoctoral

fellowships for young scientists.

