
Formal Verification 
of Communications in
Networks on Chips
Sebastiaan J.C. Joosten
Julien Schmaltz
Freek Verbeek
Bernard van Gastel 

Open University of the Netherlands, Heerlen
Radboud University Nijmegen

/**************/
/* ROUTING */
/**************/ !
/*
Shortest path routing in the Spidergon ring
*/ !
#include "spidergon_definitions.h" !!
/*
The routing function. Routes from channel c == (x,p) to processing node n == (dx)
Returns a set of resources. As routing is deterministic, one next hops are returned.
Note that we initialize a list of 2 next hops: one next hop and one enclosing NULL.
*/
ResourceList* inst_routing(const Resource &c, Procnode* d, const Params* dim, ResourceList* frs) {
 ResourceList *hops = new ResourceListN<2>;
 Resource *nexthops = hops->routed; !
 // The coordinates of the destination
 int dest = d->s;
 // The coordinates of the processing node at the end of channel c
 int next = get_end(c).s; !
 // Compute relAd:
 int relAd = (dest - next + NUM_OF_PROC_NODES) % NUM_OF_PROC_NODES; !
 if (relAd == 0) {
 // No next hop
 }
 else if (relAd == 1 || relAd == 2)
 nexthops[0] = Resource(next, CW);
 else if (relAd == 6 || relAd == 7)
 nexthops[0] = Resource(next, CCW);
 else
 nexthops[0] = Resource(next, ACC); !
 return hops;
}

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Three Levels of Abstraction

System Level
Micro-Architectural Level

Register Transfer Level

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

(Formal) Verification

PropertiesModel

Testing

Model Checking

Dedicated Algorithms

Theorem Proving

has property

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

NoC Correctness - Productivity

• Deadlock freedom
• Livelock freedom
• Functional Correctness

A network is productive if and only if 
all pending messages eventually gain access to the network 

and eventually reach their expected destination.

Micro-Architectural Level

Register Transfer Level

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Three Levels of Abstraction

/**************/
/* ROUTING */
/**************/ !
/*
Shortest path routing in the Spidergon ring
*/ !
#include "spidergon_definitions.h" !!
/*
The routing function. Routes from channel c == (x,p) to processing node n == (dx)
Returns a set of resources. As routing is deterministic, one next hops are returned.
Note that we initialize a list of 2 next hops: one next hop and one enclosing NULL.
*/
ResourceList* inst_routing(const Resource &c, Procnode* d, const Params* dim, ResourceList* frs) {
 ResourceList *hops = new ResourceListN<2>;
 Resource *nexthops = hops->routed; !
 // The coordinates of the destination
 int dest = d->s;
 // The coordinates of the processing node at the end of channel c
 int next = get_end(c).s; !
 // Compute relAd:
 int relAd = (dest - next + NUM_OF_PROC_NODES) % NUM_OF_PROC_NODES; !
 if (relAd == 0) {
 // No next hop
 }
 else if (relAd == 1 || relAd == 2)
 nexthops[0] = Resource(next, CW);
 else if (relAd == 6 || relAd == 7)
 nexthops[0] = Resource(next, CCW);
 else
 nexthops[0] = Resource(next, ACC); !
 return hops;
}

System Level

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

System Level - Deadlock-free routing

topology.top
routing.c

No deadlock!

Minimal deadlock
configuration

Fast

Proven
correct

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Two semantics - Wormhole & Packet

2 blue
packets

Packet switching: move if space is
available

Wormhole switching:
in a channel all flits belong to the same message

2 blue flits

Wormhole switching:
flits don’t have to belong to the same message

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Deadlocks - Circular wait

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

An escape

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Necessary and sufficient condition
(packet networks)

There exists a deadlock iff there all sets of cycles have an escape.

No deadlock Deadlock

DeadlockNo deadlock

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Wormhole networks

!
Many more subtleties…

!

!
co-NP-complete

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Two escapes

A

B

C

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

One escape

A

B

C

Tail follows the
head

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

No escape

A

B

C

Worms cannot
intersect

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Necessary and sufficient condition

There exists a deadlock iff there exists a set of routing paths such that:

The set is non-empty (A)

The set is pairwise disjoint (B)

The set has no escape (C)

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Tool - DCI2

DCI2 Website
 http://www.cs.ru.nl/~freekver/DCI2/index.html 

http://www.cs.ru.nl/~freekver/DCI2/index.html

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

How will you verify your NoC?

System level Properties

B6B5 B7 B8 B9

B14B13B12B11B10

B1 B2

B3 B4

• Deadlock
freedom

• Livelock
freedom

• No packet loss 

• Correct
destinations

• Correct payload

Register Transfer Level

/**************/
/* ROUTING */
/**************/ !
/*
Shortest path routing in the Spidergon ring
*/ !
#include "spidergon_definitions.h" !!
/*
The routing function. Routes from channel c == (x,p) to processing node n == (dx)
Returns a set of resources. As routing is deterministic, one next hops are returned.
Note that we initialize a list of 2 next hops: one next hop and one enclosing NULL.
*/
ResourceList* inst_routing(const Resource &c, Procnode* d, const Params* dim, ResourceList* frs) {
 ResourceList *hops = new ResourceListN<2>;
 Resource *nexthops = hops->routed; !
 // The coordinates of the destination
 int dest = d->s;
 // The coordinates of the processing node at the end of channel c
 int next = get_end(c).s; !
 // Compute relAd:
 int relAd = (dest - next + NUM_OF_PROC_NODES) % NUM_OF_PROC_NODES; !
 if (relAd == 0) {
 // No next hop
 }
 else if (relAd == 1 || relAd == 2)
 nexthops[0] = Resource(next, CW);
 else if (relAd == 6 || relAd == 7)
 nexthops[0] = Resource(next, CCW);
 else
 nexthops[0] = Resource(next, ACC); !
 return hops;
}

System Level
Micro-Architectural Level

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Three Levels of Abstraction

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

What is xMAS?

• Packets in queues. Other components determine routing.

switch merge source sink

fork join function queue

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

What is xMAS?

• Virtual channel using xMAS.
!

!

!

!

!

!

!

!

• Arbitration at: merge, switch, source, sink
• Data-functions at: join, function, source

Buffer

B1 B2

B3

B5 B6

B4

In1

In2

Out1

Out2

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Liveness for xMAS

• Can q1-out be blocked for a request?

q1

q2

q0

s

rsp

req

req,rsp

req

m2

f j

m1

q3

req

idle or blocked

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Liveness for xMAS

• q1-out is blocked for a request! 
The network has a local deadlock!

q1

q2

q0

s

rsp

req

req,rsp

req

m2

f j

m1

q3

reqreq

idleblocked

idle for rsp
idle for rsp

idle

Packet type inferences for xMAS

• Implemented xMAS
editor with liveness
algorithm: 

• http://www.cs.ru.nl/
~freekver/algo_xmas/
index.html

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

http://www.cs.ru.nl/~freekver/algo_xmas/index.html

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

How will you verify your NoC?

xMAS Properties

switch merge source sink

fork join function queue

B6B5 B7 B8 B9

B14B13B12B11B10

B1 B2

B3 B4

• Deadlock
freedom

• Invariants
!

• No packet loss 

• Correct
destinations

• Correct payload

/**************/
/* ROUTING */
/**************/ !
/*
Shortest path routing in the Spidergon ring
*/ !
#include "spidergon_definitions.h" !!
/*
The routing function. Routes from channel c == (x,p) to processing node n == (dx)
Returns a set of resources. As routing is deterministic, one next hops are returned.
Note that we initialize a list of 2 next hops: one next hop and one enclosing NULL.
*/
ResourceList* inst_routing(const Resource &c, Procnode* d, const Params* dim, ResourceList* frs) {
 ResourceList *hops = new ResourceListN<2>;
 Resource *nexthops = hops->routed; !
 // The coordinates of the destination
 int dest = d->s;
 // The coordinates of the processing node at the end of channel c
 int next = get_end(c).s; !
 // Compute relAd:
 int relAd = (dest - next + NUM_OF_PROC_NODES) % NUM_OF_PROC_NODES; !
 if (relAd == 0) {
 // No next hop
 }
 else if (relAd == 1 || relAd == 2)
 nexthops[0] = Resource(next, CW);
 else if (relAd == 6 || relAd == 7)
 nexthops[0] = Resource(next, CCW);
 else
 nexthops[0] = Resource(next, ACC); !
 return hops;
}

System Level
Micro-Architectural Level

Register Transfer Level

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Three Levels of Abstraction

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Network as queues and connections

logic

queues
register

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Network as queues and connections

full

empty

enqueue

dequeue

clk

data-in data-out

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Network as queues and connections

• Identify queues by inputs and outputs
port
 direction output;
 module fwft_fifo;
 data dout;
 ready !full;
 transfer wr_en && !full;
endport

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Network as queues and connections

• For every queue:
• When does a packet enter
• When does a packet leave
!

• #packets in queue = #enter events – #leave events

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

How will you verify your Netlist?

• Inductive invariants for netlist
• Sebastiaan J.C. Joosten, Julien Schmaltz 

Generation of Inductive Invariants from Register Transfer Level
Designs of Communication Fabrics. MEMOCODE 2013

• Deadlock freedom / liveness for netlist
• Sebastiaan J.C. Joosten, Julien Schmaltz 

Scalable Liveness Verification for Communication Fabrics.
DATE 2014

• Model checking for liveness-like properties
• Sayak Ray 

Effective Abstraction for Response Proof of Communication
Fabrics. NOCS 2014

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

How will you verify your Netlist?

Register Transfer Level Properties
• Deadlock

freedom
• Invariants

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Conclusion

/**************/
/* ROUTING */
/**************/ !
/*
Shortest path routing in the Spidergon ring
*/ !
#include "spidergon_definitions.h" !!
/*
The routing function. Routes from channel c == (x,p) to processing node n == (dx)
Returns a set of resources. As routing is deterministic, one next hops are returned.
Note that we initialize a list of 2 next hops: one next hop and one enclosing NULL.
*/
ResourceList* inst_routing(const Resource &c, Procnode* d, const Params* dim, ResourceList* frs) {
 ResourceList *hops = new ResourceListN<2>;
 Resource *nexthops = hops->routed; !
 // The coordinates of the destination
 int dest = d->s;
 // The coordinates of the processing node at the end of channel c
 int next = get_end(c).s; !
 // Compute relAd:
 int relAd = (dest - next + NUM_OF_PROC_NODES) % NUM_OF_PROC_NODES; !
 if (relAd == 0) {
 // No next hop
 }
 else if (relAd == 1 || relAd == 2)
 nexthops[0] = Resource(next, CW);
 else if (relAd == 6 || relAd == 7)
 nexthops[0] = Resource(next, CCW);
 else
 nexthops[0] = Resource(next, ACC); !
 return hops;
}

System Level
Micro-Architectural Level

Register Transfer Level

Sebastiaan J.C. Joosten, DMCS, Eindhoven University of Technology

Register Transfer Level Micro-Architectural Level

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

What can be verified?

• Deadlock freedom / liveness for xMAS (and some other DSLs)
• Freek Verbeek, PhD thesis 2013, Chapter 9 

Formal Verification of On-Chip Communication Fabrics.
• Correct payload for xMAS

• Bernard van Gastel, Freek Verbeek, Julien Schmaltz 
Inference of channel types in micro-architectural models 
of on-chip communication networks. VLSI-SoC October 2014

• Inductive invariants for eMOD
• Sebastiaan J.C. Joosten, Julien Schmaltz 

Generation of Inductive Invariants from Register Transfer Level Designs of
Communication Fabrics. MEMOCODE 2013

• Deadlock freedom / liveness for eMOD
• Sebastiaan J.C. Joosten, Julien Schmaltz 

Scalable Liveness Verification for Communication Fabrics. DATE 2014
• Generating xMAS from eMOD and Verilog

• Not yet published. Email me: s.j.c.joosten@tue.nl

mailto:s.j.c.joosten@tue.nl

