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/**************/ 
/* ROUTING    */ 
/**************/ !
/* 
Shortest path routing in the Spidergon ring 
*/ !
#include "spidergon_definitions.h" !!
/* 
The routing function. Routes from channel c == (x,p) to processing node n == (dx) 
Returns a set of resources. As routing is deterministic, one next hops are returned. 
Note that we initialize a list of 2 next hops: one next hop and one enclosing NULL. 
*/ 
ResourceList* inst_routing(const Resource &c, Procnode* d, const Params* dim, ResourceList* frs) { 
    ResourceList *hops = new ResourceListN<2>; 
    Resource *nexthops = hops->routed; !
 // The coordinates of the destination 
 int dest = d->s; 
 // The coordinates of the processing node at the end of channel c 
 int next = get_end(c).s; !
 // Compute relAd: 
 int relAd = (dest - next + NUM_OF_PROC_NODES) % NUM_OF_PROC_NODES; !
 if (relAd == 0) { 
  // No next hop 
 } 
 else if (relAd == 1 || relAd == 2) 
  nexthops[0] = Resource(next, CW); 
 else if (relAd == 6 || relAd == 7) 
  nexthops[0] = Resource(next, CCW); 
 else 
  nexthops[0] = Resource(next, ACC); !
 return hops; 
} 
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Three Levels of Abstraction

System Level
Micro-Architectural Level

Register Transfer Level
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(Formal) Verification
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NoC Correctness - Productivity

• Deadlock freedom 
• Livelock freedom 
• Functional Correctness

A network is productive if and only if 
all pending messages eventually gain access to the network 

and eventually reach their expected destination.



Micro-Architectural Level

Register Transfer Level
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Three Levels of Abstraction

/**************/ 
/* ROUTING    */ 
/**************/ !
/* 
Shortest path routing in the Spidergon ring 
*/ !
#include "spidergon_definitions.h" !!
/* 
The routing function. Routes from channel c == (x,p) to processing node n == (dx) 
Returns a set of resources. As routing is deterministic, one next hops are returned. 
Note that we initialize a list of 2 next hops: one next hop and one enclosing NULL. 
*/ 
ResourceList* inst_routing(const Resource &c, Procnode* d, const Params* dim, ResourceList* frs) { 
    ResourceList *hops = new ResourceListN<2>; 
    Resource *nexthops = hops->routed; !
 // The coordinates of the destination 
 int dest = d->s; 
 // The coordinates of the processing node at the end of channel c 
 int next = get_end(c).s; !
 // Compute relAd: 
 int relAd = (dest - next + NUM_OF_PROC_NODES) % NUM_OF_PROC_NODES; !
 if (relAd == 0) { 
  // No next hop 
 } 
 else if (relAd == 1 || relAd == 2) 
  nexthops[0] = Resource(next, CW); 
 else if (relAd == 6 || relAd == 7) 
  nexthops[0] = Resource(next, CCW); 
 else 
  nexthops[0] = Resource(next, ACC); !
 return hops; 
} 

System Level
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System Level - Deadlock-free routing

topology.top
routing.c

No deadlock!

Minimal deadlock 
configuration

Fast

Proven 
correct
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Two semantics - Wormhole & Packet

2 blue 
packets

Packet switching: move if space is 
available

Wormhole switching:  
in a channel all flits belong to the same message

2 blue flits

Wormhole switching:  
flits don’t have to belong to the same message
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Deadlocks - Circular wait
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An escape
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Necessary and sufficient condition 
(packet networks)

There exists a deadlock iff there all sets of cycles have an escape.

No deadlock Deadlock

DeadlockNo deadlock
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Wormhole networks

!
Many more subtleties… 

!

!
co-NP-complete 
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Two escapes

A

B

C
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One escape

A

B

C

Tail follows the 
head
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No escape

A

B

C

Worms cannot 
intersect



Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

Necessary and sufficient condition

There exists a deadlock iff there exists a set of routing paths such that:

The set is non-empty (A)

The set is pairwise disjoint (B)

The set has no escape (C)
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Tool - DCI2

DCI2 Website 
 http://www.cs.ru.nl/~freekver/DCI2/index.html 

http://www.cs.ru.nl/~freekver/DCI2/index.html
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How will you verify your NoC?

System level Properties

B6B5 B7 B8 B9

B14B13B12B11B10

B1 B2

B3 B4

• Deadlock 
freedom 

• Livelock 
freedom 

• No packet loss 

• Correct 
destinations 

• Correct payload



Register Transfer Level

/**************/ 
/* ROUTING    */ 
/**************/ !
/* 
Shortest path routing in the Spidergon ring 
*/ !
#include "spidergon_definitions.h" !!
/* 
The routing function. Routes from channel c == (x,p) to processing node n == (dx) 
Returns a set of resources. As routing is deterministic, one next hops are returned. 
Note that we initialize a list of 2 next hops: one next hop and one enclosing NULL. 
*/ 
ResourceList* inst_routing(const Resource &c, Procnode* d, const Params* dim, ResourceList* frs) { 
    ResourceList *hops = new ResourceListN<2>; 
    Resource *nexthops = hops->routed; !
 // The coordinates of the destination 
 int dest = d->s; 
 // The coordinates of the processing node at the end of channel c 
 int next = get_end(c).s; !
 // Compute relAd: 
 int relAd = (dest - next + NUM_OF_PROC_NODES) % NUM_OF_PROC_NODES; !
 if (relAd == 0) { 
  // No next hop 
 } 
 else if (relAd == 1 || relAd == 2) 
  nexthops[0] = Resource(next, CW); 
 else if (relAd == 6 || relAd == 7) 
  nexthops[0] = Resource(next, CCW); 
 else 
  nexthops[0] = Resource(next, ACC); !
 return hops; 
} 

System Level
Micro-Architectural Level
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Three Levels of Abstraction
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What is xMAS?

• Packets in queues. Other components determine routing.

switch merge source sink

fork join function queue
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What is xMAS?

• Virtual channel using xMAS. 
!

!

!

!

!

!

!

!

• Arbitration at: merge, switch, source, sink 
• Data-functions at: join, function, source

Buffer

B1 B2

B3

B5 B6

B4

In1

In2

Out1

Out2
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Liveness for xMAS

• Can q1-out be blocked for a request?

q1

q2

q0

s

rsp

req

req,rsp

req

m2
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m1

q3

req

idle or blocked
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Liveness for xMAS

• q1-out is blocked for a request! 
The network has a local deadlock!

q1

q2

q0

s

rsp

req

req,rsp

req

m2

f j

m1

q3

reqreq

idleblocked

idle for rsp
idle for rsp

idle



Packet type inferences for xMAS

• Implemented xMAS 
editor with liveness 
algorithm: 

• http://www.cs.ru.nl/
~freekver/algo_xmas/
index.html

Sebastiaan J.C. Joosten, Department of Mathematics and Computer Science

http://www.cs.ru.nl/~freekver/algo_xmas/index.html
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How will you verify your NoC?

xMAS Properties

switch merge source sink

fork join function queue

B6B5 B7 B8 B9

B14B13B12B11B10

B1 B2

B3 B4

• Deadlock 
freedom 

• Invariants 
!

• No packet loss 

• Correct 
destinations 

• Correct payload



/**************/ 
/* ROUTING    */ 
/**************/ !
/* 
Shortest path routing in the Spidergon ring 
*/ !
#include "spidergon_definitions.h" !!
/* 
The routing function. Routes from channel c == (x,p) to processing node n == (dx) 
Returns a set of resources. As routing is deterministic, one next hops are returned. 
Note that we initialize a list of 2 next hops: one next hop and one enclosing NULL. 
*/ 
ResourceList* inst_routing(const Resource &c, Procnode* d, const Params* dim, ResourceList* frs) { 
    ResourceList *hops = new ResourceListN<2>; 
    Resource *nexthops = hops->routed; !
 // The coordinates of the destination 
 int dest = d->s; 
 // The coordinates of the processing node at the end of channel c 
 int next = get_end(c).s; !
 // Compute relAd: 
 int relAd = (dest - next + NUM_OF_PROC_NODES) % NUM_OF_PROC_NODES; !
 if (relAd == 0) { 
  // No next hop 
 } 
 else if (relAd == 1 || relAd == 2) 
  nexthops[0] = Resource(next, CW); 
 else if (relAd == 6 || relAd == 7) 
  nexthops[0] = Resource(next, CCW); 
 else 
  nexthops[0] = Resource(next, ACC); !
 return hops; 
} 

System Level
Micro-Architectural Level

Register Transfer Level
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Three Levels of Abstraction
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Network as queues and connections

logic

queues
register
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Network as queues and connections

full

empty

enqueue

dequeue

clk

data-in data-out
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Network as queues and connections

• Identify queues by inputs and outputs
port 
  direction output; 
  module fwft_fifo; 
  data dout; 
  ready !full; 
  transfer wr_en && !full; 
endport
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Network as queues and connections

• For every queue: 
• When does a packet enter 
• When does a packet leave 
!

• #packets in queue   =   #enter events   –   #leave events
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How will you verify your Netlist?

• Inductive invariants for netlist 
• Sebastiaan J.C. Joosten, Julien Schmaltz 

Generation of Inductive Invariants from Register Transfer Level 
Designs of Communication Fabrics. MEMOCODE 2013 

• Deadlock freedom / liveness for netlist 
• Sebastiaan J.C. Joosten, Julien Schmaltz 

Scalable Liveness Verification for Communication Fabrics. 
DATE 2014 

• Model checking for liveness-like properties 
• Sayak Ray 

Effective Abstraction for Response Proof of Communication 
Fabrics. NOCS 2014
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How will you verify your Netlist?

Register Transfer Level Properties
• Deadlock 

freedom 
• Invariants
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Conclusion 

/**************/ 
/* ROUTING    */ 
/**************/ !
/* 
Shortest path routing in the Spidergon ring 
*/ !
#include "spidergon_definitions.h" !!
/* 
The routing function. Routes from channel c == (x,p) to processing node n == (dx) 
Returns a set of resources. As routing is deterministic, one next hops are returned. 
Note that we initialize a list of 2 next hops: one next hop and one enclosing NULL. 
*/ 
ResourceList* inst_routing(const Resource &c, Procnode* d, const Params* dim, ResourceList* frs) { 
    ResourceList *hops = new ResourceListN<2>; 
    Resource *nexthops = hops->routed; !
 // The coordinates of the destination 
 int dest = d->s; 
 // The coordinates of the processing node at the end of channel c 
 int next = get_end(c).s; !
 // Compute relAd: 
 int relAd = (dest - next + NUM_OF_PROC_NODES) % NUM_OF_PROC_NODES; !
 if (relAd == 0) { 
  // No next hop 
 } 
 else if (relAd == 1 || relAd == 2) 
  nexthops[0] = Resource(next, CW); 
 else if (relAd == 6 || relAd == 7) 
  nexthops[0] = Resource(next, CCW); 
 else 
  nexthops[0] = Resource(next, ACC); !
 return hops; 
} 

System Level
Micro-Architectural Level

Register Transfer Level
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Register Transfer Level Micro-Architectural Level
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What can be verified?

• Deadlock freedom / liveness for xMAS (and some other DSLs) 
• Freek Verbeek, PhD thesis 2013, Chapter 9 

Formal Verification of On-Chip Communication Fabrics. 
• Correct payload for xMAS 

• Bernard van Gastel, Freek Verbeek, Julien Schmaltz 
Inference of channel types in micro-architectural models 
of on-chip communication networks. VLSI-SoC October 2014 

• Inductive invariants for eMOD 
• Sebastiaan J.C. Joosten, Julien Schmaltz 

Generation of Inductive Invariants from Register Transfer Level Designs of 
Communication Fabrics. MEMOCODE 2013 

• Deadlock freedom / liveness for eMOD 
• Sebastiaan J.C. Joosten, Julien Schmaltz 

Scalable Liveness Verification for Communication Fabrics. DATE 2014 
• Generating xMAS from eMOD and Verilog 

• Not yet published. Email me: s.j.c.joosten@tue.nl
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