Termination Tools in Ordered Completion

Sarah Winkler Aart Middeldorp

Institute of Computer Science
University of Innsbruck
Austria-Japan Summer Workshop on Rewriting
August 3, 2010

Content

- Completion Inference Systems

> Bachmair, Dershowitz, Plaisted '89 oKB
L. Bachmair, N. Dershowitz and D.A. Plaisted Completion Without Failure

Content

- Completion Inference Systems

L. Bachmair, N. Dershowitz and D.A. Plaisted Completion Without Failure
M. Kurihara and H. Kondo

Completion for Multiple Reduction Orderings

Content

- Completion Inference Systems

L. Bachmair, N. Dershowitz and D.A. Plaisted Completion Without Failure
M. Kurihara and H. Kondo

Completion for Multiple Reduction Orderings

Content

- Completion Inference Systems

L. Bachmair, N. Dershowitz and D.A. Plaisted Completion Without Failure
M. Kurihara and H. Kondo

Completion for Multiple Reduction Orderings

Content

- Completion Inference Systems

- Theorem Proving with oMKBtt

L. Bachmair, N. Dershowitz and D.A. Plaisted Completion Without Failure
M. Kurihara and H. Kondo

Completion for Multiple Reduction Orderings

Content

- Completion Inference Systems

- Theorem Proving with oMKBtt
- Experiments and Conclusion

L. Bachmair, N. Dershowitz and D.A. Plaisted Completion Without Failure
M. Kurihara and H. Kondo

Completion for Multiple Reduction Orderings

Ordered Completion

$\mathcal{E} \cup \mathcal{R}$ has same theory as \mathcal{E}_{0} and
$\mathcal{E} \cup \mathcal{R}$ is ground-confluent wrt $>$ which is complete for \mathcal{E}_{0} and extends \succ

Ordered Completion

$\mathcal{E} \cup \mathcal{R}$ has same theory as \mathcal{E}_{0} and
$\mathcal{E} \cup \mathcal{R}$ is ground-confluent wrt $>$ which is complete for \mathcal{E}_{0} and extends \succ
Definition

- $>$ is complete for \mathcal{E}_{0} if for ground $s \leftrightarrow_{\mathcal{E}_{0}}^{*} t$ with $s \neq t$ either $s>t$ or $t>s$ holds

Ordered Completion

$\mathcal{E} \cup \mathcal{R}$ has same theory as \mathcal{E}_{0} and
$\mathcal{E} \cup \mathcal{R}$ is ground-confluent wrt $>$ which is complete for \mathcal{E}_{0} and extends \succ
Definition

- $>$ is complete for \mathcal{E}_{0} if for ground $s \leftrightarrow_{\mathcal{E}_{0}}^{*} t$ with $s \neq t$ either $s>t$ or $t>s$ holds
- $\mathcal{E} \cup \mathcal{R}$ is ground-confluent wrt $>$ if for all ground $s \leftrightarrow_{\mathcal{E}_{0}}^{*} t$ there is valley $s \rightarrow^{*} v^{*} \leftarrow t$ in $\mathcal{R} \cup \mathcal{E}_{>}$

Ordered Completion

$\mathcal{E} \cup \mathcal{R}$ has same theory as \mathcal{E}_{0} and
$\mathcal{E} \cup \mathcal{R}$ is ground-confluent wrt $>$ which is complete for \mathcal{E}_{0} and extends \succ
Definition

- $>$ is complete for \mathcal{E}_{0} if for ground $s \leftrightarrow_{\mathcal{E}_{0}}^{*} t$ with $s \neq t$ either $s>t$ or $t>s$ holds

$$
\begin{gathered}
I \sigma \rightarrow r \sigma \in \mathcal{E}_{>} \text {if } \\
I \approx r \in \mathcal{E} \text { and } I \sigma>r \sigma
\end{gathered}
$$

- $\mathcal{E} \cup \mathcal{R}$ is ground-confluent wrt $>$ if for all ground $s \leftrightarrow_{\mathcal{E}_{0}}^{*} t$ there is valley $s \rightarrow^{*} v^{*} \leftarrow t$ in $\mathcal{R} \cup \mathcal{E}>$

Definition (Standard Completion KB)

\mathcal{E} : set of equations \mathcal{R} : set of rewrite rules $\quad \succ$: reduction order inference system contains rules

Definition (Standard Completion KB)

\mathcal{E} : set of equations \mathcal{R} : set of rewrite rules $\quad \succ$: reduction order inference system contains rules

$$
\begin{array}{ll}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}} \\
& \text { if } s \succ t
\end{array}
$$

Definition (Standard Completion KB)

\mathcal{E} : set of equations $\quad \mathcal{R}$: set of rewrite rules $\quad \succ$: reduction order inference system contains rules
orient

$$
\begin{array}{lr}
\frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}} & \text { deduce } \\
\text { if } s \succ t & \frac{\mathcal{E}, \mathcal{R}}{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}} \\
\text { if } s \approx t \in \mathrm{CP}(\mathcal{R})
\end{array}
$$

Definition (Standard Completion KB)

\mathcal{E} : set of equations $\quad \mathcal{R}$: set of rewrite rules $\quad \succ$: reduction order inference system contains rules

$$
\begin{array}{llrl}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}} & \text { deduce } & \frac{\mathcal{E}, \mathcal{R}}{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}} \\
\text { if } s \succ t & & \\
\text { if } s \approx t \in \operatorname{CP}(\mathcal{R})
\end{array}
$$

Definition (Ordered Completion oKB)

\mathcal{E} : set of equations $\quad \mathcal{R}$: set of rewrite rules $\quad \succ$: reduction order inference system contains rules

$$
\begin{array}{llll}
\text { orient } & \mathcal{E} \cup\{s \approx t\}, \mathcal{R} & \text { deduce } & \frac{\mathcal{E}, \mathcal{R}}{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}} \\
& \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{} & & \text { if } s \approx t \in \mathrm{CP}_{\succ}(\mathcal{E} \cup \mathcal{R}) \\
& \text { if } s \succ t & & \mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\} \\
\text { compose } & \mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\} \\
& \mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\} & \text { compose }_{2} & \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}}{} \\
& \text { if } t \rightarrow \mathcal{R} u & \text { if } t \rightarrow \mathcal{E}_{\succ} u
\end{array}
$$

Definition (Ordered Completion oKB)

\mathcal{E} : set of equations $\quad \mathcal{R}$: set of rewrite rules $\quad \succ$: reduction order inference system contains rules

$$
\begin{array}{lll}
\text { orient } & \mathcal{E} \cup\{s \approx t\}, \mathcal{R} & \text { deduce } \\
& \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}} \\
\text { if } s \succ t & & \text { if } s \approx t \in \mathrm{CP}_{\succ}(\mathcal{E} \cup \mathcal{R}) \\
\text { compose } & \mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\} \\
& \mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\} & \text { compose }_{2}
\end{array} \begin{aligned}
& \mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\} \\
& \\
& \text { if } t \rightarrow \mathcal{R}, \mathcal{R} \cup\{s \rightarrow u\} \\
& \\
&
\end{aligned}
$$

Definition (Ordered Completion oKB)

\mathcal{E} : set of equations $\quad \mathcal{R}$: set of rewrite rules $\quad \succ$: reduction order inference system contains rules

$$
\begin{array}{llll}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{} & \text { deduce } & \frac{\mathcal{E}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}} \\
& \text { if } s \succ t & & \text { if } s \approx t \in t \mathrm{CP}, \mathcal{R} \\
\text { compose } \cup \mathcal{R}) \\
& \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}} & & \text { compose }_{2}
\end{array} \begin{aligned}
& \mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\} \\
& \\
& \\
& \text { if } t \rightarrow \mathcal{R}, \mathcal{R} \cup\{s \rightarrow u\} \\
& \text { co } u
\end{aligned}
$$

Definition (Extended Critical Pairs)
If $t \stackrel{r_{1} \sigma \leftarrow l_{1} \sigma}{\longleftrightarrow} u \xrightarrow{l_{2} \sigma \rightarrow r_{2} \sigma} s$ such that $l_{i} \approx r_{i} \in \mathcal{E} \cup \mathcal{R}$ and $r_{i} \sigma \nsucc l_{i} \sigma$

Definition (Ordered Completion oKB)

\mathcal{E} : set of equations $\quad \mathcal{R}$: set of rewrite rules $\quad \succ$: reduction order inference system contains rules

$$
\begin{array}{llll}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{} & \text { deduce } & \frac{\mathcal{E}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}} \\
& \text { if } s \succ t & & \text { if } s \approx t \in t \mathrm{CP}, \mathcal{R} \\
\text { compose } \cup \mathcal{R}) \\
& \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}} & & \text { compose }{ }_{2} \\
& \text { if } t \rightarrow \mathcal{R} u & \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}} \\
& & \text { if } t \rightarrow \mathcal{E}_{\succ} u
\end{array}
$$

Definition (Extended Critical Pairs)

If $t \stackrel{r_{1} \sigma \leftarrow l_{1} \sigma}{\longleftrightarrow} u \xrightarrow{l_{2} \sigma \rightarrow r_{2} \sigma} s$ such that $l_{i} \approx r_{i} \in \mathcal{E} \cup \mathcal{R}$ and $r_{i} \sigma \nsucc l_{i} \sigma$ then $s \approx t$ is in $\mathrm{CP}_{\succ}(\mathcal{E} \cup \mathcal{R})$

Definition
inference sequence

$$
\mathcal{S}: \quad\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash \cdots
$$

Definition
inference sequence

$$
\mathcal{S}: \quad\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash \cdots
$$

- \mathcal{E}_{ω} is set of persistent equations

Definition
inference sequence

$$
\mathcal{S}: \quad\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash \cdots
$$

- \mathcal{E}_{ω} is set of persistent equations: $\quad \mathcal{E}_{\omega}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j}$

Definition
inference sequence

$$
\mathcal{S}: \quad\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash \cdots
$$

- \mathcal{E}_{ω} is set of persistent equations: $\quad \mathcal{E}_{\omega}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j}$
- \mathcal{R}_{ω} is set of persistent rules

Definition
inference sequence

$$
\mathcal{S}: \quad\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash \cdots
$$

- \mathcal{E}_{ω} is set of persistent equations: $\quad \mathcal{E}_{\omega}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j}$
- \mathcal{R}_{ω} is set of persistent rules
- \mathcal{S} is fair if $\mathrm{CP}_{\succ}\left(\mathcal{E}_{\omega} \cup \mathcal{R}_{\omega}\right) \subseteq \bigcup_{i} \mathcal{E}_{i}$

Definition
inference sequence

$$
\mathcal{S}: \quad\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash \cdots
$$

- \mathcal{E}_{ω} is set of persistent equations: $\mathcal{E}_{\omega}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j}$
- \mathcal{R}_{ω} is set of persistent rules
- \mathcal{S} is fair if $\mathrm{CP}_{\succ}\left(\mathcal{E}_{\omega} \cup \mathcal{R}_{\omega}\right) \subseteq \bigcup_{i} \mathcal{E}_{i}$

Theorem (Correctness)
Assume fair oKB run $\left(\mathcal{E}_{0}, \varnothing\right) \vdash^{*}\left(\mathcal{E}_{\omega}, \mathcal{R}_{\omega}\right)$ using \succ.

Definition
inference sequence

$$
\mathcal{S}: \quad\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right) \vdash\left(\mathcal{E}_{1}, \mathcal{R}_{1}\right) \vdash\left(\mathcal{E}_{2}, \mathcal{R}_{2}\right) \vdash \cdots
$$

- \mathcal{E}_{ω} is set of persistent equations: $\quad \mathcal{E}_{\omega}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j}$
- \mathcal{R}_{ω} is set of persistent rules
- \mathcal{S} is fair if $\mathrm{CP}_{\succ}\left(\mathcal{E}_{\omega} \cup \mathcal{R}_{\omega}\right) \subseteq \bigcup_{i} \mathcal{E}_{i}$

Theorem (Correctness)
Assume fair oKB run $\left(\mathcal{E}_{0}, \varnothing\right) \vdash^{*}\left(\mathcal{E}_{\omega}, \mathcal{R}_{\omega}\right)$ using \succ.
If $>$ is complete reduction order extending \succ then $\mathcal{E}_{\omega} \cup \mathcal{R}_{\omega}$ has same theory as \mathcal{E}_{0} and is ground confluent with respect to $>$.

Ordered Multi-Completion

$\mathcal{E} \cup \mathcal{R}$ has same theory as \mathcal{E}_{0}
$\mathcal{E} \cup \mathcal{R}$ is ground-confluent wrt complete $>$ extending a specific \succ_{i}

Ordered Multi-Completion

$\mathcal{E} \cup \mathcal{R}$ has same theory as \mathcal{E}_{0}
$\mathcal{E} \cup \mathcal{R}$ is ground-confluent wrt complete $>$ extending a specific \succ_{i}
Definition (oMKB node)
node is tuple $\left\langle s: t, R_{0}, R_{1}, E\right\rangle$

Ordered Multi-Completion

$\mathcal{E} \cup \mathcal{R}$ has same theory as \mathcal{E}_{0}
$\mathcal{E} \cup \mathcal{R}$ is ground-confluent wrt complete $>$ extending a specific \succ_{i}
Definition (oMKB node)
node is tuple $\left\langle s: t, R_{0}, R_{1}, E\right\rangle$ of term pair $s: t$

Ordered Multi-Completion

$\mathcal{E} \cup \mathcal{R}$ has same theory as \mathcal{E}_{0}
$\mathcal{E} \cup \mathcal{R}$ is ground-confluent wrt complete $>$ extending a specific \succ_{i}

Definition (oMKB node)

node is tuple $\left\langle s: t, R_{0}, R_{1}, E\right\rangle$ of term pair $s: t$ and disjoint $R_{0}, R_{1}, E \subseteq\left\{\succ_{1}, \succ_{2}, \succ_{3}, \ldots\right\}$

Ordered Multi-Completion

$\mathcal{E} \cup \mathcal{R}$ has same theory as \mathcal{E}_{0}
$\mathcal{E} \cup \mathcal{R}$ is ground-confluent wrt complete $>$ extending a specific \succ_{i}

Definition (oMKB node)

node is tuple $\left\langle s: t, R_{0}, R_{1}, E\right\rangle$ of term pair $s: t$ and disjoint $R_{0}, R_{1}, E \subseteq\left\{\succ_{1}, \succ_{2}, \succ_{3}, \ldots\right\}$

- oMKB specified by inference system on nodes

Ordered Completion with Termination Tools

$\mathcal{E} \cup \mathcal{R}$ has same theory as \mathcal{E}_{0}
$\mathcal{E} \cup \mathcal{R}$ is ground-confluent wrt complete $>$ extending $\rightarrow_{\mathcal{C}}^{+}$ where \mathcal{C} is terminating rewrite system developed during deduction

Ordered Completion with Termination Tools

$\mathcal{E} \cup \mathcal{R}$ has same theory as \mathcal{E}_{0}
$\mathcal{E} \cup \mathcal{R}$ is ground-confluent wrt complete $>$ extending $\rightarrow_{\mathcal{C}}^{+}$ where \mathcal{C} is terminating rewrite system developed during deduction

Fact
If \mathcal{C} terminates then $\rightarrow_{\mathcal{C}}^{+}$is reduction order

Definition (oKBtt)

\mathcal{E} : set of equations
\mathcal{R} : rewrite system
\mathcal{C} : rewrite system

Definition (oKBtt)

\mathcal{E} : set of equations $\quad \mathcal{R}$: rewrite system $\quad \mathcal{C}$: rewrite system

- perform termination check in orient

$$
\text { orient } \quad \mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}
$$

if $\mathcal{C} \cup\{s \rightarrow t\}$ terminates

Definition (oKBtt)

\mathcal{E} : set of equations $\quad \mathcal{R}$: rewrite system $\quad \mathcal{C}$: rewrite system

- perform termination check in orient
orient $\frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C} \cup\{s \rightarrow t\}}$
if $\mathcal{C} \cup\{s \rightarrow t\}$ terminates

Definition (oKBtt)

\mathcal{E} : set of equations
\mathcal{R} : rewrite system
\mathcal{C} : rewrite system

- perform termination check in orient, compose ${ }_{2}$
orient
$\frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C} \cup\{s \rightarrow t\}}$
if $\mathcal{C} \cup\{s \rightarrow t\}$ terminates

$$
\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C}
$$

$$
\text { if } t \rightarrow_{\mathcal{E}} u \text { using } I \sigma \rightarrow r \sigma \text { and } \mathcal{C} \cup\{I \sigma \rightarrow r \sigma\} \text { terminates }
$$

Definition (oKBtt)

\mathcal{E} : set of equations
\mathcal{R} : rewrite system
\mathcal{C} : rewrite system

- perform termination check in orient, compose $_{2}$

$$
\begin{array}{ll}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C} \cup\{s \rightarrow t\}} \\
& \text { if } \mathcal{C} \cup\{s \rightarrow t\} \text { terminates } \\
\text { compose }_{2} & \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}, \mathcal{C} \cup\{I \sigma \rightarrow r \sigma\}} \\
& \text { if } t \rightarrow \mathcal{E} u \text { using } I \sigma \rightarrow r \sigma \text { and } \mathcal{C} \cup\{I \sigma \rightarrow r \sigma\} \text { terminates }
\end{array}
$$

Definition (oKBtt)

\mathcal{E} : set of equations
\mathcal{R} : rewrite system
\mathcal{C} : rewrite system

- perform termination check in orient, compose ${ }_{2}$, collapse ${ }_{2}$, simplify ${ }_{2}$

$$
\begin{array}{ll}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C} \cup\{s \rightarrow t\}} \\
& \text { if } \mathcal{C} \cup\{s \rightarrow t\} \text { terminates } \\
\text { compose }_{2} & \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}, \mathcal{C} \cup\{I \sigma \rightarrow r \sigma\}} \\
& \text { if } t \rightarrow \mathcal{E} u \text { using } I \sigma \rightarrow r \sigma \text { and } \mathcal{C} \cup\{I \sigma \rightarrow r \sigma\} \text { terminates }
\end{array}
$$

Definition (oKBtt)

\mathcal{E} : set of equations
\mathcal{R} : rewrite system
\mathcal{C} : rewrite system

- perform termination check in orient, compose ${ }_{2}$, collapse ${ }_{2}$, simplify ${ }_{2}$

$$
\begin{array}{ll}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C} \cup\{s \rightarrow t\}} \\
& \text { if } \mathcal{C} \cup\{s \rightarrow t\} \text { terminates } \\
\text { compose }_{2} & \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}, \mathcal{C} \cup\{I \sigma \rightarrow r \sigma\}} \\
& \text { if } t \rightarrow \mathcal{E} u \text { using } I \sigma \rightarrow r \sigma \text { and } \mathcal{C} \cup\{I \sigma \rightarrow r \sigma\} \text { terminates }
\end{array}
$$

Lemma (Simulation Properties)

- if $\left(\mathcal{E}_{0}, \varnothing, \varnothing\right) \vdash^{*}{ }_{o K B t t}(\mathcal{E}, \mathcal{R}, \mathcal{C})$ then $\left(\mathcal{E}_{0}, \varnothing\right) \vdash^{*}{ }_{o K B}(\mathcal{E}, \mathcal{R})$

Definition (oKBtt)

\mathcal{E} : set of equations
\mathcal{R} : rewrite system
\mathcal{C} : rewrite system

- perform termination check in orient, compose ${ }_{2}$, collapse $_{2}$, simplify ${ }_{2}$

$$
\begin{array}{ll}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C} \cup\{s \rightarrow t\}} \\
& \text { if } \mathcal{C} \cup\{s \rightarrow t\} \text { terminates } \\
\text { compose }_{2} & \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}, \mathcal{C} \cup\{I \sigma \rightarrow r \sigma\}} \\
& \text { if } t \rightarrow \mathcal{E} u \text { using } I \sigma \rightarrow r \sigma \text { and } \mathcal{C} \cup\{I \sigma \rightarrow r \sigma\} \text { terminates }
\end{array}
$$

Lemma (Simulation Properties)

- if $\left(\mathcal{E}_{0}, \varnothing, \varnothing\right) \vdash^{*}{ }_{\text {KKBtt }}(\mathcal{E}, \mathcal{R}, \mathcal{C})$ then $\left(\mathcal{E}_{0}, \varnothing\right) \vdash^{*}{ }_{\text {oKB }}(\mathcal{E}, \mathcal{R})$ using reduction order $\rightarrow_{\mathcal{C}}^{+}$

Definition (oKBtt)

\mathcal{E} : set of equations
\mathcal{R} : rewrite system
\mathcal{C} : rewrite system

- perform termination check in orient, compose $_{2}$, collapse ${ }_{2}$, simplify ${ }_{2}$

$$
\begin{array}{ll}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{} \\
& \text { if } \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C} \cup\{s \rightarrow t\} \\
\text { compose }_{2} & \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\} \text { terminates }}{} \\
& \overline{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}, \mathcal{C} \cup\{I \sigma \rightarrow r \sigma\}} \\
& \text { if } t \rightarrow \mathcal{C} u \text { using } / \sigma \rightarrow r \sigma \text { and } \mathcal{C} \cup\{I \sigma \rightarrow r \sigma\} \text { terminates }
\end{array}
$$

Lemma (Simulation Properties)

- if $\left(\mathcal{E}_{0}, \varnothing, \varnothing\right) \vdash^{*}{ }_{\text {oKBtt }}(\mathcal{E}, \mathcal{R}, \mathcal{C})$ then $\left(\mathcal{E}_{0}, \varnothing\right) \vdash^{*}{ }_{\text {oKB }}(\mathcal{E}, \mathcal{R})$ using reduction order $\rightarrow_{\mathcal{C}}^{+}$
- if $\left(\mathcal{E}_{0}, \varnothing\right) \vdash^{*}{ }_{\text {KB }}(\mathcal{E}, \mathcal{R})$ using \succ then $\left(\mathcal{E}_{0}, \varnothing, \varnothing\right) \vdash^{*}{ }_{\text {KKBtt }}(\mathcal{E}, \mathcal{R}, \mathcal{C})$

Obtaining Ground-Confluence

Theorem (Correctness)
For fair oKBtt run $\left(\mathcal{E}_{0}, \varnothing, \varnothing\right) \vdash^{*}\left(\mathcal{E}_{\omega}, \mathcal{R}_{\omega}, \mathcal{C}_{\omega}\right)$ and complete reduction order $>$ extending $\rightarrow_{\mathcal{C}_{\omega}}^{+}$

Obtaining Ground-Confluence

Theorem (Correctness)
For fair oKBtt run $\left(\mathcal{E}_{0}, \varnothing, \varnothing\right) \vdash^{*}\left(\mathcal{E}_{\omega}, \mathcal{R}_{\omega}, \mathcal{C}_{\omega}\right)$ and complete reduction order $>$ extending $\rightarrow_{\mathcal{C}_{\omega}}^{+}$the system $\mathcal{E}_{\omega} \cup \mathcal{R}_{\omega}$ has same theory as \mathcal{E}_{0} and is ground-confluent with respect to $>$.

Obtaining Ground-Confluence

Theorem (Correctness)
For fair oKBtt run $\left(\mathcal{E}_{0}, \varnothing, \varnothing\right) \vdash^{*}\left(\mathcal{E}_{\omega}, \mathcal{R}_{\omega}, \mathcal{C}_{\omega}\right)$ and complete reduction order $>$ extending $\rightarrow_{\mathcal{C}_{\omega}}^{+}$the system $\mathcal{E}_{\omega} \cup \mathcal{R}_{\omega}$ has same theory as \mathcal{E}_{0} and is ground-confluent with respect to $>$.

Problem 1

Does $>$ exist?

Obtaining Ground-Confluence

Theorem (Correctness)
For fair oKBtt run $\left(\mathcal{E}_{0}, \varnothing, \varnothing\right) \vdash^{*}\left(\mathcal{E}_{\omega}, \mathcal{R}_{\omega}, \mathcal{C}_{\omega}\right)$ and complete reduction order $>$ extending $\rightarrow_{\mathcal{C}_{\omega}}^{+}$the system $\mathcal{E}_{\omega} \cup \mathcal{R}_{\omega}$ has same theory as \mathcal{E}_{0} and is ground-confluent with respect to $>$.

Problem 1

Does > exist?

Problem 2

Fairness requires to deduce $\mathrm{CP}_{\rightarrow_{\mathcal{C}_{\omega}}^{+}}\left(\mathcal{E}_{\omega} \cup \mathcal{R}_{\omega}\right)$.
But reduction order $\rightarrow_{\mathcal{C}_{\omega}}^{+}$is not known during run!

Problem 1: Does > exist?

Example

$$
\begin{array}{cc}
\mathrm{f}(\mathrm{a}+\mathrm{c}) \approx \mathrm{f}(\mathrm{c}+\mathrm{a}) & \mathrm{a} \approx \mathrm{~b} \\
\mathrm{~g}(\mathrm{c}+\mathrm{b}) \approx \mathrm{g}(\mathrm{~b}+\mathrm{c}) & x+y \approx y+x
\end{array}
$$

Problem 1: Does > exist?

Example

$$
\begin{array}{cc}
f(a+c) \approx f(c+a) & a \approx b \\
g(c+b) \approx g(b+c) & x+y \approx y+x
\end{array}
$$

as input for fair oKBtt run might produce

$$
\begin{aligned}
\mathcal{E} & = & \{x+y & \approx y+x\} \\
\mathcal{R} & = & \{f(b+c) \rightarrow f(c+b) & a \rightarrow b \\
\mathcal{C} & =\mathcal{R} \cup\{\mathrm{f}(\mathrm{a}+\mathrm{c}) \rightarrow \mathrm{f}(\mathrm{c}+\mathrm{c}+\mathrm{b})\} & &
\end{aligned}
$$

Is $\mathcal{E} \cup \mathcal{R}$ is ground-confluent?

Problem 1: Does > exist?

Example

$$
\begin{array}{cc}
f(a+c) \approx f(c+a) & a \approx b \\
g(c+b) \approx g(b+c) & x+y \approx y+x
\end{array}
$$

as input for fair oKBtt run might produce

$$
\begin{array}{rlrl}
\mathcal{E} & = & \quad x+y & \approx y+x\} \\
\mathcal{R} & = & \{\mathrm{f}(\mathrm{~b}+\mathrm{c}) \rightarrow \mathrm{f}(\mathrm{c}+\mathrm{b}) & \mathrm{a} \rightarrow \mathrm{~b} \\
\mathcal{C} & =\mathcal{R} \cup & \mathrm{g}(\mathrm{c}+\mathrm{b}) \rightarrow \mathrm{g}(\mathrm{~b}+\mathrm{c})\}
\end{array}
$$

Is $\mathcal{E} \cup \mathcal{R}$ is ground-confluent?
If $>$ is complete and extends $\rightarrow_{\mathcal{C}}^{+}$,

- for any such $>$ must have $\mathrm{a}+\mathrm{c}>\mathrm{c}+\mathrm{a}$

Problem 1: Does > exist?

Example

$$
\begin{array}{cc}
f(a+c) \approx f(c+a) & a \approx b \\
g(c+b) \approx g(b+c) & x+y \approx y+x
\end{array}
$$

as input for fair oKBtt run might produce

$$
\begin{array}{rlrl}
\mathcal{E} & = & \quad x+y & \approx y+x\} \\
\mathcal{R} & = & \{\mathrm{f}(\mathrm{~b}+\mathrm{c}) \rightarrow \mathrm{f}(\mathrm{c}+\mathrm{b}) & \mathrm{a} \rightarrow \mathrm{~b} \\
\mathcal{C} & =\mathcal{R} \cup & \mathrm{g}(\mathrm{c}+\mathrm{b}) \rightarrow \mathrm{g}(\mathrm{~b}+\mathrm{c})\}
\end{array}
$$

Is $\mathcal{E} \cup \mathcal{R}$ is ground-confluent?
If $>$ is complete and extends $\rightarrow_{\mathcal{C}}^{+}$,

- for any such $>$ must have $\mathrm{a}+\mathrm{c}>\mathrm{c}+\mathrm{a}$
- variable overlap $\mathrm{b}+\mathrm{c} \leftarrow \mathrm{a}+\mathrm{c} \rightarrow \mathrm{c}+\mathrm{a} \rightarrow \mathrm{c}+\mathrm{b}$

Problem 1: Does > exist?

Example

$$
\begin{array}{cc}
f(a+c) \approx f(c+a) & a \approx b \\
g(c+b) \approx g(b+c) & x+y \approx y+x
\end{array}
$$

as input for fair oKBtt run might produce

$$
\begin{array}{rlrl}
\mathcal{E} & = & \quad x+y & \approx y+x\} \\
\mathcal{R} & = & \{\mathrm{f}(\mathrm{~b}+\mathrm{c}) \rightarrow \mathrm{f}(\mathrm{c}+\mathrm{b}) & \mathrm{a} \rightarrow \mathrm{~b} \\
\mathcal{C} & =\mathcal{R} \cup & \mathrm{g}(\mathrm{c}+\mathrm{b}) \rightarrow \mathrm{g}(\mathrm{~b}+\mathrm{c})\}
\end{array}
$$

Is $\mathcal{E} \cup \mathcal{R}$ is ground-confluent?
If $>$ is complete and extends $\rightarrow_{\mathcal{C}}^{+}$,

- for any such $>$ must have $a+c>c+a$
- variable overlap $\mathrm{b}+\mathrm{c} \leftarrow \mathrm{a}+\mathrm{c} \rightarrow \mathrm{c}+\mathrm{a} \rightarrow \mathrm{c}+\mathrm{b}$
- $\mathrm{b}+\mathrm{c}$ and $\mathrm{c}+\mathrm{b}$ must be incomparable

Problem 1: Does > exist?

Example

$$
\begin{array}{cc}
f(a+c) \approx f(c+a) & a \approx b \\
g(c+b) \approx g(b+c) & x+y \approx y+x
\end{array}
$$

as input for fair oKBtt run might produce

$$
\begin{array}{rlrl}
\mathcal{E} & = & \quad x+y & \approx y+x\} \\
\mathcal{R} & = & \{\mathrm{f}(\mathrm{~b}+\mathrm{c}) \rightarrow \mathrm{f}(\mathrm{c}+\mathrm{b}) & \mathrm{a} \rightarrow \mathrm{~b} \\
\mathcal{C} & =\mathcal{R} \cup & \mathrm{g}(\mathrm{c}+\mathrm{b}) \rightarrow \mathrm{g}(\mathrm{~b}+\mathrm{c})\}
\end{array}
$$

Is $\mathcal{E} \cup \mathcal{R}$ is ground-confluent? No!
If $>$ is complete and extends $\rightarrow_{\mathcal{C}}^{+}$,

- for any such $>$ must have $\mathrm{a}+\mathrm{c}>\mathrm{c}+\mathrm{a}$
- variable overlap $\mathrm{b}+\mathrm{c} \leftarrow \mathrm{a}+\mathrm{c} \rightarrow \mathrm{c}+\mathrm{a} \rightarrow \mathrm{c}+\mathrm{b}$
- $\mathrm{b}+\mathrm{c}$ and $\mathrm{c}+\mathrm{b}$ must be incomparable
- overlap not joinable

Problem 1: Does > exist?

Example

$$
\begin{array}{cc}
f(a+c) \approx f(c+a) & a \approx b \\
g(c+b) \approx g(b+c) & x+y \approx y+x
\end{array}
$$

as input for fair oKBtt run might produce

$$
\begin{array}{rlrl}
\mathcal{E} & = & \{x+y & \approx y+x\} \\
\mathcal{R} & = & \{f(b+c) \rightarrow f(c+b) \\
\mathcal{C} & =\mathcal{R} \cup\{f(a+c) \rightarrow f(c+a)\}
\end{array}
$$

Is $\mathcal{E} \cup \mathcal{R}$ is ground-confluent? No!

Definition
\mathcal{R} is totally terminating if compatible with total reduction order on $\mathcal{T}(\mathcal{F})$

Problem 1: Does > exist?

Example

$$
\begin{array}{cc}
f(a+c) \approx f(c+a) & a \approx b \\
g(c+b) \approx g(b+c) & x+y \approx y+x
\end{array}
$$

as input for fair oKBtt run might produce

$$
\begin{array}{rlrl}
\mathcal{E} & = & \quad x+y & \approx y+x\} \\
\mathcal{R} & = & \{\mathrm{f}(\mathrm{~b}+\mathrm{c}) \rightarrow \mathrm{f}(\mathrm{c}+\mathrm{b}) & \mathrm{a} \rightarrow \mathrm{~b} \\
\mathcal{C} & =\mathcal{R} \cup & \mathrm{g}(\mathrm{c}+\mathrm{b}) \rightarrow \mathrm{g}(\mathrm{~b}+\mathrm{c})\}
\end{array}
$$

Is $\mathcal{E} \cup \mathcal{R}$ is ground-confluent? No!
Definition
\mathcal{R} is totally terminating if compatible with total reduction order on $\mathcal{T}(\mathcal{F})$

Definition

oKBtt total restricts to termination techniques inducing total termination

Problem 1: Does > exist?

Example

$$
\begin{array}{cc}
f(a+c) \approx f(c+a) & a \approx b \\
g(c+b) \approx g(b+c) & x+y \approx y+x
\end{array}
$$

as input for fair oKBtt run might produce

$$
\begin{array}{rlrl}
\mathcal{E} & = & \quad x+y & \approx y+x\} \\
\mathcal{R} & = & \{\mathrm{f}(\mathrm{~b}+\mathrm{c}) \rightarrow \mathrm{f}(\mathrm{c}+\mathrm{b}) & \mathrm{a} \rightarrow \mathrm{~b} \\
\mathcal{C} & =\mathcal{R} \cup & \mathrm{g}(\mathrm{c}+\mathrm{b}) \rightarrow \mathrm{g}(\mathrm{~b}+\mathrm{c})\}
\end{array}
$$

Is $\mathcal{E} \cup \mathcal{R}$ is ground-confluent? No!
Definition
\mathcal{R} is totally terminating if compatible with total reduction order on $\mathcal{T}(\mathcal{F})$

Definition

 such as LPO, KBO, MPO or polynomial interpretations over \mathbb{N} oKBtt total restricts to termination techniques inducing total termination
Problem 2: How to be fair?

Fact
If $\succ \subseteq>$ holds then $\mathrm{CP}_{>}(\mathcal{E}) \subseteq \mathrm{CP}_{\succ}(\mathcal{E})$

Problem 2: How to be fair?

Fact
If $\succ \subseteq>$ holds then $\mathrm{CP}_{>}(\mathcal{E}) \subseteq \mathrm{CP}_{\succ}(\mathcal{E})$

Definition

 oKBtt run is sufficiently fair if $\mathrm{CP}_{\succ^{\prime}}\left(\mathcal{E}_{\omega} \cup \mathcal{R}_{\omega}\right) \subseteq \bigcup_{i} \mathcal{E}_{i}$ for $\succ^{\prime} \subseteq \rightarrow_{\mathcal{C}_{\omega}}^{+}$
Problem 2: How to be fair?

Fact
If $\succ \subseteq>$ holds then $\mathrm{CP}_{>}(\mathcal{E}) \subseteq \mathrm{CP}_{\succ}(\mathcal{E})$

Definition

 oKBtt run is sufficiently fair if $\mathrm{CP}_{\succ^{\prime}}\left(\mathcal{E}_{\omega} \cup \mathcal{R}_{\omega}\right) \subseteq \bigcup_{i} \mathcal{E}_{i}$ for $\succ^{\prime} \subseteq \rightarrow_{\mathcal{C}_{\omega}}^{+}$
Remark

Sufficiently fair oKBtt runs are fair

Problem 2: How to be fair?

Fact
If $\succ \subseteq>$ holds then $\mathrm{CP}_{>}(\mathcal{E}) \subseteq \mathrm{CP}_{\succ}(\mathcal{E})$

Definition

 oKBtt run is sufficiently fair if $\mathrm{CP}_{\succ(}\left(\mathcal{E}_{\omega} \cup \mathcal{R}_{\omega}\right) \subseteq \bigcup_{i} \mathcal{E}_{i}$ for $\succ^{\prime} \subseteq \rightarrow_{\mathcal{C}_{\omega}}^{+}$
Remark

Sufficiently fair oKBtt runs are fair

Example

- oKBtt run is sufficiently fair if $\succ^{\prime}=\varnothing$

Problem 2: How to be fair?

```
Fact
If \(\succ \subseteq>\) holds then \(\mathrm{CP}_{>}(\mathcal{E}) \subseteq \mathrm{CP}_{\succ}(\mathcal{E})\)
```


Definition

 oKBtt run is sufficiently fair if $\mathrm{CP}_{\succ(}\left(\mathcal{E}_{\omega} \cup \mathcal{R}_{\omega}\right) \subseteq \bigcup_{i} \mathcal{E}_{i}$ for $\succ^{\prime} \subseteq \rightarrow_{\mathcal{C}_{\omega}}^{+}$
Remark

Sufficiently fair oKBtt runs are fair

Example strict subterm relation

- oKBtt run is sufficiently fair if $\succ^{\prime} \neq \varnothing$
- oKBtt total run is fair if $\succ^{\prime}=\triangleright$

Problem 2: How to be fair?

```
Fact
If \(\succ \subseteq>\) holds then \(\mathrm{CP}_{>}(\mathcal{E}) \subseteq \mathrm{CP}_{\succ}(\mathcal{E})\)
```


Definition

 oKBtt run is sufficiently fair if $\mathrm{CP}_{\succ(}\left(\mathcal{E}_{\omega} \cup \mathcal{R}_{\omega}\right) \subseteq \bigcup_{i} \mathcal{E}_{i}$ for $\succ^{\prime} \subseteq \rightarrow_{\mathcal{C}_{\omega}}^{+}$
Remark

Sufficiently fair oKBtt runs are fair

Example

strict embedding relation

- oKBtt run is sufficiently fair if $\succ^{\prime}=\varnothing$
- oKBtt $t_{\text {total }}$ run is fair if $\succ^{\prime}=\triangleright$ or $\succ^{\prime}=\triangleright_{\text {emb }}$

Ordered Multi-Completion with Termination Tools

$\mathcal{E} \cup \mathcal{R}$ has same theory as \mathcal{E}_{0}
$\mathcal{E} \cup \mathcal{R}$ is ground-confluent wrt > extending some $\rightarrow_{\mathcal{C}_{p}}^{+}$ where \mathcal{C}_{p} is terminating rewrite system developed during deduction

- Use multi-completion to simulate multiple oKBtt processes but share inferences

Definition (oMKBtt node)

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$

Definition (oMKBtt node)

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ

Definition (oMKBtt node)

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data)

Definition (oMKBtt node)

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data) and process sets R_{0}, \ldots, C_{1} (labels)

Definition (oMKBtt node)

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data) and process sets $R_{\mathrm{f}}, \ldots, C_{1}$ (labels)

```
rewrite rule s }->
for process in R0
```

Definition (oMKBtt node)

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data) and process sets R_{0}, \ldots, C_{1} (labels)

```
rewrite rule t->s
for process in R1
```

Definition (oMKBtt node)

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data) and process sets R_{0}, \ldots, C_{l} (labels)

```
equation s}\approx
for process in E
```

Definition (oMKBtt node)

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data) and process sets R_{0}, \ldots, C_{1} (labels)

```
constraint rule s->t
    for process in C0
```

Definition (oMKBtt node)

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data) and process sets R_{0}, \ldots, C_{1} (labe!s)

```
constraint rule t->s
    for process in C1
```

Definition (oMKBtt node)

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data) and process sets R_{0}, \ldots, C_{1} (labels)
- projection of node set \mathcal{N} to process p yields equations $E_{p}(\mathcal{N})$, rules $R_{p}(\mathcal{N})$ and constraints $C_{p}(\mathcal{N})$

Definition (oMKBtt node)

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data) and process sets R_{0}, \ldots, C_{1} (labels)
- projection of node set \mathcal{N} to process p yields equations $E_{p}(\mathcal{N})$, rules $R_{p}(\mathcal{N})$ and constraints $C_{p}(\mathcal{N})$
- initial node set for axioms \mathcal{E} is

$$
\mathcal{N}_{\mathcal{E}}=\{\langle s: t, \varnothing, \varnothing,\{\epsilon\}, \varnothing, \varnothing\rangle \mid s \approx t \in \mathcal{E}\}
$$

Definition (oMKBtt)

inference system oMKBtt consists of 5 rules
orient

$$
\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}
$$

if

- $E_{l r} \subseteq E$ such that $C_{p}(\mathcal{N}) \cup\{s \rightarrow t\}$ terminates for all $p \in E_{l r}$,

Definition (oMKBtt)

inference system oMKBtt consists of 5 rules
orient

$$
\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}
$$

if

- $E_{l r} \subseteq E$ such that $C_{p}(\mathcal{N}) \cup\{s \rightarrow t\}$ terminates for all $p \in E_{l r}$, $E_{r l} \subseteq E$ such that $C_{p}(\mathcal{N}) \cup\{t \rightarrow s\}$ terminates for all $p \in E_{r l}$

Definition (oMKBtt)

inference system oMKBtt consists of 5 rules
orient

$$
\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}
$$

if

- $E_{l r} \subseteq E$ such that $C_{p}(\mathcal{N}) \cup\{s \rightarrow t\}$ terminates for all $p \in E_{l r}$, $E_{r l} \subseteq E$ such that $C_{p}(\mathcal{N}) \cup\{t \rightarrow s\}$ terminates for all $p \in E_{r l}$
- split set $S=E_{l r} \cap E_{r l}$,

Definition (oMKBtt)

inference system oMKBtt consists of 5 rules
orient
$\left.\left.\frac{\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}}{\mathcal{N} \cup\left\{\left\langle s: t, R_{0} \cup R_{l r},\right.\right.} C_{0} \cup R_{l r}, \quad\right\rangle\right\}$
if

- $E_{l r} \subseteq E$ such that $C_{p}(\mathcal{N}) \cup\{s \rightarrow t\}$ terminates for all $p \in E_{l r}$, $E_{r l} \subseteq E$ such that $C_{p}(\mathcal{N}) \cup\{t \rightarrow s\}$ terminates for all $p \in E_{r l}$
- split set $S=E_{l r} \cap E_{r l}$,
- $R_{l r}=\left(E_{\mid r} \backslash E_{r l}\right) \cup\{p 0 \mid p \in S\}$ and

Definition (oMKBtt)

inference system oMKBtt consists of 5 rules
orient
$\frac{\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}}{\mathcal{N} \cup\left\{\left\langle s: t, R_{0} \cup R_{r r}, R_{1} \cup R_{r l}, \quad C_{0} \cup R_{\mid r}, C_{1} \cup R_{r l}\right\rangle\right\}}$
if

- $E_{l r} \subseteq E$ such that $C_{p}(\mathcal{N}) \cup\{s \rightarrow t\}$ terminates for all $p \in E_{l r}$, $E_{r l} \subseteq E$ such that $C_{p}(\mathcal{N}) \cup\{t \rightarrow s\}$ terminates for all $p \in E_{r l}$
- split set $S=E_{l r} \cap E_{r l}$,
- $R_{l r}=\left(E_{\mid r} \backslash E_{r l}\right) \cup\{p 0 \mid p \in S\}$ and $R_{r l}=\left(E_{r l} \backslash E_{l r}\right) \cup\{p 1 \mid p \in S\}$,

Definition (oMKBtt)

inference system oMKBtt consists of 5 rules
orient
$\frac{\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}}{\mathcal{N} \cup\left\{\left\langle s: t, R_{0} \cup R_{/ r}, R_{1} \cup R_{r l}, E^{\prime}, C_{0} \cup R_{r r}, C_{1} \cup R_{r l}\right\rangle\right\}}$
if

- $E_{l r} \subseteq E$ such that $C_{p}(\mathcal{N}) \cup\{s \rightarrow t\}$ terminates for all $p \in E_{l r}$, $E_{r l} \subseteq E$ such that $C_{p}(\mathcal{N}) \cup\{t \rightarrow s\}$ terminates for all $p \in E_{r l}$
- split set $S=E_{l r} \cap E_{r l}$,
- $R_{l r}=\left(E_{\mid r} \backslash E_{r l}\right) \cup\{p 0 \mid p \in S\}$ and $R_{r l}=\left(E_{r l} \backslash E_{l r}\right) \cup\{p 1 \mid p \in S\}$,
- $E^{\prime}=E \backslash\left(E_{l r} \cup E_{r l}\right)$

Definition (oMKBtt)

inference system oMKBtt consists of 5 rules
orient

$$
\frac{\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}}{\operatorname{split}_{S}(\mathcal{N}) \cup\left\{\left\langle s: t, R_{0} \cup R_{l r}, R_{1} \cup R_{r l}, E^{\prime}, C_{0} \cup R_{l r}, C_{1} \cup R_{r l}\right\rangle\right\}}
$$

if

- $E_{l r} \subseteq E$ such that $C_{p}(\mathcal{N}) \cup\{s \rightarrow t\}$ terminates for all $p \in E_{l r}$, $E_{r l} \subseteq E$ such that $C_{p}(\mathcal{N}) \cup\{t \rightarrow s\}$ terminates for all $p \in E_{r l}$
- split set $S=E_{l r} \cap E_{r l}$,
- $R_{l r}=\left(E_{\mid r} \backslash E_{r l}\right) \cup\{p 0 \mid p \in S\}$ and $R_{r l}=\left(E_{r l} \backslash E_{l r}\right) \cup\{p 1 \mid p \in S\}$,
- $E^{\prime}=E \backslash\left(E_{l r} \cup E_{r l}\right)$

Definition (oMKBtt)

inference system oMKBtt consists of 5 rules
orewrite $_{1}$

$$
\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}
$$

if

- $\left\langle I: r, R_{0}^{\prime}, \ldots, E^{\prime}, \ldots\right\rangle \in \mathcal{N}$,

Definition (oMKBtt)

inference system oMKBtt consists of 5 rules
orewrite $_{1}$

$$
\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}
$$

if

- $\left\langle I: r, R_{0}^{\prime}, \ldots, E^{\prime}, \ldots\right\rangle \in \mathcal{N}, t \xrightarrow{l \sigma \rightarrow r \sigma} u$ and $t \doteq I$,

Definition (oMKBtt)

inference system oMKBtt consists of 5 rules
orewrite $_{1}$

$$
\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}
$$

if

- $\left\langle I: r, R_{0}^{\prime}, \ldots, E^{\prime}, \ldots\right\rangle \in \mathcal{N}, t \xrightarrow{l \sigma \rightarrow r \sigma} u$ and $t \doteq I$,
- $S \subseteq E^{\prime}$ such that
$C_{p}(\mathcal{N}) \cup\{I \sigma \rightarrow r \sigma\}$ terminates for all $p \in S$

Definition (oMKBtt)

inference system oMKBtt consists of 5 rules
orewrite $_{1}$

$$
\frac{\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}}{\mathcal{N} \cup\left\{\left\langle s: t, R_{0} \backslash\left(R_{0}^{\prime} \cup S\right), R_{1}, E \backslash R_{0}^{\prime}, C_{0}, C_{1}\right\rangle\right.}
$$

if

- $\left\langle I: r, R_{0}^{\prime}, \ldots, E^{\prime}, \ldots\right\rangle \in \mathcal{N}, t \xrightarrow{l \sigma \rightarrow r \sigma} u$ and $t \doteq I$,
- $S \subseteq E^{\prime}$ such that
$C_{p}(\mathcal{N}) \cup\{I \sigma \rightarrow r \sigma\}$ terminates for all $p \in S$

Definition (oMKBtt)

inference system oMKBtt consists of 5 rules
orewrite $_{1}$

$$
\begin{gathered}
\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\} \\
\mathcal{N} \cup\left\{\left\langle s: t, R_{0} \backslash\left(R_{0}^{\prime} \cup S\right), R_{1}, E \backslash R_{0}^{\prime}, C_{0}, C_{1}\right\rangle\right. \\
\left\langle s: u, R_{0} \cap\left(R_{0}^{\prime} \cup S\right), \varnothing, E \cap R_{0}^{\prime}, \varnothing, \varnothing\right\rangle,
\end{gathered}
$$

if

- $\left\langle I: r, R_{0}^{\prime}, \ldots, E^{\prime}, \ldots\right\rangle \in \mathcal{N}, t \xrightarrow{l \sigma \rightarrow r \sigma} u$ and $t \doteq I$,
- $S \subseteq E^{\prime}$ such that
$C_{p}(\mathcal{N}) \cup\{I \sigma \rightarrow r \sigma\}$ terminates for all $p \in S$

Definition (oMKBtt)

inference system oMKBtt consists of 5 rules
orewrite $_{1}$

$$
\begin{gathered}
\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\} \\
\hline \mathcal{N} \cup\left\{\left\langle s: t, R_{0} \backslash\left(R_{0}^{\prime} \cup S\right), R_{1}, E \backslash R_{0}^{\prime}, C_{0}, C_{1}\right\rangle\right. \\
\left\langle s: u, R_{0} \cap\left(R_{0}^{\prime} \cup S\right), \varnothing, E \cap R_{0}^{\prime}, \varnothing, \varnothing\right\rangle, \\
\langle\mid \sigma: r \sigma, \varnothing, \varnothing, \varnothing, S, \varnothing\rangle\}
\end{gathered}
$$

if

- $\left\langle I: r, R_{0}^{\prime}, \ldots, E^{\prime}, \ldots\right\rangle \in \mathcal{N}, t \xrightarrow{l \sigma \rightarrow r \sigma} u$ and $t \doteq I$,
- $S \subseteq E^{\prime}$ such that
$C_{p}(\mathcal{N}) \cup\{I \sigma \rightarrow r \sigma\}$ terminates for all $p \in S$

Definition (oMKBtt)

inference system oMKBtt consists of 5 rules
odeduce

if

- $\langle I: r, R, \ldots, E, \ldots\rangle,\left\langle I^{\prime}: r^{\prime}, R^{\prime}, \ldots, E^{\prime} \ldots\right\rangle \in \mathcal{N}$,

Definition (oMKBtt)

inference system oMKBtt consists of 5 rules
odeduce

if
$-\langle I: r, R, \ldots, E, \ldots\rangle,\left\langle I^{\prime}: r^{\prime}, R^{\prime}, \ldots, E^{\prime} \ldots\right\rangle \in \mathcal{N}$,

- $s \leftarrow ノ \rightarrow r u \rightarrow_{\prime^{\prime} \rightarrow r^{\prime}} t$

Definition (oMKBtt)

inference system oMKBtt consists of 5 rules
odeduce

$$
\frac{\mathcal{N}}{\mathcal{N} \cup\left\{\left\langle s: t, \varnothing, \varnothing,(R \cup E) \cap\left(R^{\prime} \cup E^{\prime}\right), \varnothing, \varnothing\right\rangle\right\}}
$$

if

- $\langle I: r, R, \ldots, E, \ldots\rangle,\left\langle I^{\prime}: r^{\prime}, R^{\prime}, \ldots, E^{\prime} \ldots\right\rangle \in \mathcal{N}$,
- $s \leftarrow ノ \rightarrow r u \rightarrow \prime^{\prime} \rightarrow r^{\prime} t$

Lemma (Simulation Properties)

$$
\mathcal{N} \vdash_{o M K B t t} \mathcal{N}^{\prime}
$$

if and only if for every process p in \mathcal{N}^{\prime}

$$
\left(E_{p}(\mathcal{N}), R_{p}(\mathcal{N}), C_{p}(\mathcal{N})\right) \vdash_{o K B t t}^{=}\left(E_{p}\left(\mathcal{N}^{\prime}\right), R_{p}\left(\mathcal{N}^{\prime}\right), C_{p}\left(\mathcal{N}^{\prime}\right)\right)
$$

Lemma (Simulation Properties)

$$
\mathcal{N} \vdash_{o M K B t t} \mathcal{N}^{\prime}
$$

if and only if for every process p in \mathcal{N}^{\prime}

$$
\left(E_{p}(\mathcal{N}), R_{p}(\mathcal{N}), C_{p}(\mathcal{N})\right) \vdash_{o K B t t}^{=}\left(E_{p}\left(\mathcal{N}^{\prime}\right), R_{p}\left(\mathcal{N}^{\prime}\right), C_{p}\left(\mathcal{N}^{\prime}\right)\right)
$$

Theorem (Correctness)
Let oMKBtt $t_{\text {total }}$ run $\mathcal{N}_{\mathcal{E}} \vdash^{*} \mathcal{N}$ be sufficiently fair for p.

Lemma (Simulation Properties)

$$
\mathcal{N} \vdash_{o M K B t t} \mathcal{N}^{\prime}
$$

if and only if for every process p in \mathcal{N}^{\prime}

$$
\left(E_{p}(\mathcal{N}), R_{p}(\mathcal{N}), C_{p}(\mathcal{N})\right) \vdash_{o K B t t}^{=}\left(E_{p}\left(\mathcal{N}^{\prime}\right), R_{p}\left(\mathcal{N}^{\prime}\right), C_{p}\left(\mathcal{N}^{\prime}\right)\right)
$$

Theorem (Correctness)
oMKBtt using total termination techniques
Let oMKBtt $t_{\text {total }}$ run $\mathcal{N}_{\mathcal{E}} \vdash^{*} \mathcal{N}$ be sufficiently fair for p.

Lemma (Simulation Properties)

$$
\mathcal{N} \vdash_{o M K B t t} \mathcal{N}^{\prime}
$$

if and only if for every process p in \mathcal{N}^{\prime}

$$
\left(E_{p}(\mathcal{N}), R_{p}(\mathcal{N}), C_{p}(\mathcal{N})\right) \vdash_{o K B t t}^{\bar{o}}\left(E_{p}\left(\mathcal{N}^{\prime}\right), R_{p}\left(\mathcal{N}^{\prime}\right), C_{p}\left(\mathcal{N}^{\prime}\right)\right)
$$

Theorem (Correctness)

Let oMKBtt total run $\mathcal{N}_{\mathcal{E}} \vdash^{*} \mathcal{N}$ be sufficiently fair for p.
Then $E_{p}(\mathcal{N}) \cup R_{p}(\mathcal{N})$ has same theory as \mathcal{E}, is ground-confluent for total reduction order $>$ extending \rightarrow_{C}^{+}, where $\mathcal{C}=C_{p}(\mathcal{N})$ and such $>$ exists.

Example

oMKBtt run on

$$
\mathcal{N}_{0}=\left\{\begin{array}{l}
\langle\mathrm{g}(\mathrm{f}(x, \mathrm{~b})): \mathrm{a}, \varnothing, \varnothing,\{\epsilon\}, \varnothing, \varnothing\rangle \\
\langle\mathrm{f}(\mathrm{~g}(x), y): \mathrm{f}(x, \mathrm{~g}(y)), \varnothing, \varnothing,\{\epsilon\}, \varnothing, \varnothing\rangle
\end{array}\right.
$$

Example

oMKBtt run on

$$
\mathcal{N}_{0}=\left\{\begin{array}{l}
\langle\mathrm{g}(\mathrm{f}(x, \mathrm{~b})): \mathrm{a}, \varnothing, \varnothing,\{\epsilon\}, \varnothing, \varnothing\rangle \\
\langle\mathrm{f}(\mathrm{~g}(x), y): \mathrm{f}(x, \mathrm{~g}(y)), \varnothing, \varnothing,\{\epsilon\}, \varnothing, \varnothing\rangle
\end{array}\right.
$$

where termination checks use polynomial interpretation

$$
[\mathrm{f}](x, y)=x+2 y+1,[\mathrm{~g}](x)=x+1 \text { and }[\mathrm{a}]=[\mathrm{b}]=[\mathrm{c}]=0
$$

Example
oMKBtt run on

$$
\mathcal{N}_{0}=\left\{\begin{array}{l}
\langle\mathrm{g}(\mathrm{f}(x, \mathrm{~b})): \mathrm{a}, \varnothing, \varnothing,\{\epsilon\}, \varnothing, \varnothing\rangle \\
\langle\mathrm{f}(\mathrm{~g}(x), y): \mathrm{f}(x, \mathrm{~g}(y)), \varnothing, \varnothing,\{\epsilon\}, \varnothing, \varnothing\rangle
\end{array}\right.
$$

where termination checks use polynomial interpretation

$$
[\mathrm{f}](x, y)=x+2 y+1,[\mathrm{~g}](x)=x+1 \text { and }[\mathrm{a}]=[\mathrm{b}]=[\mathrm{c}]=0
$$

succeeds with

$$
\mathcal{E} \cup \mathcal{R}=\left\{\begin{array}{cc}
\mathrm{f}(\mathrm{f}(x, \mathrm{~b}), \mathrm{a}) \approx \mathrm{f}(\mathrm{c}, \mathrm{f}(y, \mathrm{~b})) & \mathrm{g}(\mathrm{f}(x, \mathrm{~b})) \rightarrow \mathrm{a} \\
\mathrm{f}(\mathrm{f}(x, \mathrm{~b}), \mathrm{a}) \approx \mathrm{f}(\mathrm{f}(y, b), \mathrm{a}) & \mathrm{f}(x, \mathrm{~g}(y)) \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, \mathrm{f}(x, \mathrm{~b})) \approx \mathrm{f}(\mathrm{c}, \mathrm{f}(y, \mathrm{~b})) & \mathrm{f}(\mathrm{~g}(x), \mathrm{f}(y, \mathrm{~b})) \rightarrow \mathrm{f}(x, \mathrm{c})
\end{array}\right.
$$

Example

oMKBtt run on

$$
\mathcal{N}_{0}=\left\{\begin{array}{l}
\langle\mathrm{g}(\mathrm{f}(x, \mathrm{~b})): \mathrm{a}, \varnothing, \varnothing,\{\epsilon\}, \varnothing, \varnothing\rangle \\
\langle\mathrm{f}(\mathrm{~g}(x), y): \mathrm{f}(x, \mathrm{~g}(y)), \varnothing, \varnothing,\{\epsilon\}, \varnothing, \varnothing\rangle
\end{array}\right.
$$

where termination checks use polynomial interpretation

$$
[\mathrm{f}](x, y)=x+2 y+1,[\mathrm{~g}](x)=x+1 \text { and }[\mathrm{a}]=[\mathrm{b}]=[\mathrm{c}]=0
$$

succeeds with

$$
\mathcal{E} \cup \mathcal{R}=\left\{\begin{array}{cc}
\mathrm{f}(\mathrm{f}(x, \mathrm{~b}), \mathrm{a}) \approx \mathrm{f}(\mathrm{c}, \mathrm{f}(y, \mathrm{~b})) & \mathrm{g}(\mathrm{f}(x, \mathrm{~b})) \rightarrow \mathrm{a} \\
\mathrm{f}(\mathrm{f}(x, \mathrm{~b}), \mathrm{a}) \approx \mathrm{f}(\mathrm{f}(y, b), \mathrm{a}) & \mathrm{f}(x, \mathrm{~g}(y)) \rightarrow \mathrm{f}(\mathrm{~g}(x), y) \\
\mathrm{f}(\mathrm{c}, \mathrm{f}(x, b)) \approx \mathrm{f}(\mathrm{c}, \mathrm{f}(y, b)) & \mathrm{f}(\mathrm{~g}(x), \mathrm{f}(y, b)) \rightarrow \mathrm{f}(x, \mathrm{c})
\end{array}\right.
$$

- no finite completion using LPO or KBO
as orientation $\mathrm{f}(\mathrm{g}(x), y) \rightarrow \mathrm{f}(x, \mathrm{~g}(y))$ leads to divergence

Refutational Theorem Proving with oMKBtt

Definition
Given ground conjecture $s \approx t$ and axioms \mathcal{E}, initial node set is

$$
\begin{aligned}
\mathcal{N}_{\mathcal{E}}^{s \approx t}=\mathcal{N}_{\mathcal{E}} & \cup\{\langle\mathrm{eq}(x, x): \text { true, } \varnothing, \varnothing,\{\epsilon\}, \ldots\rangle\} \\
& \cup\{\langle\mathrm{eq}(s, t): \text { false, } \varnothing, \varnothing,\{\epsilon\}, \ldots\rangle\}
\end{aligned}
$$

for fresh symbols eq, true and false

Refutational Theorem Proving with oMKBtt

Definition
Given ground conjecture $s \approx t$ and axioms \mathcal{E}, initial node set is

$$
\begin{aligned}
& \mathcal{N}_{\mathcal{E}}^{s} \approx t \\
&=\mathcal{N}_{\mathcal{E}} \cup\{\langle\mathrm{eq}(x, x): \text { true, } \varnothing, \varnothing,\{\epsilon\}, \ldots\rangle\} \\
& \cup\{\langle\mathrm{eq}(s, t): \text { false, } \varnothing, \varnothing,\{\epsilon\}, \ldots\rangle\}
\end{aligned}
$$

for fresh symbols eq, true and false

Lemma

- If $\mathcal{N}_{\mathcal{E}}^{s \approx t} \vdash^{*} \mathcal{N} \cup\{\langle$ true : false,$\ldots\rangle\}$ then $s \approx t \in \leftrightarrow_{\mathcal{E}}^{*}$

Refutational Theorem Proving with oMKBtt

Definition
Given ground conjecture $s \approx t$ and axioms \mathcal{E}, initial node set is

$$
\begin{aligned}
& \mathcal{N}_{\mathcal{E}}^{s} \approx t \\
&=\mathcal{N}_{\mathcal{E}} \cup\{\langle\mathrm{eq}(x, x): \text { true, } \varnothing, \varnothing,\{\epsilon\}, \ldots\rangle\} \\
& \cup\{\langle\mathrm{eq}(s, t): \text { false, } \varnothing, \varnothing,\{\epsilon\}, \ldots\rangle\}
\end{aligned}
$$

for fresh symbols eq, true and false

Lemma

- If $\mathcal{N}_{\mathcal{E}}^{s} \approx t \vdash^{*} \mathcal{N} \cup\{\langle$ true : false,$\ldots\rangle\}$ then $s \approx t \in \leftrightarrow_{\mathcal{E}}^{*}$
- If $s \approx t \in \leftrightarrow_{\mathcal{E}}^{*}$ then sufficiently fair oMKBtt $t_{\text {total }}$ run generates〈true : false, ...〉

Experiments

Ordered Completion

- 767 theories of TPTP UEQ systems
oMKBtt interfacing $\mathrm{T}_{\mathrm{T}} \mathrm{T}_{2}$ for termination checks
oMKBtt

kbo		Ipo		mpo		poly		ttt $_{2}$ total	
93	20	47	90	83	19	79	21	82	23

(1) \# successes (2) average execution time for success in seconds

Experiments

Ordered Completion

- 767 theories of TPTP UEQ systems
oMKBtt

kbo		Ipo		mpo		poly		ttt $_{2}$ total	
93	20	47	90	83	19	79	21	82	23

(1) \# successes (2) average execution time for success in seconds

Experiments

Ordered Completion

- 767 theories of TPTP UEQ systems

kbo	Ipo	oMKBtt mpo	poly	ttt_{2} total	$\begin{gathered} E \\ \text { auto } \end{gathered}$
$93 \quad 20$	$47 \quad 90$	8319	$79 \quad 21$	8223	$45<1$

(1) \# successes (2) average execution time for success in seconds

Experiments

Ordered Completion

- 767 theories of TPTP UEQ systems

kbo		Ipo				oMKBtt				mpo		poly		ttt $_{2}$ total	auto	
93	20	47	90	83	19	79	21	82	23	45						

Theorem Proving

- TPTP UEQ systems

	oMKBtt			
	kbo	Ipo	poly	ttt_{2} fast
easy (215)	19717	16427	14359	13850
difficult (565)	17964	15250	10996	12155

(1) \# successes (2) average execution time for success in seconds

Experiments

Ordered Completion

- 767 theories of TPTP UEQ systems

kbo		Ipo				oMKBtt				mpo		poly		ttt $_{2}$ total	auto	
93	20	47	90	83	19	79	21	82	23	45						

Theorem Proving
$\mathrm{T}_{\mathrm{T}} \mathrm{T}_{2}$ using DPs, DG and LPO

- TPTP UEQ systems

	kbo		Ipo	poly	ttt $_{2}$ fast
easy (215)	197	17	164	27	143
59	13850				
difficult (565)	179	64	15250	109	96

(1) \# successes (2) average execution time for success in seconds

Experiments

Ordered Completion

- 767 theories of TPTP UEQ systems

kbo	Ipo	oMKBtt mpo	poly	ttt2total	E
$93 \quad 20$	$47 \quad 90$	8319	$79 \quad 21$	8223	$45<1$

Theorem Proving

- TPTP UEQ systems

	oMKBtt				Waldmeister			
	kbo		Ipo	poly	ttt $_{2}$ fast	auto		
easy (215)	197	17	164	27	143	59	138	50
199	<2							
difficult (565)	179	64	152	50	109	96	121	55
>400	<5							

(1) \# successes (2) average execution time for suçeess in secongds

Experiments

Ordered Completion

- 767 theories of TPTP UEQ systems

kbo	Ipo	oMKBtt mpo	poly	ttt2total	E
$93 \quad 20$	$47 \quad 90$	8319	$79 \quad 21$	8223	$45<1$

Theorem Proving

- TPTP UEQ systems

	oMKBtt				Waldmeister			
	kbo		Ipo	poly	ttt $_{2}$ fast	auto		
easy (215)	197	17	164	27	143	59	138	50
199	<2							
difficult (565)	179	64	152	50	109	96	121	55
CASC-J5 (100)	9	47						

(1) \# successes (2) average execution time for success in seconds

Conclusion

- oMKBtt is ordered completion tool + equational theorem prover not requiring explicit reduction order as input
- oMKBtt combines termination tools with multi-completion approach
- ground-confluence only with restriction on termination techniques

Conclusion

- oMKBtt is ordered completion tool + equational theorem prover not requiring explicit reduction order as input
- oMKBtt combines termination tools with multi-completion approach
- ground-confluence only with restriction on termination techniques

Future Work

- check applicability to other variants of completion
- performance of implementation
- new competition: (ordered) completion?

