Are ground-complete systems unique?

Sarah Winkler

Institute for Computer Science
University of Innsbruck
Workshop Paris - Innsbruck - Tbilisi
May 20, 2010

Outline

- Preliminaries
- Are ground-complete systems unique?

Definition

TRS R is

- terminating if $\nexists t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow \cdots$

Definition

TRS R is

- terminating if $\nexists t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow \cdots$
- confluent if $\forall s^{*} \leftarrow u \rightarrow{ }^{*} t$ there is some v such that $s \rightarrow^{*} v^{*} \leftarrow t$

Definition

TRS R is

- terminating if $\nexists t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow \cdots$
- confluent if $\forall s^{*} \leftarrow u \rightarrow{ }^{*} t$ there is some v such that $s \rightarrow^{*} v^{*} \leftarrow t$

Definition

TRS R is

- terminating if $\nexists t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow \cdots$
- confluent if $\forall s^{*} \leftarrow u \rightarrow{ }^{*} t$ there is some v such that $s \rightarrow^{*} v^{*} \leftarrow t$
- complete if terminating and confluent

Definition

TRS R is

- terminating if $\nexists t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow \cdots$
- confluent if $\forall s^{*} \leftarrow u \rightarrow{ }^{*} t$ there is some v such that $s \rightarrow^{*} v^{*} \leftarrow t$
- complete if terminating and confluent
- reduced if $\forall I \rightarrow r$ in R $r \in \operatorname{NF}(R)$ and $I \in \operatorname{NF}(R \backslash\{I \rightarrow r\})$
normal forms of R

Definition

TRS R is

- terminating if $\nexists t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow \cdots$
- confluent if $\forall s^{*} \leftarrow u \rightarrow{ }^{*} t$ there is some v such that $s \rightarrow^{*} v^{*} \leftarrow t$
- complete if terminating and confluent
- reduced if $\forall I \rightarrow r$ in R $r \in \operatorname{NF}(R)$ and $I \in \operatorname{NF}(R \backslash\{I \rightarrow r\})$

Example

$$
\begin{array}{cl}
g(f(x)) \rightarrow a & f(x) \rightarrow g(x) \\
g(g(x)) \rightarrow a & f(x) \rightarrow a \\
g(a) \rightarrow a &
\end{array}
$$

Definition

TRS R is

- terminating if $\nexists t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow \cdots$
- confluent if $\forall s^{*} \leftarrow u \rightarrow^{*} t$ there is some v such that $s \rightarrow^{*} v^{*} \leftarrow t$
- complete if terminating and confluent
- reduced if $\forall I \rightarrow r$ in R $r \in \operatorname{NF}(R)$ and $I \in \operatorname{NF}(R \backslash\{I \rightarrow r\})$

Example

$$
\begin{array}{cll}
g(f(x)) \rightarrow a & f(x) \rightarrow g(x) & \\
\text { terminating } \\
g(g(x)) & \rightarrow a & f(x) \rightarrow a \\
& \text { confluent } \\
g(a) & \rightarrow a &
\end{array}
$$

Definition

TRS R is

- terminating if $\nexists t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow \cdots$
- confluent if $\forall s^{*} \leftarrow u \rightarrow^{*} t$ there is some v such that $s \rightarrow^{*} v^{*} \leftarrow t$
- complete if terminating and confluent
- reduced if $\forall I \rightarrow r$ in R $r \in \operatorname{NF}(R)$ and $I \in \operatorname{NF}(R \backslash\{I \rightarrow r\})$

Example

$$
\begin{array}{cl}
g(f(x)) & \rightarrow a \quad f(x) \rightarrow g(x) \\
g(g(x)) & \rightarrow a \quad f(x) \rightarrow a \\
g(a) & \rightarrow a
\end{array}
$$

terminating confluent complete

$$
g(x) \leftarrow f(x) \rightarrow a
$$ not joinable

Definition

TRS R is

- terminating if $\nexists t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow \cdots$
- confluent if $\forall s^{*} \leftarrow u \rightarrow{ }^{*} t$ there is some v such that $s \rightarrow^{*} v^{*} \leftarrow t$
- complete if terminating and confluent
- reduced if $\forall I \rightarrow r$ in R

$$
r \in \operatorname{NF}(R) \text { and } I \in \operatorname{NF}(R \backslash\{I \rightarrow r\})
$$

Example

$$
\begin{array}{cl}
g(f(x)) \rightarrow a & f(x) \rightarrow g(x) \\
g(g(x)) \rightarrow a & f(x) \rightarrow a \\
g(a) & \rightarrow a
\end{array}
$$

terminating confluent complete reduced

Definition

TRS R is

- terminating if $\nexists t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow \cdots$
- confluent if $\forall s^{*} \leftarrow u \rightarrow{ }^{*} t$ there is some v such that $s \rightarrow^{*} v^{*} \leftarrow t$
- complete if terminating and confluent
- reduced if $\forall I \rightarrow r$ in R

$$
r \in \operatorname{NF}(R) \text { and } I \in \operatorname{NF}(R \backslash\{I \rightarrow r\})
$$

Example

$$
\begin{array}{cl}
g(f(x)) \rightarrow a & f(x) \rightarrow g(x) \\
g(g(x)) \rightarrow a & f(x) \rightarrow a \\
g(a) \rightarrow a &
\end{array}
$$

terminating confluent complete reduced

Consider reduction orders $\succ \subseteq>$ where $>$ is total on $\mathcal{T}(\mathcal{F})$, equations E and TRS R.

Consider reduction orders $\succ \subseteq>$ where $>$ is total on $\mathcal{T}(\mathcal{F})$, equations E and TRS R.

Definition
orientable instances of set of equations E wrt total reduction order $>$ is TRS

$$
E_{>}=\{\hat{s} \rightarrow \hat{t} \mid \hat{s} \approx \hat{t} \text { is instance of } s \approx t \in E \text { and } \hat{s}>\hat{t}\}
$$

Consider reduction orders $\succ \subseteq>$ where $>$ is total on $\mathcal{T}(\mathcal{F})$, equations E and TRS R.

Definition
orientable instances of set of equations E wrt total reduction order $>$ is TRS

$$
E_{>}=\{\hat{s} \rightarrow \hat{t} \mid \hat{s} \approx \hat{t} \text { is instance of } s \approx t \in E \text { and } \hat{s}>\hat{t}\}
$$

Example

for $E=\{x+y \approx y+x\}$ and $>$ being LPO with precedence $f>a>b$

$$
E_{>}=\{a+b \rightarrow b+a,
$$

Consider reduction orders $\succ \subseteq>$ where $>$ is total on $\mathcal{T}(\mathcal{F})$, equations E and TRS R.

Definition
orientable instances of set of equations E wrt total reduction order $>$ is TRS

$$
E_{>}=\{\hat{s} \rightarrow \hat{t} \mid \hat{s} \approx \hat{t} \text { is instance of } s \approx t \in E \text { and } \hat{s}>\hat{t}\}
$$

Example

for $E=\{x+y \approx y+x\}$ and $>$ being LPO with precedence $f>a>b$

$$
E_{>}=\{a+b \rightarrow b+a, f(a)+a \rightarrow a+f(a),
$$

Consider reduction orders $\succ \subseteq>$ where $>$ is total on $\mathcal{T}(\mathcal{F})$, equations E and TRS R.
Definition
orientable instances of set of equations E wrt total reduction order $>$ is TRS

$$
E_{>}=\{\hat{s} \rightarrow \hat{t} \mid \hat{s} \approx \hat{t} \text { is instance of } s \approx t \in E \text { and } \hat{s}>\hat{t}\}
$$

Example

for $E=\{x+y \approx y+x\}$ and $>$ being LPO with precedence $f>a>b$

$$
E_{>}=\{a+b \rightarrow b+a, f(a)+a \rightarrow a+f(a), f(b)+a \rightarrow a+f(b),
$$

Consider reduction orders $\succ \subseteq>$ where $>$ is total on $\mathcal{T}(\mathcal{F})$, equations E and TRS R.
Definition
orientable instances of set of equations E wrt total reduction order $>$ is TRS

$$
E_{>}=\{\hat{s} \rightarrow \hat{t} \mid \hat{s} \approx \hat{t} \text { is instance of } s \approx t \in E \text { and } \hat{s}>\hat{t}\}
$$

Example

for $E=\{x+y \approx y+x\}$ and $>$ being LPO with precedence $f>a>b$

$$
\begin{aligned}
E_{>}= & \{a+b \rightarrow b+a, f(a)+a \rightarrow a+f(a), f(b)+a \rightarrow a+f(b), \\
& f(a)+f(b) \rightarrow f(b)+f(a), f(b)+b \rightarrow b+f(b), \\
& f(f(a))+a \rightarrow a+f(f(a)), \ldots\}
\end{aligned}
$$

Consider reduction orders $\succ \subseteq>$ where $>$ is total on $\mathcal{T}(\mathcal{F})$, equations E and TRS R.

Definition
orientable instances of set of equations E wrt total reduction order $>$ is TRS

$$
E_{>}=\{\hat{s} \rightarrow \hat{t} \mid \hat{s} \approx \hat{t} \text { is instance of } s \approx t \in E \text { and } \hat{s}>\hat{t}\}
$$

Definition

system (E, R) is ground-complete wrt $>$
$\Longleftrightarrow \quad \forall$ ground terms s, t with $s \leftrightarrow^{*} t$ using rules in $E_{>} \cup R$
$\exists v$ such that $s \rightarrow^{*} v^{*} \leftarrow t$ in $E_{>} \cup R$

Consider reduction orders $\succ \subseteq>$ where $>$ is total on $\mathcal{T}(\mathcal{F})$, equations E and TRS R.
Definition
orientable instances of set of equations E wrt total reduction order $>$ is TRS

$$
E_{>}=\{\hat{s} \rightarrow \hat{t} \mid \hat{s} \approx \hat{t} \text { is instance of } s \approx t \in E \text { and } \hat{s}>\hat{t}\}
$$

Definition

system (E, R) is ground-complete wrt >
$\Longleftrightarrow \quad \forall$ ground terms s, t with $s \leftrightarrow^{*} t$ using rules in $E_{>} \cup R$
$\exists v$ such that $s \rightarrow^{*} v^{*} \leftarrow t$ in $E_{>} \cup R$

Example (1)

$$
(E, R)=\left\{\begin{array}{cl}
g(f(x)) \rightarrow a & f(x) \rightarrow g(x) \\
g(g(x)) \rightarrow a & f(x) \rightarrow a \\
g(a) \rightarrow a &
\end{array}\right.
$$

ground complete (for $>$ being LPO with precedence $f>g$)

Consider reduction orders $\succ \subseteq>$ where $>$ is total on $\mathcal{T}(\mathcal{F})$, equations E and TRS R.
Definition
orientable instances of set of equations E wrt total reduction order $>$ is TRS

$$
E_{>}=\{\hat{s} \rightarrow \hat{t} \mid \hat{s} \approx \hat{t} \text { is instance of } s \approx t \in E \text { and } \hat{s}>\hat{t}\}
$$

Definition

system (E, R) is ground-complete wrt $>$
$\Longleftrightarrow \quad \forall$ ground terms s, t with $s \leftrightarrow^{*} t$ using rules in $E_{>} \cup R$
$\exists v$ such that $s \rightarrow^{*} v^{*} \leftarrow t$ in $E_{>} \cup R$

Example (2)

$$
(E, R)=\left\{\begin{aligned}
& x \cdot i(x) \approx i(y) \cdot y \\
& x \cdot i(x) \approx y \cdot i(y) \\
& i(x) \cdot x \approx i(y) \cdot y \\
& f(x \cdot i(x)) \rightarrow 0 \\
& f(i(x) \cdot x) \rightarrow 0
\end{aligned}\right.
$$

ground complete (for $>$ being LPO with precedence $f>g$)

Definition (Extended critical pair)

if $t \stackrel{r_{1} \sigma \leftarrow l_{1} \sigma}{\longleftrightarrow} u \xrightarrow{l_{2} \sigma \rightarrow r_{2} \sigma} s$ such that $l_{i} \approx r_{i} \in E \cup R$ and $r_{i} \sigma \nsucc l_{i} \sigma$

Definition (Extended critical pair)

if $t \stackrel{r_{1} \sigma \leftarrow l_{1} \sigma}{\stackrel{1}{2}} u \xrightarrow{l_{2} \sigma \rightarrow r_{2} \sigma} s$ such that $l_{i} \approx r_{i} \in E \cup R$ and $r_{i} \sigma \nsucc l_{i} \sigma$
then $s \approx t$ is in $C P_{\succ}(E \cup R)$

Definition (Extended critical pair)
if $t \stackrel{r_{1} \sigma \leftarrow l_{1} \sigma}{\stackrel{l_{2}}{ }} u \xrightarrow{l_{2} \sigma \rightarrow r_{2} \sigma} s$ such that $l_{i} \approx r_{i} \in E \cup R$ and $r_{i} \sigma \nsucc l_{i} \sigma$ then $s \approx t$ is in $C P_{\succ}(E \cup R)$

Example

$$
\stackrel{x \cdot i(x) \approx i(y) \cdot y}{\longleftrightarrow} \quad \xrightarrow{f(x \cdot i(x)) \rightarrow 0}
$$

Definition (Extended critical pair)
if $t \stackrel{r_{1} \sigma \leftarrow l_{1} \sigma}{\stackrel{l_{2}}{ }} u \xrightarrow{l_{2} \sigma \rightarrow r_{2} \sigma} s$ such that $l_{i} \approx r_{i} \in E \cup R$ and $r_{i} \sigma \nsucc l_{i} \sigma$ then $s \approx t$ is in $C P_{\succ}(E \cup R)$

Example

$$
\stackrel{x \cdot i(x) \approx i(y) \cdot y}{\longleftrightarrow} f(x \cdot i(x)) \xrightarrow{f(x \cdot i(x)) \rightarrow 0}
$$

Definition (Extended critical pair)

if $t \stackrel{r_{1} \sigma \leftarrow l_{1} \sigma}{\longleftrightarrow} u \xrightarrow{l_{2} \sigma \rightarrow r_{2} \sigma} s$ such that $l_{i} \approx r_{i} \in E \cup R$ and $r_{i} \sigma \nsucc l_{i} \sigma$ then $s \approx t$ is in $C P_{\succ}(E \cup R)$

Example

$$
f(i(y) \cdot y) \stackrel{x \cdot i(x) \approx i(y) \cdot y}{\longleftrightarrow} f(x \cdot i(x)) \xrightarrow{f(x \cdot i(x)) \rightarrow 0} 0
$$

Definition (Extended critical pair)

if $t \stackrel{r_{1} \sigma \leftarrow l_{1} \sigma}{\longleftrightarrow} u \xrightarrow{l_{2} \sigma \rightarrow r_{2} \sigma} s$ such that $l_{i} \approx r_{i} \in E \cup R$ and $r_{i} \sigma \nsucc l_{i} \sigma$ then $s \approx t$ is in $C P_{\succ}(E \cup R)$

Example

$$
f(i(y) \cdot y) \stackrel{x \cdot i(x) \approx i(y) \cdot y}{\longleftrightarrow} f(x \cdot i(x)) \xrightarrow{f(x \cdot i(x)) \rightarrow 0} 0
$$

yields $C P_{\succ} f(i(y) \cdot y) \approx 0$

Definition (Extended critical pair)

if $t \stackrel{r_{1} \sigma \leftarrow l_{1} \sigma}{\longleftrightarrow} u \xrightarrow{l_{2} \sigma \rightarrow r_{2} \sigma} s$ such that $l_{i} \approx r_{i} \in E \cup R$ and $r_{i} \sigma \nsucc l_{i} \sigma$ then $s \approx t$ is in $C P_{\succ}(E \cup R)$

Example

$$
f(i(y) \cdot y) \stackrel{x \cdot i(x) \approx i(y) \cdot y}{\longleftrightarrow} f(x \cdot i(x)) \xrightarrow{f(x \cdot i(x)) \rightarrow 0} 0
$$

yields $C P_{\succ} f(i(y) \cdot y) \approx 0$

Lemma (Extended critical pair lemma)
for ground peak $u \leftarrow \cdot \rightarrow v$ in $E_{>} \cup R$

- either $\exists w$ such that $u \rightarrow^{*} w^{*} \leftarrow v$
- or $u \approx v$ is $C[s \sigma] \approx C[t \sigma]$ where $s \approx t \in C P_{>}(E \cup R)$

Equational Proofs

Definition
proof of $s_{0} \leftrightarrow^{*} s_{n}$ in (E, R) is sequence $s_{0}, s_{1}, \ldots, s_{n}$ of terms

Equational Proofs

Definition
proof of $s_{0} \leftrightarrow^{*} s_{n}$ in (E, R) is sequence $s_{0}, s_{1}, \ldots, s_{n}$ of terms such that for all $0 \leq i<n$

$$
s_{i} \leftrightarrow_{E} s_{i+1}
$$

Equational Proofs

Definition
proof of $s_{0} \leftrightarrow^{*} s_{n}$ in (E, R) is sequence $s_{0}, s_{1}, \ldots, s_{n}$ of terms such that for all $0 \leq i<n$

$$
s_{i} \leftrightarrow E \quad s_{i+1} \quad \text { or } \quad s_{i} \rightarrow_{R} s_{i+1} \quad \text { or } \quad s_{i+1} \rightarrow_{R} s_{i}
$$

Equational Proofs

Definition
proof of $s_{0} \leftrightarrow^{*} s_{n}$ in (E, R) is sequence $s_{0}, s_{1}, \ldots, s_{n}$ of terms such that for all $0 \leq i<n$

$$
s_{i} \leftrightarrow E \quad s_{i+1} \quad \text { or } \quad s_{i} \rightarrow R s_{i+1} \quad \text { or } \quad s_{i+1} \rightarrow R s_{i}
$$

Example

$$
\begin{aligned}
& i(y) \cdot y \approx x \cdot i(x) \quad i(y) \cdot y \approx x \cdot i(x) \\
& f((i(0) \cdot 0)) \leftrightarrow f((0 \cdot 0) \cdot i(0 \cdot 0) \quad f(i(y) \cdot y) \longleftrightarrow f(x \cdot i(x)) \\
& f(x \cdot i(x)) \rightarrow 0 \quad 0 \quad f(i(x) \cdot x) \rightarrow 0 \\
& \underbrace{f(x \cdot i(x))}_{0} \rightarrow 0
\end{aligned}
$$

Equational Proofs

Definition
proof of $s_{0} \leftrightarrow^{*} s_{n}$ in (E, R) is sequence $s_{0}, s_{1}, \ldots, s_{n}$ of terms such that for all $0 \leq i<n$

$$
s_{i} \leftrightarrow E \quad s_{i+1} \quad \text { or } \quad s_{i} \rightarrow R s_{i+1} \quad \text { or } \quad s_{i+1} \rightarrow R s_{i}
$$

Definition
Given proof $P=s_{0}, s_{1}, \ldots, s_{n}$,

- for substitution $\sigma, P \sigma=s_{0} \sigma, s_{1} \sigma, \ldots, s_{n} \sigma$

Equational Proofs

Definition
proof of $s_{0} \leftrightarrow^{*} s_{n}$ in (E, R) is sequence $s_{0}, s_{1}, \ldots, s_{n}$ of terms such that for all $0 \leq i<n$

$$
s_{i} \leftrightarrow E \quad s_{i+1} \quad \text { or } \quad s_{i} \rightarrow R s_{i+1} \quad \text { or } \quad s_{i+1} \rightarrow R s_{i}
$$

Definition
Given proof $P=s_{0}, s_{1}, \ldots, s_{n}$,

- for substitution $\sigma, P \sigma=s_{0} \sigma, s_{1} \sigma, \ldots, s_{n} \sigma$
- for context $C, C[P]=C\left[s_{0}\right], C\left[s_{1}\right], \ldots, C\left[s_{n}\right]$

Equational Proofs

Definition
proof of $s_{0} \leftrightarrow^{*} s_{n}$ in (E, R) is sequence $s_{0}, s_{1}, \ldots, s_{n}$ of terms such that for all $0 \leq i<n$

$$
s_{i} \leftrightarrow E \quad s_{i+1} \quad \text { or } \quad s_{i} \rightarrow R s_{i+1} \quad \text { or } \quad s_{i+1} \rightarrow_{R} s_{i}
$$

Definition
Given proof $P=s_{0}, s_{1}, \ldots, s_{n}$,

- for substitution $\sigma, P \sigma=s_{0} \sigma, s_{1} \sigma, \ldots, s_{n} \sigma$
- for context $C, C[P]=C\left[s_{0}\right], C\left[s_{1}\right], \ldots, C\left[s_{n}\right]$
- write $Q[P]$ if Q contains P as a subproof

Uniqueness of complete systems

Theorem
Let R_{1} and R_{2} be

- reduced and
- complete such that
- $R_{1} \subseteq \succ$ and $R_{2} \subseteq \succ$
- and $\leftrightarrow_{R_{1}}^{*}=\leftrightarrow_{R_{2}}^{*}$.

Then R_{1} and R_{2} are the same (up to renaming variables).

Uniqueness of complete systems

Theorem
Let R_{1} and R_{2} be

- reduced and
- complete such that
- $R_{1} \subseteq \succ$ and $R_{2} \subseteq \succ$
- and $\leftrightarrow_{R_{1}}^{*}=\leftrightarrow_{R_{2}}^{*}$.

Then R_{1} and R_{2} are the same (up to renaming variables).

Question

How about ground-complete systems for same theory and reduction order?

Are ground-complete systems unique?

Definition
(E, R) is compatible with \succ
$\Longleftrightarrow \quad R \subseteq \succ$ and $\succ \cap E=\varnothing$

Are ground-complete systems unique?

Definition
(E, R) is compatible with \succ
$\Longleftrightarrow \quad R \subseteq \succ$ and $\succ \cap E=\varnothing$

Corollary
Assume (E_{1}, R_{1}) and (E_{2}, R_{2}) are compatible with \succ and ground-complete wrt $>\supseteq \succ$ such that $\leftrightarrow_{E_{1} \cup R_{1}}^{*}$ and $\leftrightarrow_{E_{2} \cup R_{2}}^{*}$ coincide on ground terms.

Are ground-complete systems unique?

Definition
(E, R) is compatible with \succ
$\Longleftrightarrow \quad R \subseteq \succ$ and $\succ \cap E=\varnothing$

Corollary
Assume (E_{1}, R_{1}) and (E_{2}, R_{2}) are compatible with \succ and ground-complete wrt $>\supseteq \succ$ such that $\leftrightarrow_{E_{1} \cup R_{1}}^{*}$ and $\leftrightarrow_{E_{2} \cup R_{2}}^{*}$ coincide on ground terms.
Then reduced forms of TRSs containing all ground rules in $\left(E_{1} \cup R_{1}\right)>$ and $\left(E_{2} \cup R_{2}\right)>$ are the same (up to renaming variables).

Are ground-complete systems unique?

Definition
(E, R) is compatible with \succ
$\Longleftrightarrow \quad R \subseteq \succ$ and $\succ \cap E=\varnothing$

Corollary
Assume (E_{1}, R_{1}) and (E_{2}, R_{2}) are compatible with \succ and ground-complete wrt $>\supseteq \succ$ such that $\leftrightarrow_{E_{1} \cup R_{1}}^{*}$ and $\leftrightarrow_{E_{2} \cup R_{2}}^{*}$ coincide on ground terms.
Then reduced forms of TRSs containing all ground rules in $\left(E_{1} \cup R_{1}\right)>$ and ($E_{2} \cup R_{2}$) $>$ are the same (up to renaming variables).

Question

Are also $\left(E_{1}, R_{1}\right)$ and $\left(E_{2}, R_{2}\right)$ the same?

Example (1)

ground-complete systems for same theory

$$
\left(E_{1}, R_{1}\right)=\left\{\begin{array}{rl}
x+y & \approx y+x \\
\mathrm{~g}(x+y) & \approx \mathrm{g}(y+x) \\
\mathrm{f}(x, x) & \rightarrow \mathrm{g}(x)
\end{array} \quad\left(E_{2}, R_{2}\right)=\left\{\begin{aligned}
x+y & \approx y+x \\
\mathrm{f}(x, x) & \rightarrow \mathrm{g}(x) \\
\mathrm{f}(x+y, y+x) & \rightarrow \mathrm{g}(x+y)
\end{aligned}\right.\right.
$$

are compatible with \succ being LPO with precedence $f>g$

Example (1)

ground-complete systems for same theory

$$
\left(E_{1}, R_{1}\right)=\left\{\begin{array}{rl}
x+y & \approx y+x \\
\mathrm{~g}(x+y) & \approx g(y+x) \\
\mathrm{f}(x, x) & \rightarrow \mathrm{g}(x)
\end{array} \quad\left(E_{2}, R_{2}\right)=\left\{\begin{aligned}
x+y & \approx y+x \\
\mathrm{f}(x, x) & \rightarrow \mathrm{g}(x) \\
\mathrm{f}(x+y, y+x) & \rightarrow \mathrm{g}(x+y)
\end{aligned}\right.\right.
$$

are compatible with \succ being LPO with precedence $f>g$

Problem

superfluous equations

Example (1)

ground-complete systems for same theory

$$
\left(E_{1}, R_{1}\right)=\left\{\begin{array}{rl}
x+y & \approx y+x \\
g(x+y) & \approx g(y+x) \\
f(x, x) & \rightarrow g(x)
\end{array} \quad\left(E_{2}, R_{2}\right)=\left\{\begin{aligned}
x+y & \approx y+x \\
f(x, x) & \rightarrow g(x) \\
f(x+y, y+x) & \rightarrow g(x+y)
\end{aligned}\right.\right.
$$

are compatible with \succ being LPO with precedence $f>g$

Problem

superfluous equations and rules prevent uniqueness

Example (1)

ground-complete systems for same theory

$$
\left(E_{1}, R_{1}\right)=\left\{\begin{array}{rl}
x+y & \approx y+x \\
\mathrm{~g}(x+y) & \approx \mathrm{g}(y+x) \\
\mathrm{f}(x, x) & \rightarrow \mathrm{g}(x)
\end{array} \quad\left(E_{2}, R_{2}\right)=\left\{\begin{aligned}
x+y & \approx y+x \\
\mathrm{f}(x, x) & \rightarrow \mathrm{g}(x) \\
\mathrm{f}(x+y, y+x) & \rightarrow \mathrm{g}(x+y)
\end{aligned}\right.\right.
$$

are compatible with \succ being LPO with precedence $f>g$

Problem

superfluous equations and rules prevent uniqueness

Solution

restrict to reduced systems

When is (E, R) reduced?

Definition

- cost function for proof step (s, t) in (E, R)

When is (E, R) reduced?

Definition

- cost function for proof step (s, t) in (E, R)

$$
c(s, t)= \begin{cases}\left(\{s\},\left.s\right|_{p}, I,\{t\}\right) & \text { if } s \rightarrow_{\mid \rightarrow r}^{p} t \text { for some } I \rightarrow r \text { in } R \\ \end{cases}
$$

When is (E, R) reduced?

Definition

- cost function for proof step $T>t$ for all terms t

$$
c(s, t)= \begin{cases}\left(\{s\},\left.s\right|_{p}, I,\{t\}\right) & \text { if } s \rightarrow_{l \rightarrow r}^{p} t \text { for some } l \rightarrow r \text { in } R \\ \left(\{s\},\left.s\right|_{p}, I,\{t, \top\}\right) & \text { if } s \rightarrow_{l \rightarrow r}^{p} t \text { for some } l \rightarrow r \text { in } E_{>}\end{cases}
$$

When is (E, R) reduced?

Definition

- cost function for proof step (s, t) in (E, R)

$$
c(s, t)= \begin{cases}\left(\{s\},\left.s\right|_{p}, I,\{t\}\right) & \text { if } s \rightarrow_{l \rightarrow r}^{p} t \text { for some } I \rightarrow r \text { in } R \\ \left(\{s\},\left.s\right|_{p}, I,\{t, T\}\right) & \text { if } s \rightarrow_{l \rightarrow r}^{p} t \text { for some } I \rightarrow r \text { in } E_{>} \\ (\{s, t\},-,-,-) & \text { if } s \approx_{E} t\end{cases}
$$

When is (E, R) reduced?

Definition

- cost function for proof step (s, t) in (E, R)

$$
c(s, t)= \begin{cases}\left(\{s\},\left.s\right|_{p}, I,\{t\}\right) & \text { if } s \rightarrow_{l \rightarrow r}^{p} t \text { for some } I \rightarrow r \text { in } R \\ \left(\{s\},\left.s\right|_{p}, I,\{t, T\}\right) & \text { if } s \rightarrow_{p \rightarrow r}^{p} t \text { for some } I \rightarrow r \text { in } E_{>} \\ (\{s, t\},-,-,-) & \text { if } s \approx_{E} t\end{cases}
$$

- order $>^{c}$ on costs is lexicographic combination of $>_{\text {mul }}, \triangleright, \triangleright$ and $>_{\text {mul }}$

When is (E, R) reduced?

Definition

- cost function for proof step (s, t) in (E, R)

$$
c(s, t)= \begin{cases}\left(\{s\},\left.s\right|_{p}, I,\{t\}\right) & \text { if } s \rightarrow_{l \rightarrow r}^{p} t \text { for some } I \rightarrow r \text { in } R \\ \left(\{s\},\left.s\right|_{p}, I,\{t, T\}\right) & \text { if } s \rightarrow_{p \rightarrow r}^{p} t \text { for some } I \rightarrow r \text { in } E_{>} \\ (\{s, t\},-,-,-) & \text { if } s \approx_{E} t\end{cases}
$$

- order $>^{c}$ on costs is lexicographic combination of $>_{\text {mul }} \triangleright, \triangleright$ and $>_{\text {mul }}$
- order $>\mathcal{U}$ on ground proofs: $\left(s_{0}, \ldots, s_{n}\right)>\mathcal{U}\left(t_{0}, \ldots, t_{m}\right)$ iff

$$
\left\{c\left(s_{0}, s_{1}\right), \ldots, c\left(s_{n-1}, s_{n}\right)\right\}>_{\text {mul }}^{c}\left\{c\left(t_{0}, t_{1}\right), \ldots, c\left(t_{m-1}, t_{m}\right)\right\}
$$

When is (E, R) reduced?

Definition

- cost function for proof step (s, t) in (E, R)

$$
c(s, t)= \begin{cases}\left(\{s\},\left.s\right|_{p}, I,\{t\}\right) & \text { if } s \rightarrow_{l \rightarrow r}^{p} t \text { for some } I \rightarrow r \text { in } R \\ \left(\{s\},\left.s\right|_{p}, I,\{t, T\}\right) & \text { if } s \rightarrow_{p \rightarrow r}^{p} t \text { for some } I \rightarrow r \text { in } E_{>} \\ (\{s, t\},-,-,-) & \text { if } s \approx_{E} t\end{cases}
$$

- order $>^{c}$ on costs is lexicographic combination of $>_{\text {mul }}, \triangleright, \triangleright$ and $>_{\text {mul }}$
- order $>\mathcal{U}$ on ground proofs: $\left(s_{0}, \ldots, s_{n}\right)>\mathcal{U}\left(t_{0}, \ldots, t_{m}\right)$ iff

$$
\left\{c\left(s_{0}, s_{1}\right), \ldots, c\left(s_{n-1}, s_{n}\right)\right\}>_{\text {mul }}^{c}\left\{c\left(t_{0}, t_{1}\right), \ldots, c\left(t_{m-1}, t_{m}\right)\right\}
$$

Lemma

$>_{\mathcal{U}}$ is well-founded ordering on proofs and for all proofs P, P^{\prime} with $P>_{\mathcal{U}} P^{\prime}$

When is (E, R) reduced?

Definition

- cost function for proof step (s, t) in (E, R)

$$
c(s, t)= \begin{cases}\left(\{s\},\left.s\right|_{p}, I,\{t\}\right) & \text { if } s \rightarrow_{l \rightarrow r}^{p} t \text { for some } I \rightarrow r \text { in } R \\ \left(\{s\},\left.s\right|_{p}, I,\{t, \top\}\right) & \text { if } s \rightarrow_{l \rightarrow r}^{p} t \text { for some } I \rightarrow r \text { in } E_{>} \\ (\{s, t\},-,-,-) & \text { if } s \approx_{E} t\end{cases}
$$

- order $>^{c}$ on costs is lexicographic combination of $>_{\text {mul }}, \triangleright, \bowtie$ and $>_{\text {mul }}$
- order $>_{\mathcal{U}}$ on ground proofs: $\left(s_{0}, \ldots, s_{n}\right)>_{\mathcal{U}}\left(t_{0}, \ldots, t_{m}\right)$ iff

$$
\left\{c\left(s_{0}, s_{1}\right), \ldots, c\left(s_{n-1}, s_{n}\right)\right\}>_{\text {mul }}^{c}\left\{c\left(t_{0}, t_{1}\right), \ldots, c\left(t_{m-1}, t_{m}\right)\right\}
$$

Lemma

$>_{\mathcal{U}}$ is well-founded ordering on proofs and for all proofs P, P^{\prime} with $P>_{\mathcal{U}} P^{\prime}$

- $C[P \sigma]>\mathcal{u}^{C}\left[P^{\prime} \sigma\right]$ for all contexts C and substitutions σ

When is (E, R) reduced?

Definition

- cost function for proof step (s, t) in (E, R)

$$
c(s, t)= \begin{cases}\left(\{s\},\left.s\right|_{p}, I,\{t\}\right) & \text { if } s \rightarrow_{l \rightarrow r}^{p} t \text { for some } I \rightarrow r \text { in } R \\ \left(\{s\},\left.s\right|_{p}, I,\{t, T\}\right) & \text { if } s \rightarrow_{p \rightarrow r}^{p} t \text { for some } I \rightarrow r \text { in } E_{>} \\ (\{s, t\},-,-,-) & \text { if } s \approx_{E} t\end{cases}
$$

- order $>^{c}$ on costs is lexicographic combination of $>_{\text {mul }}, \triangleright, \triangleright$ and $>_{\text {mul }}$
- order $>\mathcal{U}$ on ground proofs: $\left(s_{0}, \ldots, s_{n}\right)>\mathcal{U}\left(t_{0}, \ldots, t_{m}\right)$ iff

$$
\left\{c\left(s_{0}, s_{1}\right), \ldots, c\left(s_{n-1}, s_{n}\right)\right\}>_{\text {mul }}^{c}\left\{c\left(t_{0}, t_{1}\right), \ldots, c\left(t_{m-1}, t_{m}\right)\right\}
$$

Lemma

$>_{\mathcal{U}}$ is well-founded ordering on proofs and for all proofs P, P^{\prime} with $P>_{\mathcal{U}} P^{\prime}$

- $C[P \sigma]>\mathcal{u}^{C}\left[P^{\prime} \sigma\right]$ for all contexts C and substitutions σ
- $Q[P]>\mathcal{u} Q\left[P^{\prime}\right]$ for all proofs Q

Definition

- ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $>$ $\Longleftrightarrow \quad \exists$ proof P of $s \leftrightarrow^{*} t$ in (E, R) such that $s \leftrightarrow t>\mathcal{U} P$

Definition

- ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $>$ $\Longleftrightarrow \quad \exists$ proof P of $s \leftrightarrow^{*} t$ in (E, R) such that $s \leftrightarrow t>\mathcal{U} P$
- non-ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $>$ $\Longleftrightarrow \quad$ all its ground instances are redundant

Definition

- ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $>$ $\Longleftrightarrow \quad \exists$ proof P of $s \leftrightarrow^{*} t$ in (E, R) such that $s \leftrightarrow t>\mathcal{U} P$
- non-ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $>$ $\Longleftrightarrow \quad$ all its ground instances are redundant
- (E, R) is reduced with respect to $>$ $\Longleftrightarrow \quad$ no equation or rule in (E, R) is redundant with respect to $>$

Definition

- ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $>$ $\Longleftrightarrow \quad \exists$ proof P of $s \leftrightarrow^{*} t$ in (E, R) such that $s \leftrightarrow t>\mathcal{U} P$
- non-ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $>$ $\Longleftrightarrow \quad$ all its ground instances are redundant
- (E, R) is reduced with respect to $>$ $\Longleftrightarrow \quad$ no equation or rule in (E, R) is redundant with respect to $>$

Example

$$
\left(E_{2}, R_{2}\right)=\left\{\begin{array}{c}
x+y \approx y+x \tag{1}\\
g(x+y) \approx g(y+x) \\
f(x, x) \rightarrow g(x)
\end{array}\right.
$$

For example $g(a+b) \xrightarrow{(2)} g(b+a) \quad g(a+b) \xrightarrow{(1)} g(b+a)$

Definition

- ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $>$ $\Longleftrightarrow \quad \exists$ proof P of $s \leftrightarrow^{*} t$ in (E, R) such that $s \leftrightarrow t>\mathcal{U} P$
- non-ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $>$ $\Longleftrightarrow \quad$ all its ground instances are redundant
- (E, R) is reduced with respect to $>$ $\Longleftrightarrow \quad$ no equation or rule in (E, R) is redundant with respect to $>$

Example

$$
\left(E_{2}, R_{2}\right)=\left\{\begin{array}{c}
x+y \approx y+x \tag{1}\\
g(x+y) \approx g(y+x) \\
f(x, x) \rightarrow g(x)
\end{array}\right.
$$

For example $g(a+b) \xrightarrow{(2)} g(b+a)>\mathcal{U} g(a+b) \xrightarrow{(1)} g(b+a)$

Definition

- ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $>$ $\Longleftrightarrow \quad \exists$ proof P of $s \leftrightarrow^{*} t$ in (E, R) such that $s \leftrightarrow t>\mathcal{U} P$
- non-ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $>$ $\Longleftrightarrow \quad$ all its ground instances are redundant
- (E, R) is reduced with respect to $>$ $\Longleftrightarrow \quad$ no equation or rule in (E, R) is redundant with respect to $>$

Example

$$
\left(E_{2}, R_{2}\right)=\left\{\begin{array}{c}
x+y \approx y+x \tag{1}\\
g(x+y) \approx g(y+x) \\
f(x, x) \rightarrow \mathrm{g}(x)
\end{array}\right.
$$

For example $g(a+b) \xrightarrow{(2)} g(b+a)>_{\mathcal{U}} g(a+b) \xrightarrow{(1)} g(b+a)$ because $\left.(\{g(a+b)\}, g(a+b), \ldots)>_{c}(\{g(a+b)\}, a+b, \ldots\}\right)$

Definition

- ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $>$ $\Longleftrightarrow \quad \exists$ proof P of $s \leftrightarrow^{*} t$ in (E, R) such that $s \leftrightarrow t>\mathcal{U} P$
- non-ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $>$ $\Longleftrightarrow \quad$ all its ground instances are redundant
- (E, R) is reduced with respect to $>$ $\Longleftrightarrow \quad$ no equation or rule in (E, R) is redundant with respect to $>$

Example

$$
\left(E_{2}, R_{2}\right)=\left\{\begin{array}{cl}
x+y \approx y+x & \text { (1) } \\
g(x+y) \approx g(y+x) & \text { (2) redundant } \\
f(x, x) \rightarrow g(x) & \text { (3) }
\end{array}\right.
$$

For example $g(a+b) \xrightarrow{(2)} g(b+a)>_{\mathcal{U}} g(a+b) \xrightarrow{(1)} g(b+a)$ because

$$
\left.(\{g(a+b)\}, g(a+b), \ldots)>_{c}(\{g(a+b)\}, a+b, \ldots\}\right)
$$

Definition

- ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $>$ $\Longleftrightarrow \quad \exists$ proof P of $s \leftrightarrow^{*} t$ in (E, R) such that $s \leftrightarrow t>\mathcal{U} P$
- non-ground $s \leftrightarrow t$ is redundant in (E, R) with respect to $>$ $\Longleftrightarrow \quad$ all its ground instances are redundant
- (E, R) is reduced with respect to $>$ $\Longleftrightarrow \quad$ no equation or rule in (E, R) is redundant with respect to $>$

Example

$$
\left(E_{2}, R_{2}\right)=\left\{\begin{array}{cl}
x+y \approx y+x & \text { (1) } \\
g(x+y) \approx g(y+x) & \text { (2) redundant } \\
f(x, x) \rightarrow g(x) & \text { (3) }
\end{array}\right.
$$

For example $g(a+b) \xrightarrow{(2)} g(b+a)>_{\mathcal{U}} g(a+b) \xrightarrow{(1)} g(b+a)$ because

- not reduced $\left.(\{g(a+b)\}, g(a+b), \ldots)>_{c}(\{g(a+b)\}, a+b, \ldots\}\right)$

Example (2)

ground-complete systems for same theory

$$
\left(E_{1}, R_{1}\right)=\left\{\begin{array}{c}
x+y \approx y+x \\
\mathrm{f}(x, y) \rightarrow \mathrm{g}(x+y)
\end{array} \quad\left(E_{2}, R_{2}\right)=\left\{\begin{array}{c}
x+y \approx y+x \\
\mathrm{f}(x, y) \rightarrow \mathrm{g}(y+x)
\end{array}\right.\right.
$$

compatible with \succ being LPO with precedence $f>g$

Example (2)

ground-complete systems for same theory

$$
\left(E_{1}, R_{1}\right)=\left\{\begin{array}{c}
x+y \approx y+x \\
\mathrm{f}(x, y) \rightarrow \mathrm{g}(x+y)
\end{array} \quad\left(E_{2}, R_{2}\right)=\left\{\begin{array}{c}
x+y \approx y+x \\
\mathrm{f}(x, y) \rightarrow \mathrm{g}(y+x)
\end{array}\right.\right.
$$

compatible with \succ being LPO with precedence $f>g$

Problem
different right-hand sides of rewrite rules

Example (3)
ground-complete systems for same theory

$$
\begin{aligned}
& \left(E_{1}, R_{1}\right)=\left\{\begin{aligned}
g(x) & \rightarrow a \\
f(x) & \rightarrow g(x) \\
f(x) & \rightarrow a
\end{aligned}\right. \\
& \left(E_{2}, R_{2}\right)=\left\{\begin{aligned}
g(f(x)) & \rightarrow a \\
g(g(x)) & \rightarrow a \\
g(a) & \rightarrow a \\
f(x) & \rightarrow g(x)
\end{aligned}\right. \\
& f(x) \rightarrow a
\end{aligned}
$$

compatible with \succ being LPO where $f>g$

Example (3)
ground-complete systems for same theory

$$
\left(E_{1}, R_{1}\right)=\left\{\begin{array}{l}
g(x) \rightarrow a \\
f(x) \rightarrow g(x) \\
f(x) \rightarrow a
\end{array} \quad\left(E_{2}, R_{2}\right)=\left\{\begin{aligned}
g(f(x)) & \rightarrow a \\
g(g(x)) & \rightarrow a \\
g(a) & \rightarrow a \\
f(x) & \rightarrow g(x) \\
f(x) & \rightarrow a
\end{aligned}\right.\right.
$$

compatible with \succ being LPO where $f>g$

Problem

one rule in R_{1} plays role of three rules in R_{2}

Example (3)

ground-complete systems for same theory

$$
\left(E_{1}, R_{1}\right)=\left\{\begin{array}{l}
g(x) \rightarrow a \\
f(x) \rightarrow g(x) \quad\left(E_{2}, R_{2}\right)=\left\{\begin{aligned}
g(f(x)) & \rightarrow a \\
g(g(x)) & \rightarrow a \\
g(x) & \rightarrow a
\end{aligned} \quad \rightarrow a\right. \\
f(x) \rightarrow g(x) \\
f(x) \rightarrow a
\end{array}\right.
$$

compatible with \succ being LPO where $f>g$

Problem
one rule in R_{1} plays role of three rules in R_{2}

Definition

(E, R) compatible with reduction order \succ is fairly constructed $\Longleftrightarrow \quad$ for every $s \leftarrow u \rightarrow t$ in $C P_{\succ}(E \cup R)$
\exists proof P of $s \leftrightarrow^{*} t$ in (E, R) such that $(s, u, t) \succ_{\mathcal{U}} P$

A (non-)result

Assume all $u \approx v$ in $E_{1} \cup E_{2}$ satisfy $\operatorname{Var}(u)=\operatorname{Var}(v)$.

A (non-)result

Assume all $u \approx v$ in $E_{1} \cup E_{2}$ satisfy $\operatorname{Var}(u)=\operatorname{Var}(v)$.

Claim
Let $\left(E_{1}, R_{1}\right)$ and (E_{2}, R_{2}) be two systems

- compatible with reduction order \succ,
- ground-complete and reduced for total reduction order $>\supseteq \succ$, and
- fairly constructed
- such that $\leftrightarrow_{E_{1} \cup R_{1}}^{*}=\leftrightarrow_{E_{2} \cup R_{2}}^{*}$ on ground terms.

A (non-)result

Assume all $u \approx v$ in $E_{1} \cup E_{2}$ satisfy $\operatorname{Var}(u)=\operatorname{Var}(v)$.

Claim
Let $\left(E_{1}, R_{1}\right)$ and (E_{2}, R_{2}) be two systems

- compatible with reduction order \succ,
- ground-complete and reduced for total reduction order $>\supseteq \succ$, and
- fairly constructed
- such that $\leftrightarrow_{E_{1} \cup R_{1}}^{*}=\leftrightarrow_{E_{2} \cup R_{2}}^{*}$ on ground terms.

Then

- for ground instance $\hat{u} \approx \hat{v}$ of $u \approx v$ in E_{i}
$\exists u^{\prime} \approx v^{\prime}$ in E_{j} such that $\hat{u} \approx \hat{v}$ is instance of $u^{\prime} \approx v^{\prime}$
- reducible ground terms in R_{1} and R_{2} coincide up to renaming variables.

Proof attempt (1)

- assume there is some
- equation that is instance of $u \approx v$ in E_{i} but not of any $u^{\prime} \approx v^{\prime}$ in E_{j}
- term reducible by $u \rightarrow v$ in R_{i} but not in R_{j} then \exists ground instance $\hat{u} \leftrightarrow \hat{v}$ having no smaller proof in E_{i}, R_{i}

Proof attempt (1)

- assume there is some
- equation that is instance of $u \approx v$ in E_{i} but not of any $u^{\prime} \approx v^{\prime}$ in E_{j}
- term reducible by $u \rightarrow v$ in R_{i} but not in R_{j} then \exists ground instance $\hat{u} \leftrightarrow \hat{v}$ having no smaller proof in E_{i}, R_{i}
- choose such (\hat{u}, \hat{v}) minimal wrt to $>\mathcal{U}$ (wlog, $u \leftrightarrow v$ in $\left.\left(E_{1}, R_{1}\right)\right)$

Proof attempt (1)

- assume there is some
- equation that is instance of $u \approx v$ in E_{i} but not of any $u^{\prime} \approx v^{\prime}$ in E_{j}
- term reducible by $u \rightarrow v$ in R_{i} but not in R_{j} then \exists ground instance $\hat{u} \leftrightarrow \hat{v}$ having no smaller proof in E_{i}, R_{i}
- choose such (\hat{u}, \hat{v}) minimal wrt to $>\mathcal{U}$ (wlog, $u \leftrightarrow v$ in $\left(E_{1}, R_{1}\right)$)
note that $\forall(\hat{s}, \hat{t})<\mathcal{U}(\hat{u}, \hat{v})$
- if $\hat{s} \approx \hat{t}$ instance of $s \approx t$ in E_{2} either $\exists s^{\prime} \approx t^{\prime}$ in E_{1}, or \exists proof Q of $\hat{s} \leftrightarrow^{*} \hat{t}$ in $\left(E_{1}, R_{1}\right)$ with $(\hat{s}, \hat{t})>\mathcal{U} Q$
- if $\hat{s} \rightarrow \hat{t}$ instance of $s \rightarrow t$ in R_{2} either \hat{s} reducible in R_{1}, or \exists proof Q of $\hat{s} \leftrightarrow^{*} \hat{t}$ in $\left(E_{1}, R_{1}\right)$ with $(\hat{s}, \hat{t})>\mathcal{U} Q$

Proof attempt (1)

- assume there is some
- equation that is instance of $u \approx v$ in E_{i} but not of any $u^{\prime} \approx v^{\prime}$ in E_{j}
- term reducible by $u \rightarrow v$ in R_{i} but not in R_{j} then \exists ground instance $\hat{u} \leftrightarrow \hat{v}$ having no smaller proof in E_{i}, R_{i}
- choose such (\hat{u}, \hat{v}) minimal wrt to $>\mathcal{U}$

```
(wlog, }u\leftrightarrowv\mathrm{ in (E},\mp@subsup{E}{1}{},\mp@subsup{R}{1}{})
```

note that $\forall(\hat{s}, \hat{t})<\mathcal{U}(\hat{u}, \hat{v})$

- if $\hat{s} \approx \hat{t}$ instance of $s \approx t$ in E_{2} either $\exists s^{\prime} \approx t^{\prime}$ in E_{1}, or \exists proof Q of $\hat{s} \leftrightarrow^{*} \hat{t}$ in $\left(E_{1}, R_{1}\right)$ with $(\hat{s}, \hat{t})>\mathcal{U} Q$
- if $\hat{s} \rightarrow \hat{t}$ instance of $s \rightarrow t$ in R_{2} either \hat{s} reducible in R_{1}, or \exists proof Q of $\hat{s} \leftrightarrow^{*} \hat{t}$ in $\left(E_{1}, R_{1}\right)$ with $(\hat{s}, \hat{t})>\mathcal{U} Q$
-. ground-complete system $\left(E_{2}, R_{2}\right)$ allows for proof P

$$
\hat{u} \rightarrow t_{1} \rightarrow t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

which is minimal wrt $>\mathcal{U}$

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2} \leftrightarrow v_{2}]{u_{2}} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} t_{1} \xrightarrow[t_{2} \leftrightarrow v_{2}]{\sigma_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

$$
\text { case } p_{1}=\epsilon
$$

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

$$
\begin{aligned}
& \text { case } p_{1}=\epsilon \\
& \quad \text { case } p_{2} \in \mathcal{P}_{\operatorname{os}_{\mathcal{F}}}\left(v_{1}\right)
\end{aligned}
$$

Proof attempt (2)

(E_{2}, R_{2}) allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

```
case }\mp@subsup{p}{1}{}=
    case p}\mp@subsup{p}{2}{}\in\mp@subsup{\mathcal{Pos}}{\mathcal{F}}{(
```

- $u_{1} \approx v_{1}$ and $u_{2} \leftrightarrow v_{2}$ form extended critical pair in $C P_{\succ}\left(E_{2}, R_{2}\right)$

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

$$
\begin{aligned}
& \text { case } p_{1}=\epsilon \\
& \quad \text { case } p_{2} \in \mathcal{P}_{\operatorname{os}_{\mathcal{F}}}\left(v_{1}\right)
\end{aligned}
$$

- $u_{1} \approx v_{1}$ and $u_{2} \leftrightarrow v_{2}$ form extended critical pair in $C P_{\succ}\left(E_{2}, R_{2}\right)$
- P not minimal as $\left(E_{2}, R_{2}\right)$ fairly constructed

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

```
case p}\mp@subsup{p}{1}{}=
    case p}\mp@subsup{p}{2}{}\in\mp@subsup{\mathcal{Pos}}{\mathcal{F}}{(}(\mp@subsup{v}{1}{})
    case }\mp@subsup{p}{2}{}=\mp@subsup{q}{0}{}\mp@subsup{q}{1}{}\mathrm{ for }\mp@subsup{q}{0}{}\in\mp@subsup{\mathcal{Pos}}{\mathcal{V}}{(}(\mp@subsup{v}{1}{}
```


Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

$$
\begin{aligned}
& \text { case } p_{1}=\epsilon \\
& \quad \text { case } p_{2} \in \mathcal{P o s}_{\mathcal{F}}\left(v_{1}\right) \\
& \text { case } p_{2}=q_{0} q_{1} \text { for } q_{0} \in \mathcal{P} \circ_{\mathcal{V}}\left(v_{1}\right) \\
& \exists \hat{u}^{\prime} \text { such that } \hat{u} \xrightarrow{u_{2} \leftrightarrow v_{2}} \hat{u}^{\prime} \\
& 1 a^{\prime} \|\left(a s u_{1}, v_{1}\right. \text { have same variables) }
\end{aligned}
$$

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

$$
\text { case } p_{1}=\epsilon
$$

$$
\text { case } p_{2} \in \mathcal{P}_{\operatorname{os}_{\mathcal{F}}}\left(v_{1}\right)
$$

$$
\text { case } p_{2}=q_{0} q_{1} \text { for } q_{0} \in \mathcal{P} \operatorname{os}_{\mathcal{V}}\left(v_{1}\right)
$$

- $\exists \hat{u}^{\prime}$ such that $\hat{u} \xrightarrow{u_{2} \leftrightarrow v_{2}} \hat{u}^{\prime}$
(as μ_{1}, v_{1} have same variables)
- $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{2} \sigma_{2}, v_{2} \sigma_{2}\right)$
so some proof of $u_{2} \sigma_{2} \leftrightarrow^{*} v_{2} \sigma_{2}$ in $\left(E_{1}, R_{1}\right)$ is $\leq_{\mathcal{U}}\left(u_{2} \sigma_{2}, v_{2} \sigma_{2}\right)(\star)$

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

$$
\text { case } p_{1}=\epsilon
$$

$$
\text { case } p_{2} \in \mathcal{P}_{\operatorname{os}_{\mathcal{F}}}\left(v_{1}\right)
$$

$$
\text { case } p_{2}=q_{0} q_{1} \text { for } q_{0} \in \mathcal{P o s}_{\mathcal{V}}\left(v_{1}\right)
$$

- $\exists \hat{u}^{\prime}$ such that $\hat{u} \xrightarrow{u_{2} \leftrightarrow v_{2}} \hat{u}^{\prime}$
(as μ_{1}, v_{1} have same variables)
- $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{2} \sigma_{2}, v_{2} \sigma_{2}\right)$
so some proof of $u_{2} \sigma_{2} \leftrightarrow^{*} v_{2} \sigma_{2}$ in $\left(E_{1}, R_{1}\right)$ is $\leq_{\mathcal{U}}\left(u_{2} \sigma_{2}, v_{2} \sigma_{2}\right)(\star)$ - ground-complete $\left(E_{1}, R_{1}\right)$ has valley proof for $\hat{u}^{\prime} \leftrightarrow^{*} \hat{v}$

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

$$
\text { case } p_{1}=\epsilon
$$

$$
\text { case } p_{2} \in \mathcal{P}_{\mathrm{os}_{\mathcal{F}}}\left(v_{1}\right)
$$

$$
\text { case } p_{2}=q_{0} q_{1} \text { for } q_{0} \in \mathcal{P} \operatorname{os}_{\mathcal{V}}\left(v_{1}\right)
$$

$\exists \hat{u}^{\prime}$ such that $\hat{u} \xrightarrow{u_{2} \leftrightarrow v_{2}} \hat{u}^{\prime}$
(as μ_{1}, v_{1} have same variables)

- $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{2} \sigma_{2}, v_{2} \sigma_{2}\right)$

IU so some proof of $u_{2} \sigma_{2} \leftrightarrow^{*} v_{2} \sigma_{2}$ in $\left(E_{1}, R_{1}\right)$ is $\leq_{\mathcal{U}}\left(u_{2} \sigma_{2}, v_{2} \sigma_{2}\right)(\star)$ - ground-complete $\left(E_{1}, R_{1}\right)$ has valley proof for $\hat{u}^{\prime} \leftrightarrow^{*} \hat{v}$

- $\hat{u} \hat{u}^{*} \hat{u}^{\prime} \leftrightarrow^{*} \hat{v}$ is smaller proof of (\hat{u}, \hat{v}) in $\left(E_{1}, R_{1}\right)$, contradicting choice of (\hat{u}, \hat{v})

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

$$
\text { case } p_{1}=\epsilon
$$

$$
\text { case } p_{2} \in \mathcal{P o s}_{\mathcal{F}}\left(v_{1}\right)
$$

$$
\text { case } p_{2}=q_{0} q_{1} \text { for } q_{0} \in \mathcal{P} \operatorname{os} \mathcal{V}\left(v_{1}\right)
$$

$\bullet \exists \hat{u}^{\prime}$ such that $\hat{u} \xrightarrow{u_{2} \leftrightarrow v_{2}} \hat{u}^{\prime}$
(as μ_{1}, v_{1} have same variables)

- $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{2} \sigma_{2}, v_{2} \sigma_{2}\right)$
\& so some proof of $u_{2} \sigma_{2} \leftrightarrow^{*} v_{2} \sigma_{2}$ in $\left(E_{1}, R_{1}\right)$ is $\leq_{\mathcal{U}}\left(u_{2} \sigma_{2}, v_{2} \sigma_{2}\right)$ (\star) - ground-complete $\left(E_{1}, R_{1}\right)$ has valley proof for $\hat{u}^{\prime} \leftrightarrow^{*} \hat{v}$
- $\hat{u})^{*} \hat{u}^{\prime} \leftrightarrow^{*} \hat{v}$ is smaller proof of (\hat{u}, \hat{v}) in $\left(E_{1}, R_{1}\right)$, contradicting choice of (\hat{u}, \hat{v})

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

```
case p}\mp@subsup{p}{1}{}=
case p>\epsilon
```


Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

```
case }\mp@subsup{p}{1}{}=\epsilon
case p>\epsilon
```

- u ® u_{1}

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

```
case p}\mp@subsup{p}{1}{}=
case p>\epsilon
```

- $u \triangleright u_{1}$
- $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as $(\{\hat{u}\}, \hat{u}, u, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, u_{1}, \ldots\right)$

Proof attempt (2)

(E_{2}, R_{2}) allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

```
case p}\mp@subsup{p}{1}{}=
case p>\epsilon
```

- u ® u_{1}
- $(\hat{u}, \hat{v})>_{\mathcal{U}}\left(\hat{u}, t_{1}\right)$ as $(\{\hat{u}\}, \hat{u}, u, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, u_{1}, \ldots\right)$
- $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$
so some proof of $u_{1} \sigma_{1} \leftrightarrow^{*} v_{1} \sigma_{1}$ in $\left(E_{1}, R_{1}\right)$ is $\leq \mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)(\star)$

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

```
case }\mp@subsup{p}{1}{}=\epsilon
case p>\epsilon
```

- u ® u_{1}
- $(\hat{u}, \hat{v})>_{\mathcal{U}}\left(\hat{u}, t_{1}\right)$ as $(\{\hat{u}\}, \hat{u}, u, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, u_{1}, \ldots\right)$
- $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$
so some proof of $u_{1} \sigma_{1} \leftrightarrow^{*} v_{1} \sigma_{1}$ in $\left(E_{1}, R_{1}\right)$ is $\leq_{\mathcal{U}}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)(\star)$
- ground-complete $\left(E_{1}, R_{1}\right)$ has valley proof for $t_{1} \leftrightarrow^{*} \hat{v}$

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

$$
\begin{aligned}
& \text { case } p_{1}=\epsilon \\
& \text { case } p>\epsilon
\end{aligned}
$$

- u ® u_{1}
- $(\hat{u}, \hat{v})>_{\mathcal{U}}\left(\hat{u}, t_{1}\right)$ as $(\{\hat{u}\}, \hat{u}, u, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, u_{1}, \ldots\right)$
- $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$
so some proof of $u_{1} \sigma_{1} \leftrightarrow^{*} v_{1} \sigma_{1}$ in $\left(E_{1}, R_{1}\right)$ is $\leq_{\mathcal{U}}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)(\star)$
- ground-complete $\left(E_{1}, R_{1}\right)$ has valley proof for $t_{1} \leftrightarrow^{*} \hat{v}$
- . $\hat{u} *^{*} \overbrace{}^{*} t_{1} \leftrightarrow^{*} \hat{v}$ yields proof Q in $\left(E_{1}, R_{1}\right)$ such that $Q<\mathcal{U}(\hat{u}, \hat{v})$

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step by compatibility, P has more than one step

$$
\begin{aligned}
& \text { case } p_{1}=\epsilon \\
& \text { case } p>\epsilon
\end{aligned}
$$

- u ® u_{1}
- $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as $(\{\hat{u}\}, \hat{u}, u, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, u_{1}, \ldots\right)$
- $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$
so some proof of $u_{1} \sigma_{1} \leftrightarrow^{*} v_{1} \sigma_{1}$ in $\left(E_{1}, R_{1}\right)$ is $\leq_{\mathcal{U}}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)(\star)$
- ground-complete $\left(E_{1}, R_{1}\right)$ has valley proof for $t_{1} \leftrightarrow^{*} \hat{v}$
- $\hat{u}_{2} \uplus^{*} t_{1} \leftrightarrow^{*} \hat{v}$ yields proof Q in $\left(E_{1}, R_{1}\right)$ such that $Q<\mathcal{U}(\hat{u}, \hat{v})$
- contradicts choice of (\hat{u}, \hat{v})

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step
- $u_{1} \rightarrow v_{1}$ must be rewrite step

Proof attempt (2)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{2} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \rightarrow v$ is rule in R_{1}

- assume $u_{1} \approx v_{1}$ is equation step
- $u_{1} \rightarrow v_{1}$ must be rewrite step
- reducible ground terms in R_{1}, R_{2} coincide

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
(wlog, $\hat{u}>\hat{v}$)
case P consists of more than one step

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
(wlog, $\hat{u}>\hat{v})$
case P consists of more than one step

$$
\text { case } p_{1}>\epsilon
$$

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
(wlog, $\hat{u}>\hat{v}$)
case P consists of more than one step
case $p_{1}>\epsilon$

- have $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as
$(\{\hat{u}\}, \hat{u}, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, \ldots\right)$

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step
case $p_{1}>\epsilon$

- have $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as
$(\{\hat{u}\}, \hat{u}, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, \ldots\right)$
- hence also $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$ so some proof of $u_{1} \sigma_{1} \leftrightarrow^{*} v_{1} \sigma_{1}$ in $\left(E_{1}, R_{1}\right)$ is $\leq \mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)(\star)$

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \hookleftarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step
case $p_{1}>\epsilon$

- have $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as
$(\{\hat{u}\}, \hat{u}, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, \ldots\right)$
- hence also $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$ so some proof of $u_{1} \sigma_{1} \leftrightarrow^{*} v_{1} \sigma_{1}$ in $\left(E_{1}, R_{1}\right)$ is $\leq \mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)(\star)$
case $u_{1} \approx v_{1}$ is equation

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \hookleftarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step
case $p_{1}>\epsilon$

- have $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as $(\{\hat{u}\}, \hat{u}, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, \ldots\right)$
- hence also $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$ so some proof of $u_{1} \sigma_{1} \leftrightarrow^{*} v_{1} \sigma_{1}$ in $\left(E_{1}, R_{1}\right)$ is $\leq \mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$ (\star) case $u_{1} \approx v_{1}$ is equation
- $\subset \hat{u} \leftrightarrow \leftrightarrow^{*} t_{1} \leftrightarrow^{*} \hat{v}$ yields proof Q in $\left(E_{1}, R_{1}\right)$ such that $Q<\mathcal{U}(\hat{u}, \hat{v})$

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step
case $p_{1}>\epsilon$

- have $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as $(\{\hat{u}\}, \hat{u}, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, \ldots\right)$
- hence also $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$ so some proof of $u_{1} \sigma_{1} \leftrightarrow^{*} v_{1} \sigma_{1}$ in $\left(E_{1}, R_{1}\right)$ is $\leq \mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)(\star)$ case $u_{1} \approx v_{1}$ is equation
- $\hat{u} \leftrightarrow \leftrightarrow^{*} t_{1} \leftrightarrow^{*} \hat{v}$ yields proof Q in $\left(E_{1}, R_{1}\right)$ such that $Q<\mathcal{U}(\hat{u}, \hat{v})$
- ground-complete (E_{1}, R_{1}) has valley proof for $t_{1} \leftrightarrow^{*} \hat{v}$

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step
case $p_{1}>\epsilon$

- have $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as $(\{\hat{u}\}, \hat{u}, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, \ldots\right)$
- hence also $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$ so some proof of $u_{1} \sigma_{1} \leftrightarrow^{*} v_{1} \sigma_{1}$ in $\left(E_{1}, R_{1}\right)$ is $\leq \mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)(\star)$ case $u_{1} \approx v_{1}$ is equation
- $\hat{u} \leftrightarrow \leftrightarrow^{*} t_{1} \leftrightarrow^{*} \hat{v}$ yields proof Q in $\left(E_{1}, R_{1}\right)$ such that $Q<\mathcal{U}(\hat{u}, \hat{v})$
- ground-complete (E_{1}, R_{1}) has valley proof for $t_{1} \leftrightarrow^{*} \hat{v}$ - $\hat{u} \leftrightarrow \rightarrow_{*}^{*} t_{1} \leftrightarrow^{*} \hat{v}$ yields proof Q in $\left(E_{1}, R_{1}\right)$ such that $Q<\mathcal{U}(\hat{u}, \hat{v})$

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \hookleftarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step

$$
\text { case } p_{1}>\epsilon
$$

- have $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as $(\{\hat{u}\}, \hat{u}, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, \ldots\right)$
- hence also $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$ so some proof of $u_{1} \sigma_{1} \leftrightarrow^{*} v_{1} \sigma_{1}$ in $\left(E_{1}, R_{1}\right)$ is $\leq \mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)(\star)$ case $u_{1} \approx v_{1}$ is equation $\}$
- $\hat{u} \leftrightarrow \leftrightarrow^{*} t_{1} \leftrightarrow^{*} \hat{v}$ yields proof Q in $\left(E_{1}, R_{1}\right)$ such that $Q<\mathcal{U}(\hat{u}, \hat{v})$
- ground-complete (E_{1}, R_{1}) has valley proof for $t_{1} \leftrightarrow^{*} \hat{v}$
- $\hat{u} \leftrightarrow \leftrightarrow^{*} t_{1} \leftrightarrow^{*} \hat{v}$ yields proof Q in $\left(E_{1}, R_{1}\right)$ such that $Q<\mathcal{U}(\hat{u}, \hat{v})$ - contradicts choice of (\hat{u}, \hat{v})

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step
case $p_{1}>\epsilon$

- have $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as
$(\{\hat{u}\}, \hat{u}, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, \ldots\right)$
- hence also $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$ so some proof of $u_{1} \sigma_{1} \leftrightarrow^{*} v_{1} \sigma_{1}$ in $\left(E_{1}, R_{1}\right)$ is $\leq \mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)(\star)$
case $u_{1} \approx v_{1}$ is equation $\}$
case $u_{1} \rightarrow v_{1}$ is rule

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \hookleftarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step
case $p_{1}>\epsilon$

- have $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as
$(\{\hat{u}\}, \hat{u}, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, \ldots\right)$
- hence also $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$ so some proof of $u_{1} \sigma_{1} \leftrightarrow^{*} v_{1} \sigma_{1}$ in $\left(E_{1}, R_{1}\right)$ is $\leq \mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)(\star)$
case $u_{1} \approx v_{1}$ is equation $\}$
case $u_{1} \rightarrow v_{1}$ is rule
- t_{2} reduces to t_{1}^{\prime} in $\left(E_{1}, R_{1}\right)$

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \hookleftarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step
case $p_{1}>\epsilon$

- have $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as
$(\{\hat{u}\}, \hat{u}, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, \ldots\right)$
- hence also $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$ so some proof of $u_{1} \sigma_{1} \leftrightarrow^{*} v_{1} \sigma_{1}$ in $\left(E_{1}, R_{1}\right)$ is $\leq \mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)(\star)$
case $u_{1} \approx v_{1}$ is equation $\}$
case $u_{1} \rightarrow v_{1}$ is rule
- \hat{u}_{2} reduces to t_{1}^{\prime} in $\left(E_{1}, R_{1}\right)$
ground-complete $\left(E_{1}, R_{1}\right)$ has valley proof for $t_{1}^{\prime} \leftrightarrow^{*} \hat{v}$

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \hookleftarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step
case $p_{1}>\epsilon$

- have $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as $(\{\hat{u}\}, \hat{u}, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, \ldots\right)$
- hence also $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$ so some proof of $u_{1} \sigma_{1} \leftrightarrow^{*} v_{1} \sigma_{1}$ in $\left(E_{1}, R_{1}\right)$ is $\leq \mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)(\star)$
case $u_{1} \approx v_{1}$ is equation $\}$
case $u_{1} \rightarrow v_{1}$ is rule
- u_{2} reduces to t_{1}^{\prime} in $\left(E_{1}, R_{1}\right)$
ground-complete $\left(E_{1}, R_{1}\right)$ has valley proof for $t_{1}^{\prime} \leftrightarrow^{*} \hat{v}$
- $\hat{u} \xrightarrow{*} t_{1} \leftrightarrow^{*} \hat{v}$ yields proof Q in $\left(E_{1}, R_{1}\right)$ such that $Q<\mathcal{U}(\hat{u}, \hat{v})$

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \hookleftarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step
case $p_{1}>\epsilon$

- have $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as $(\{\hat{u}\}, \hat{u}, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, \ldots\right)$
- hence also $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$ so some proof of $u_{1} \sigma_{1} \leftrightarrow^{*} v_{1} \sigma_{1}$ in $\left(E_{1}, R_{1}\right)$ is $\leq \mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)(\star)$
case $u_{1} \approx v_{1}$ is equation $\}$
case $u_{1} \rightarrow v_{1}$ is rule !
- u_{2} reduces to t_{1}^{\prime} in $\left(E_{1}, R_{1}\right)$
ground-complete $\left(E_{1}, R_{1}\right)$ has valley proof for $t_{1}^{\prime} \leftrightarrow^{*} \hat{v}$
- $\hat{u} \xrightarrow{*} t_{1} \leftrightarrow^{*} \hat{v}$ yields proof Q in $\left(E_{1}, R_{1}\right)$ such that $Q<\mathcal{U}(\hat{u}, \hat{v})$ - contradicts choice of (\hat{u}, \hat{v})

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step

$$
\text { case } \left.p_{1}>\epsilon\right\}
$$

- have $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as
$(\{\hat{u}\}, \hat{u}, \ldots)>_{c}\left(\{\hat{u}\}, u_{1} \sigma_{1}, \ldots\right)$
- hence also $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$ so some proof of $u_{1} \sigma_{1} \leftrightarrow^{*} v_{1} \sigma_{1}$ in $\left(E_{1}, R_{1}\right)$ is $\leq \mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$ (\star)
case $u_{1} \approx v_{1}$ is equation $\}$
case $u_{1} \rightarrow v_{1}$ is rule ?

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
(wlog, $\hat{u}>\hat{v})$
case P consists of more than one step

$$
\begin{aligned}
& \text { case } p_{1}>\epsilon \\
& \text { case } p_{1}=\epsilon
\end{aligned}
$$

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \hookleftarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step

$$
\begin{aligned}
& \text { case } p_{1}>\epsilon \\
& \text { case } p_{1}=\epsilon
\end{aligned}
$$

case $u_{1} \approx v_{1}$ is equation \downarrow argument as before

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \hookleftarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step

$$
\begin{aligned}
& \text { case } p_{1}>\epsilon \\
& \text { case } p_{1}=\epsilon
\end{aligned}
$$

case $u_{1} \approx v_{1}$ is equation \downarrow argument as before case $u_{1} \rightarrow v_{1}$ is rule

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step

$$
\begin{aligned}
& \text { case } p_{1}>\epsilon \\
& \text { case } p_{1}=\epsilon
\end{aligned}
$$

case $u_{1} \approx v_{1}$ is equation $\}$ argument as before case $u_{1} \rightarrow v_{1}$ is rule

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step

$$
\begin{aligned}
& \text { case } p_{1}>\epsilon \\
& \text { case } p_{1}=\epsilon
\end{aligned}
$$

case $u_{1} \approx v_{1}$ is equation $\}$ argument as before case $u_{1} \rightarrow v_{1}$ is rule

case $u \triangleright u_{1}$

- $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as
$(\{\hat{u}\}, \hat{u}, u, \ldots)>_{c}\left(\{\hat{u}\}, \hat{u}, u_{1}, \ldots\right)$

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step

$$
\begin{aligned}
& \text { case } p_{1}>\epsilon \\
& \text { case } p_{1}=\epsilon
\end{aligned}
$$

case $u_{1} \approx v_{1}$ is equation $\}$ argument as before case $u_{1} \rightarrow v_{1}$ is rule

case $u \triangleright u_{1}$

- $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as
$(\{\hat{u}\}, \hat{u}, u, \ldots)>_{c}\left(\{\hat{u}\}, \hat{u}, u_{1}, \ldots\right)$
- hence also $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step

$$
\begin{aligned}
& \text { case } p_{1}>\epsilon \\
& \text { case } p_{1}=\epsilon
\end{aligned}
$$

case $u_{1} \approx v_{1}$ is equation $\}$ argument as before case $u_{1} \rightarrow v_{1}$ is rule

case $u \triangleright u_{1}$

- $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as
$(\{\hat{u}\}, \hat{u}, u, \ldots)>_{c}\left(\{\hat{u}\}, \hat{u}, u_{1}, \ldots\right)$
- hence also $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$
- so $\exists t_{1}^{\prime}$ such that $\hat{u} \leftrightarrow^{*} t_{1}^{\prime}$ in $\left(E_{1}, R_{1}\right)$ and $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}^{\prime}\right) i(\star)$

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step

$$
\begin{aligned}
& \text { case } \left.p_{1}>\epsilon\right\} \\
& \text { case } p_{1}=\epsilon
\end{aligned}
$$

case $u_{1} \approx v_{1}$ is equation $\}$ argument as before case $u_{1} \rightarrow v_{1}$ is rule

case $u \triangleright u_{1}$

- $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as
$(\{\hat{u}\}, \hat{u}, u, \ldots)>_{c}\left(\{\hat{u}\}, \hat{u}, u_{1}, \ldots\right)$
- hence also $(\hat{u}, \hat{v})>\mathcal{u}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$
- so $\exists t_{1}^{\prime}$ such that $\hat{u} \leftrightarrow^{*} t_{1}^{\prime}$ in $\left(E_{1}, R_{1}\right)$ and $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}^{\prime}\right) i(\star)$
- (E_{1}, R_{1}) allows for proof $\left(\hat{u} \leftrightarrow^{*} t_{1}^{\prime} \leftrightarrow^{*} \hat{v}\right)<\mathcal{u}(\hat{u}, \hat{v})$

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \leftrightarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step

$$
\begin{aligned}
& \text { case } \left.p_{1}>\epsilon\right\} \\
& \text { case } p_{1}=\epsilon
\end{aligned}
$$

case $u_{1} \approx v_{1}$ is equation $\}$ argument as before case $u_{1} \rightarrow v_{1}$ is rule

case $\left.u \triangleright u_{1}\right\}$

- $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}\right)$ as $(\{\hat{u}\}, \hat{u}, u, \ldots)>_{c}\left(\{\hat{u}\}, \hat{u}, u_{1}, \ldots\right)$
- hence also $(\hat{u}, \hat{v})>\mathcal{U}\left(u_{1} \sigma_{1}, v_{1} \sigma_{1}\right)$
- so $\exists t_{1}^{\prime}$ such that $\hat{u} \leftrightarrow^{*} t_{1}^{\prime}$ in $\left(E_{1}, R_{1}\right)$ and $(\hat{u}, \hat{v})>\mathcal{U}\left(\hat{u}, t_{1}^{\prime}\right) i(\star)$
- ($\left.E_{1}, R_{1}\right)$ allows for proof $\left(\hat{u} \leftrightarrow^{*} t_{1}^{\prime} \leftrightarrow^{*} \hat{v}\right)<\mathcal{u}(\hat{u}, \hat{v})$
- contradicts choice of (\hat{u}, \hat{v})

Proof attempt (3)

$\left(E_{2}, R_{2}\right)$ allows for minimal proof P

$$
\hat{u} \xrightarrow[\sigma_{1}]{u_{1} \leftrightarrow v_{1}} p_{1} t_{1} \xrightarrow[\sigma_{2}]{u_{2} \hookleftarrow v_{2}} p_{1} t_{2} \rightarrow \ldots \rightarrow t_{k} \leftarrow \ldots \leftarrow \hat{v}
$$

case $u \approx v$ is equation in E_{1}
case P consists of more than one step

$$
\begin{aligned}
& \text { case } p_{1}>\epsilon \\
& \text { case } p_{1}=\epsilon
\end{aligned}
$$

case $u_{1} \approx v_{1}$ is equation $\}$ argument as before case $u_{1} \rightarrow v_{1}$ is rule

Example

yet another pair of ground-complete systems for same theory

$$
\left(E_{1}, R_{1}\right)=\left\{\begin{array}{rl}
0^{\prime}+y & \approx y+0 \\
0+0 & \rightarrow 0
\end{array} \quad\left(E_{2}, R_{2}\right)=\left\{\begin{aligned}
0^{\prime}+(x+y) & \approx(x+y)+0 \\
0+0 & \rightarrow 0 \\
0^{\prime}+0 & \rightarrow 0
\end{aligned}\right.\right.
$$

compatible with simplification order

Conclusion

- ground-complete systems are "less unique" than complete ones
- reducedness becomes undecidable property

Conclusion

- ground-complete systems are "less unique" than complete ones
- reducedness becomes undecidable property

Further work

- fix proof

