Termination Tools in Automated Reasoning* PhD defense

Sarah Winkler

Computational Logic Group
Institute of Computer Science
University of Innsbruck

March 21, 2013

Automated Reasoning

- deduction calculi formalize reasoning

Automated Reasoning

- deduction calculi formalize reasoning, relying on reduction order \succ Challenge
- crucial parameter, but hard to fix appropriately in advance
- classical reduction orders have limited computational power

Automated Reasoning with Termination Tools

- deduction calculi formalize reasoning, relying on reduction order \succ Challenge
- crucial parameter, but hard to fix appropriately in advance
- classical reduction orders have limited computational power

PhD Project

- Idea 1: apply automatic termination tools instead of \succ

Automated Reasoning with Termination Tools

- deduction calculi formalize reasoning, relying on reduction order \succ Challenge
- crucial parameter, but hard to fix appropriately in advance
- classical reduction orders have limited computational power

PhD Project

- Idea 1: apply automatic termination tools instead of \succ and explore multiple possibilities in parallel

Automated Reasoning with Termination Tools

- deduction calculi formalize reasoning, relying on reduction order \succ

Challenge

- crucial parameter, but hard to fix appropriately in advance
- classical reduction orders have limited computational power

PhD Project

- Idea 1: apply automatic termination tools instead of \succ and explore multiple possibilities in parallel
- Idea 2: deduction as optimization problem over constraints

Automated Reasoning with Termination Tools

- deduction calculi formalize reasoning, relying on reduction order \succ

Challenge

- crucial parameter, but hard to fix appropriately in advance
- classical reduction orders have limited computational power

PhD Project

- Idea 1: apply automatic termination tools instead of \succ and explore multiple possibilities in parallel
- Idea 2: deduction as optimization problem over constraints

Outline

Term Rewriting

Knuth-Bendix Completion

Ordered Completion

Normalized Completion

Term Rewriting

\qquad

on

$\square \longrightarrow$ levoip

\author{

}

Results
 RI

$+5$

7

```
\square
```

```
\square
```

```
\square
```

- \(+\)
 \(+\)
 \(+\)
 \(+\)
 \(\square\)
 -

```
\square
```

號

Term Rewriting

Example

$$
\begin{array}{rlrl}
\operatorname{sort}([]) & \rightarrow[] & c(x, y: z, w, 0) & \rightarrow x:(y: z) \\
\operatorname{sort}(x: y) & \rightarrow \operatorname{ins}(x, \operatorname{sort}(y)) & c(x, y: z, 0, w) \rightarrow y: \operatorname{ins}(x, z) \\
\operatorname{ins}(x,[]) & \rightarrow x:[] & c(x, y: z, s(v), s(w)) \rightarrow c(x, y: z, v, w) \\
\operatorname{ins}(x, y: z) & \rightarrow c(x, y: z, x, y) &
\end{array}
$$

Term Rewriting

Example

$$
\begin{array}{lr}
\quad \operatorname{sort}([]) \rightarrow[] & c(x, y: z, w, 0) \rightarrow x:(y: z) \\
\operatorname{sort}(x: y) \rightarrow \operatorname{ins}(x, \operatorname{sort}(y)) & c(x, y: z, 0, w) \rightarrow y: \operatorname{ins}(x, z) \\
\quad \operatorname{ins}(x,[]) \rightarrow x:[] & c(x, y: z, s(v), s(w)) \rightarrow c(x, y: z, v, w) \\
\operatorname{ins}(x, y: z) \rightarrow c(x, y: z, x, y) & \\
\text { sort(s(0):(0:[]))} & \\
\text { term } &
\end{array}
$$

Term Rewriting

Example

$$
\begin{array}{lr}
\quad \operatorname{sort}([]) \rightarrow[] & c(x, y: z, w, 0) \rightarrow x:(y: z) \\
\operatorname{sort}(x: y) \rightarrow \operatorname{ins}(x, \operatorname{sort}(y)) & c(x, y: z, 0, w) \rightarrow y: \operatorname{ins}(x, z) \\
\quad \operatorname{ins}(x,[]) \rightarrow x:[] & c(x, y: z, s(v), s(w)) \rightarrow c(x, y: z, v, w) \\
\operatorname{ins}(x, y: z) \rightarrow c(x, y: z, x, y) & \\
\text { sort(s(0): }(0:[])) & \\
\text { ground term (no variables) } &
\end{array}
$$

Term Rewriting

Example

$$
\begin{array}{cc}
\operatorname{sort}([]) \rightarrow[] & c(x, y: z, w, 0) \rightarrow x:(y: z) \\
\operatorname{sort}(x: y) \rightarrow \operatorname{ins}(x, \operatorname{sort}(y)) & c(x, y: z, 0, w) \rightarrow y: \operatorname{ins}(x, z) \\
\operatorname{ins}(x,[]) \rightarrow x:[] & \mathrm{c}(x, y: z, \mathrm{~s}(v), \mathrm{s}(w)) \rightarrow c(x, y: z, v, w) \\
\operatorname{ins}(x, y: z) \rightarrow c(x, y: z, x, y) & \\
\text { sort(s(0): }(0:[])) \rightarrow_{\mathcal{R}} \operatorname{ins}(\mathrm{s}(0), \operatorname{sort}(0:[]))
\end{array}
$$

rewrite step

Term Rewriting

Example

$$
\begin{aligned}
& \text { sort([]) } \rightarrow \text { [] } \\
& \operatorname{sort}(x: y) \rightarrow \operatorname{ins}(x, \operatorname{sort}(y)) \\
& \operatorname{ins}(x,[]) \rightarrow x:[] \\
& c(x, y: z, w, 0) \rightarrow x:(y: z) \\
& c(x, y: z, 0, w) \rightarrow y: \operatorname{ins}(x, z) \\
& c(x, y: z, s(v), s(w)) \rightarrow c(x, y: z, v, w) \\
& \operatorname{ins}(x, y: z) \rightarrow c(x, y: z, x, y) \\
& \operatorname{sort}(s(0):(0:[])) \rightarrow_{\mathcal{R}} \operatorname{ins}(s(0), \operatorname{sort}(0:[])) \rightarrow_{\mathcal{R}}^{*} 0:(s(0):[]) \\
& \text { many rewrite steps }
\end{aligned}
$$

Term Rewriting

Example

$$
\begin{array}{lc}
\quad \operatorname{sort}([]) \rightarrow[] & c(x, y: z, w, 0) \rightarrow x:(y: z) \\
\operatorname{sort}(x: y) \rightarrow \operatorname{ins}(x, \operatorname{sort}(y)) & c(x, y: z, 0, w) \rightarrow y: \operatorname{ins}(x, z) \\
\operatorname{ins}(x,[]) \rightarrow x:[] & c(x, y: z, s(v), s(w)) \rightarrow c(x, y: z, v, w) \\
\operatorname{ins}(x, y: z) \rightarrow c(x, y: z, x, y) & \\
\text { sort(s(0): }(0:[])) \rightarrow \mathcal{R} \operatorname{ins}(\mathrm{s}(0), \text { sort }(0:[])) \rightarrow_{\mathcal{R}}^{*} 0:(\mathrm{s}(0):[]) \\
\text { normal form }
\end{array}
$$

Term Rewriting

Example

$$
\begin{array}{lr}
\quad \operatorname{sort}([]) \rightarrow[] & c(x, y: z, w, 0) \rightarrow x:(y: z) \\
\operatorname{sort}(x: y) \rightarrow \operatorname{ins}(x, \operatorname{sort}(y)) & c(x, y: z, 0, w) \rightarrow y: \operatorname{ins}(x, z) \\
\operatorname{ins}(x,[]) \rightarrow x:[] & c(x, y: z, s(v), s(w)) \rightarrow c(x, y: z, v, w) \\
\operatorname{ins}(x, y: z) \rightarrow c(x, y: z, x, y) & \\
\text { sort(s(0) : }(0:[])) \rightarrow \mathcal{R} \text { ins(s(0), sort(0:[])) } \rightarrow \frac{1}{\mathcal{R}} 0:(s(0):[]) \\
\text { normal form }
\end{array}
$$

Term Rewriting

Example

$$
\begin{array}{lc}
\quad \operatorname{sort}([]) \rightarrow[] & c(x, y: z, w, 0) \rightarrow x:(y: z) \\
\operatorname{sort}(x: y) \rightarrow \operatorname{ins}(x, \operatorname{sort}(y)) & c(x, y: z, 0, w) \rightarrow y: \operatorname{ins}(x, z) \\
\operatorname{ins}(x,[]) \rightarrow x:[] & c(x, y: z, s(v), s(w)) \rightarrow c(x, y: z, v, w) \\
\operatorname{ins}(x, y: z) \rightarrow c(x, y: z, x, y) & \\
\text { sort(s(0): }(0:[])) \leftrightarrow \leftrightarrow_{\mathcal{R}}^{*} \operatorname{sort}(0:(\mathrm{s}(0):[])) \\
\text { many rewrite steps in both directions (equational theory) }
\end{array}
$$

Term Rewriting

Example

$$
\begin{array}{cc}
\operatorname{sort}([]) \rightarrow[] & c(x, y: z, w, 0) \rightarrow x:(y: z) \\
\operatorname{sort}(x: y) \rightarrow \operatorname{ins}(x, \text { sort }(y)) & c(x, y: z, 0, w) \rightarrow y: \text { ins }(x, z) \\
\operatorname{ins}(x,[]) \rightarrow x:[] \\
\operatorname{ins}(x, y: z) \rightarrow c(x, y: z, x, y) & c(x, y: z, s(v), s(w)) \rightarrow c(x, y: z, v, w)
\end{array}
$$

Definition
TRS \mathcal{R} is

- terminating if \exists no infinite sequence $t_{1} \rightarrow_{\mathcal{R}} t_{2} \rightarrow_{\mathcal{R}} t_{3} \rightarrow_{\mathcal{R}} \ldots$

Term Rewriting

Example

$$
\begin{array}{rlrl}
\operatorname{sort}([]) & \rightarrow[] & c(x, y: z, w, 0) & \rightarrow x:(y: z) \\
\operatorname{sort}(x: y) & \rightarrow \operatorname{ins}(x, \operatorname{sort}(y)) & \mathrm{c}(x, y: z, 0, w) \rightarrow y: \operatorname{ins}(x, z) \\
\operatorname{ins}(x,[]) & \rightarrow x:[] & c(x, y: z, s(v), s(w)) \rightarrow c(x, y: z, v, w) \\
\operatorname{ins}(x, y: z) & \rightarrow c(x, y: z, x, y) &
\end{array}
$$

Definition

TRS \mathcal{R} is

- terminating if \exists no infinite sequence $t_{1} \rightarrow_{\mathcal{R}} t_{2} \rightarrow_{\mathcal{R}} t_{3} \rightarrow_{\mathcal{R}} \ldots$
- confluent if $\forall s{ }_{\mathcal{R}}^{*} \leftarrow u \rightarrow_{\mathcal{R}}^{*} t \quad \exists v s \rightarrow_{\mathcal{R}}^{*} v{ }_{\mathcal{R}}^{*} \leftarrow t$

Term Rewriting

Example

$$
\begin{aligned}
\operatorname{sort}([]) & \rightarrow[] \\
\operatorname{sort}(x: y) & \rightarrow \operatorname{ins}(x, \operatorname{sort}(y)) \\
\operatorname{ins}(x,[]) & \rightarrow x:[] \\
\operatorname{ins}(x, y: z) & \rightarrow c(x, y: z, x, y)
\end{aligned}
$$

$$
\begin{gathered}
c(x, y: z, w, 0) \rightarrow x:(y: z) \\
c(x, y: z, 0, w) \rightarrow y: \operatorname{ins}(x, z) \\
c(x, y: z, s(v), s(w)) \rightarrow c(x, y: z, v, w)
\end{gathered}
$$

Definition
TRS \mathcal{R} is

- terminating if \exists no infinite sequence $t_{1} \rightarrow_{\mathcal{R}} t_{2} \rightarrow_{\mathcal{R}} t_{3} \rightarrow_{\mathcal{R}} \ldots$
- confluent if $\forall s_{\mathcal{R}}^{*} \leftarrow u \rightarrow_{\mathcal{R}}^{*} t \quad \exists v s \rightarrow_{\mathcal{R}}^{*} v{ }_{\mathcal{R}}^{*} \leftarrow t$
- convergent if confluent and terminating

Term Rewriting

Example

$$
\begin{array}{rlrl}
\operatorname{sort}([]) & \rightarrow[] & c(x, y: z, w, 0) & \rightarrow x:(y: z) \\
\operatorname{sort}(x: y) & \rightarrow \operatorname{ins}(x, \operatorname{sort}(y)) & c(x, y: z, 0, w) \rightarrow y: \operatorname{ins}(x, z) \\
\operatorname{ins}(x,[]) & \rightarrow x:[] & c(x, y: z, s(v), s(w)) \rightarrow c(x, y: z, v, w) \\
\operatorname{ins}(x, y: z) & \rightarrow c(x, y: z, x, y) &
\end{array}
$$

Definition
TRS \mathcal{R} is

- terminating if \exists no infinite sequence $t_{1} \rightarrow_{\mathcal{R}} t_{2} \rightarrow_{\mathcal{R}} t_{3} \rightarrow_{\mathcal{R}} \ldots$
- confluent if $\forall s{ }_{\mathcal{R}}^{*} \leftarrow u \rightarrow_{\mathcal{R}}^{*} t \quad \exists v s \rightarrow_{\mathcal{R}}^{*} v{ }_{\mathcal{R}}^{*} \leftarrow t$
- convergent if confluent and terminating

Fact
for convergent \mathcal{R} have $s \leftrightarrow_{\mathcal{R}}^{*} t$ iff s and t have same \mathcal{R}-normal form

Term Rewriting

Example

$$
\begin{array}{cc}
\operatorname{sort}([]) \rightarrow[] & c(x, y: z, w, 0) \rightarrow x:(y: z) \\
\operatorname{sort}(x: y) \rightarrow \operatorname{ins}(x, \text { sort }(y)) & c(x, y: z, 0, w) \rightarrow y: \operatorname{ins}(x, z) \\
\operatorname{ins}(x,[]) \rightarrow x:[] \\
\operatorname{ins}(x, y: z) \rightarrow c(x, y: z, x, y) & c(x, y: z, s(v), s(w)) \rightarrow c(x, y: z, v, w)
\end{array}
$$

Definition
TRS \mathcal{R} is

- terminating if \exists no infinite sequence $t_{1} \rightarrow_{\mathcal{R}} t_{2} \rightarrow_{\mathcal{R}} t_{3} \rightarrow_{\mathcal{R}} \ldots$
- ground confluent if \forall ground $s_{\mathcal{R}}^{*} \leftarrow u \rightarrow_{\mathcal{R}}^{*} t \quad \exists v s \rightarrow_{\mathcal{R}}^{*} v{ }_{\mathcal{R}}^{*} \leftarrow t$
- ground convergent if ground confluent and terminating

Fact
for convergent \mathcal{R} have $s \leftrightarrow_{\mathcal{R}}^{*} t$ iff s and t have same \mathcal{R}-normal form

Knuth-Bendix Completion

- succeeds if \mathcal{R} is convergent and $\leftrightarrow_{\mathcal{E}}^{*}=\leftrightarrow_{\mathcal{R}}^{*}$
- may also fail or loop

Knuth-Bendix Completion

$$
\begin{array}{cccc}
\mathcal{E} & \succ & \succ \\
\text { equations }
\end{array}+\quad{ }_{\text {reduction order }} \quad \longrightarrow K B \quad \begin{gathered}
\mathcal{R} \\
\text { rewrite system }
\end{gathered}
$$

- succeeds if \mathcal{R} is convergent and $\leftrightarrow_{\mathcal{E}}^{*}=\leftrightarrow_{\mathcal{R}}^{*}$
- may also fail or loop

Group Theory

$$
\left.\begin{array}{crrl}
e \cdot x \approx x & e \cdot x \rightarrow x & x \cdot e \rightarrow x \\
x^{-} \cdot x \approx e & x^{-} \cdot x \rightarrow e & x \cdot x^{-} \rightarrow \mathrm{e} \\
(x \cdot y) \cdot z \approx x \cdot(y \cdot z) & & \rightarrow K B & x^{--} \rightarrow x
\end{array}\right)(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z)
$$

Knuth-Bendix Completion

$$
\begin{array}{ccc}
\mathcal{E} & + & \succ \\
\text { equations }
\end{array} \quad{ }_{\text {reduction order }} \quad \longrightarrow K B \quad \begin{gathered}
\mathcal{R} \\
\text { rewrite system }
\end{gathered}
$$

- succeeds if \mathcal{R} is convergent and $\leftrightarrow_{\mathcal{E}}^{*}=\leftrightarrow_{\mathcal{R}}^{*}$
- may also fail or loop

Group Theory

$$
\begin{array}{rlrl}
\mathrm{e} \cdot x \approx x & \mathrm{e} \cdot x & \rightarrow x & x \cdot \mathrm{e} \rightarrow x \\
x^{-} \cdot x \approx \mathrm{e} & x^{-} \cdot x & \rightarrow \mathrm{e} & x \cdot x^{-} \rightarrow \mathrm{e} \\
(x \cdot y) \cdot z \approx x \cdot(y \cdot z) & x^{--} \rightarrow x & (x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z) \\
& \mathrm{e}^{-} \rightarrow \mathrm{e} & (x \cdot y)^{-} \rightarrow y^{-} \cdot x^{-} \\
& x \cdot\left(x^{-} \cdot y\right) \rightarrow y & x^{-} \cdot(x \cdot y) \rightarrow y
\end{array}
$$

Does $x^{---} \leftrightarrow_{\mathcal{R}}^{*} x^{-}$hold?

Knuth-Bendix Completion

- succeeds if \mathcal{R} is convergent and $\leftrightarrow_{\mathcal{E}}^{*}=\leftrightarrow_{\mathcal{R}}^{*}$
- may also fail or loop

Group Theory

$$
\begin{aligned}
& \mathrm{e} \cdot x \rightarrow x \\
& x \cdot \mathrm{e} \rightarrow x \\
& \mathrm{e} \cdot x \approx x \\
& x^{-} \cdot x \approx \mathrm{e} \quad \rightarrow_{K B} \\
& (x \cdot y) \cdot z \approx x \cdot(y \cdot z) \\
& x^{-} \cdot x \rightarrow \mathrm{e} \quad x \cdot x^{-} \rightarrow \mathrm{e} \\
& x^{--} \rightarrow x \quad(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z) \\
& \mathrm{e}^{-} \rightarrow \mathrm{e} \quad(x \cdot y)^{-} \rightarrow y^{-} \cdot x^{-} \\
& x \cdot\left(x^{-} \cdot y\right) \rightarrow y \quad x^{-} \cdot(x \cdot y) \rightarrow y
\end{aligned}
$$

Does $x^{---} \leftrightarrow_{\mathcal{R}}^{*} x^{-}$hold?

$$
x^{---} \rightarrow_{\mathcal{R}}^{!} x^{-}
$$

Knuth-Bendix Completion

- succeeds if \mathcal{R} is convergent and $\leftrightarrow_{\mathcal{E}}^{*}=\leftrightarrow_{\mathcal{R}}^{*}$
- may also fail or loop

Group Theory

$$
\begin{array}{rlrl}
\mathrm{e} \cdot x \approx x & \mathrm{e} \cdot x & \rightarrow x & x \cdot \mathrm{e} \rightarrow x \\
x^{-} \cdot x \approx \mathrm{e} & x^{-} \cdot x & \rightarrow \mathrm{e} & x \cdot x^{-} \rightarrow \mathrm{e} \\
(x \cdot y) \cdot z \approx x \cdot(y \cdot z) & x^{--} \rightarrow x & (x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z) \\
& \mathrm{e}^{-} \rightarrow \mathrm{e} & (x \cdot y)^{-} \rightarrow y^{-} \cdot x^{-} \\
& x \cdot\left(x^{-} \cdot y\right) \rightarrow y & x^{-} \cdot(x \cdot y) \rightarrow y
\end{array}
$$

Does $x^{---} \leftrightarrow_{\mathcal{R}}^{*} x^{-}$hold? Yes!

$$
x^{---} \rightarrow \frac{1}{\mathcal{R}} x^{-}
$$

Knuth-Bendix Completion

Definition (KB)
\mathcal{E} : set of equations
\mathcal{R} : set of rewrite rules
\succ : reduction order

Knuth-Bendix Completion

Definition (KB)
\mathcal{E} : set of equations $\quad \mathcal{R}$: set of rewrite rules $\quad \succ$: reduction order inference system $K B$ consists of six rules:
$\begin{array}{cl}\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{} \begin{array}{ll}\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\} \\ \text { if } s \succ t\end{array}\end{array}$

Knuth-Bendix Completion

Definition (KB)
\mathcal{E} : set of equations
\mathcal{R} : set of rewrite rules
$\succ:$ reduction order inference system $K B$ consists of six rules:
orient

$$
\frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{\underset{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{\text { if } s \succ t}}
$$

$$
\text { deduce } \frac{\mathcal{E}, \mathcal{R}}{\overline{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}} \begin{aligned}
& \text { if } s_{\mathcal{R}} \leftarrow u \rightarrow \mathcal{R} t
\end{aligned}
$$

Knuth-Bendix Completion

Definition (KB)

\mathcal{E} : set of equations
\mathcal{R} : set of rewrite rules
$\succ:$ reduction order inference system KB consists of six rules:

\[

\]

Knuth-Bendix Completion

Definition (KB)

\mathcal{E} : set of equations $\quad \mathcal{R}$: set of rewrite rules $\quad \succ$: reduction order inference system $K B$ consists of six rules:

$$
\begin{aligned}
& \\
& \text { deduce } \frac{\mathcal{E}, \mathcal{R}}{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}} \\
& \text { if } s_{\mathcal{R}} \leftarrow u \rightarrow_{\mathcal{R}} t \\
& \text { simplify } \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{\mathcal{E} \cup\{s \approx u\}, \mathcal{R}} \\
& \text { if } t \rightarrow_{\mathcal{R}} u \\
& \text { compose } \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}} \\
& \text { if } t \rightarrow \mathcal{R} u \\
& \text { collapse } \begin{aligned}
& \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}} \\
& \text { if } t \rightarrow \mathcal{R} u
\end{aligned}
\end{aligned}
$$

Knuth-Bendix Completion

Definition (KB)

\mathcal{E} : set of equations \mathcal{R} : set of rewrite rules $\quad \succ$: reduction order inference system $K B$ consists of six rules:

$$
\begin{aligned}
& \text { orient } \\
& \text { delete } \frac{\mathcal{E} \cup\{s \approx s\}, \mathcal{R}}{\mathcal{E}, \mathcal{R}} \\
& \text { deduce } \frac{\mathcal{E}, \mathcal{R}}{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}} \\
& \text { if } s_{\mathcal{R}} \leftarrow u \rightarrow_{\mathcal{R}} t \\
& \text { simplify } \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{\mathcal{E} \cup\{s \approx u\}, \mathcal{R}} \\
& \text { if } t \rightarrow_{\mathcal{R}} u \\
& \text { compose } \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}} \\
& \text { if } t \rightarrow \mathcal{R} u \\
& \text { collapse } \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}} \\
& \text { if } t \rightarrow \mathcal{R} u
\end{aligned}
$$

[^0]
Knuth-Bendix Completion

Definition (KBtt)

\mathcal{E} : set of equations \mathcal{R}, \mathcal{C} : sets of rewrite rules inference system KBtt consists of six rules:

\[

\]

Knuth-Bendix Completion

Definition (KBtt)

\mathcal{E} : set of equations \mathcal{R}, \mathcal{C} : sets of rewrite rules inference system KBtt consists of six rules:

$$
\begin{aligned}
& \text { orient } \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C} \cup\{s \rightarrow t\}} \\
& \text { if } \mathcal{C} \cup\{s \rightarrow t\} \text { terminates } \\
& \text { delete } \frac{\mathcal{E} \cup\{s \approx s\}, \mathcal{R}, \mathcal{C}}{\mathcal{E}, \mathcal{R}, \mathcal{C}} \\
& \text { compose } \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}, \mathcal{C}} \\
& \text { if } t \rightarrow \mathcal{R} u \\
& \text { deduce } \frac{\mathcal{E}, \mathcal{R}, \mathcal{C}}{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}} \\
& \text { if } s_{\mathcal{R}} \leftarrow u \rightarrow_{\mathcal{R}} t \\
& \text { simplify } \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{\mathcal{E} \cup\{s \approx u\}, \mathcal{R}, \mathcal{C}} \\
& \text { if } t \rightarrow_{\mathcal{R}} u \\
& \text { collapse } \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}, \mathcal{C}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}, \mathcal{C}} \\
& \text { if } t \rightarrow \mathcal{R} u
\end{aligned}
$$

Theorem

Wehrman et al 2006
Let $\left(\mathcal{E}_{0}, \varnothing, \varnothing\right) \vdash \ldots \vdash\left(\varnothing, \mathcal{R}_{n}, \mathcal{C}_{n}\right)$ satisfy $\operatorname{CP}\left(\mathcal{R}_{n}\right) \subseteq \bigcup_{i \geqslant 0} \mathcal{E}_{i}$.
Then \mathcal{R}_{n} is convergent.

Knuth-Bendix Completion with Termination Tools

Definition (KBtt)

\mathcal{E} : set of equations \mathcal{R}, \mathcal{C} : sets of rewrite rules inference system KBtt consists of six rules:

$$
\begin{aligned}
& \text { orient } \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C} \cup\{s \rightarrow t\}} \quad \text { deduce } \frac{\mathcal{E}, \mathcal{R}, \mathcal{C}}{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}} \\
& \begin{array}{ll}
& \text { if } \mathcal{C} \cup\{s \rightarrow t\} \text { terminates } \\
\text { delete } & \frac{\text { if } s \mathcal{R} \leftarrow u \rightarrow \mathcal{R} t}{} \\
\mathcal{E}, \mathcal{R}, \mathcal{C}
\end{array} \quad \begin{array}{l}
\text { ask termination tools } \\
\text { like } \mathrm{T}_{\mathrm{T} \top_{2}}
\end{array} \text { lify } \begin{array}{l}
\frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{\mathcal{E} \cup\{s \approx u\}, \mathcal{R}, \mathcal{C}} \\
\text { if } t \rightarrow \mathcal{R} u
\end{array} \\
& \text { compose } \begin{array}{l}
\frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow u\}, \mathcal{C}} \quad \text { collapse } \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}, \mathcal{C}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}, \mathcal{C}} \\
\text { if } t \rightarrow \mathcal{R} u
\end{array}
\end{aligned}
$$

Theorem
Wehrman et al 2006
Let $\left(\mathcal{E}_{0}, \varnothing, \varnothing\right) \vdash \ldots \vdash\left(\varnothing, \mathcal{R}_{n}, \mathcal{C}_{n}\right)$ satisfy $\operatorname{CP}\left(\mathcal{R}_{n}\right) \subseteq \bigcup_{i \geqslant 0} \mathcal{E}_{i}$.
Then \mathcal{R}_{n} is convergent.

Example

Example (CGE_{2})

KBtt-based tool Slothrop was first to complete theory of two commuting group endomorphisms:

$$
\left.\begin{array}{rlrl}
\mathrm{e} \cdot x & \approx x & x^{-} \cdot x & \approx \mathrm{e} \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y)
\end{array}\right) \mathrm{f}(x) \cdot \mathrm{g}(y) \approx \mathrm{g}(y) \cdot \mathrm{f}(x) \text {. }
$$

Example

Example (CGE_{2})

KBtt-based tool Slothrop was first to complete theory of two commuting group endomorphisms:

$$
\left.\begin{array}{rlrl}
\mathrm{e} \cdot x & \approx x & x^{-} \cdot x & \approx \mathrm{e} \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y)
\end{array}\right) \mathrm{f}(x) \cdot \mathrm{g}(y) \approx \mathrm{g}(y) \cdot \mathrm{f}(x) \text {. }
$$

Which Way to Go?

Example

Which Way to Go?

Example

Which Way to Go?

Example

Idea: Multi-Completion
Kondo \& Kurihara 99

- branches correspond to processes

Which Way to Go?

Example

Idea: Multi-Completion
Kondo \& Kurihara 99

- branches correspond to processes
- simulate multiple processes in parallel

Which Way to Go?

Example

Idea: Multi-Completion
Kondo \& Kurihara 99

- branches correspond to processes
- simulate multiple processes in parallel
- exploit sharing to gain efficiency

Multi-Completion with Termination Tools

Definition (MKBtt node)
node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ such that

- s, t are terms
- labels $R_{0}, R_{1}, E, C_{0}, C_{1}$ are sets of processes

Multi-Completion with Termination Tools

Definition (MKBtt node)
node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ such that if $p \in R_{0}$ then $s \rightarrow t \in \mathcal{R}_{p}$

- labels if $p \in R_{1}$ then $t \rightarrow s \in \mathcal{R}_{p}$ ets of processes

Multi-Completion with Termination Tools

Definition (MKBtt node)
node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ such that

- s, t are terms
- labels R_{0}. if $p \in E$ then $s \approx t \in \mathcal{E}_{p}$ ts of processes

Multi-Completion with Termination Tools

Definition (MKBtt node)
node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ such that

- s, t are terms
- labels R_{0}, R_{1}, E, if $p \in C_{1}$ then $t \rightarrow s \in \mathcal{C}_{p}$ cesses

Multi-Completion with Termination Tools

Definition (MKBtt node)
node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ such that

- s, t are terms
- labels $R_{0}, R_{1}, E, C_{0}, C_{1}$ are sets of processes

Definition (orient in MKBtt)
orient

$$
\frac{\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}}{} \begin{array}{llll}
\\
\left\langle s: t, R_{0} \quad, R_{1} \quad, \quad, C_{0}\right. & , C_{1} & \rangle\}
\end{array}
$$

Multi-Completion with Termination Tools

Definition (MKBtt node)
node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ such that

- s, t are terms
- labels $R_{0}, R_{1}, E, C_{0}, C_{1}$ are sets of processes

Definition (orient in MKBtt)

orient	$\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}$				
${ }, R_{1}, }$,C_{0}	,C_{1}	$\rangle\}$		

- $E_{\mid r}, E_{r l} \subseteq E$

Multi-Completion with Termination Tools

Definition (MKBtt node)

node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ such that

- s, t are terms
- labels $R_{0}, R_{1}, E, C_{0}, C_{1}$ are sets of processes

Definition (orient in MKBtt)
orient

$$
\left.\left.\frac{\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}}{} \frac{}{l s: t, R_{0}}, \quad, R_{1} \quad, \quad, C_{0} \quad, C_{1} \quad\right\rangle\right\}
$$

- $E_{\mid r}, E_{r \mid} \subseteq E$
- $\mathcal{C}_{p}(\mathcal{N}) \cup\{s \rightarrow t\}$ terminates for all $p \in E_{l r}$, $\mathcal{C}_{p}(\mathcal{N}) \cup\{t \rightarrow s\}$ terminates for all $p \in E_{r l}$

Multi-Completion with Termination Tools

Definition (MKBtt node)

node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ such that

- s, t are terms
- labels $R_{0}, R_{1}, E, C_{0}, C_{1}$ are sets of processes

Definition (orient in MKBtt)
orient

$$
\left.\frac{\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}}{}\left\langle s: t, R_{0}, R_{1} \quad, E^{\prime}, C_{0} \quad, C_{1} \quad\right\rangle\right\}
$$

- $E_{\mid r}, E_{r l} \subseteq E$ and $E^{\prime}=E \backslash\left(E_{\mid r} \cup E_{r l}\right)$
- $\mathcal{C}_{p}(\mathcal{N}) \cup\{s \rightarrow t\}$ terminates for all $p \in E_{l r}$, $\mathcal{C}_{p}(\mathcal{N}) \cup\{t \rightarrow s\}$ terminates for all $p \in E_{r l}$

Multi-Completion with Termination Tools

Definition (MKBtt node)

node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ such that

- s, t are terms
- labels $R_{0}, R_{1}, E, C_{0}, C_{1}$ are sets of processes

Definition (orient in MKBtt)
orient

$$
\frac{\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}}{\left\{\left\langle s: t, R_{0} \cup R_{l r}, R_{1} \cup R_{r l}, E^{\prime}, C_{0} \cup R_{/ r}, C_{1} \cup R_{r l}\right\rangle\right\}}
$$

- $E_{\mid r}, E_{r l} \subseteq E$ and $E^{\prime}=E \backslash\left(E_{\mid r} \cup E_{r l}\right)$
- $\mathcal{C}_{p}(\mathcal{N}) \cup\{s \rightarrow t\}$ terminates for all $p \in E_{l r}$, $\mathcal{C}_{p}(\mathcal{N}) \cup\{t \rightarrow s\}$ terminates for all $p \in E_{r l}$
- $R_{l r}=\left(E_{l r} \backslash E_{r l}\right) \cup\left\{p 0 \mid p \in\left(E_{r \mid} \cap E_{l r}\right)\right\}$, $R_{r l}=\left(E_{r l} \backslash E_{\mid r}\right) \cup\left\{p 1 \mid p \in\left(E_{r l} \cap E_{l r}\right)\right\}$

Multi-Completion with Termination Tools

Definition (MKBtt node)

node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ such that

- s, t are terms
- labels $R_{0}, R_{1}, E, C_{0}, C_{1}$ are sets of processes

Definition (orient in MKBtt)
orient

$$
\frac{\mathcal{N} \cup\left\{\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle\right\}}{\operatorname{split}(\mathcal{N}) \cup\left\{\left\langle s: t, R_{0} \cup R_{/ r}, R_{1} \cup R_{r l}, E^{\prime}, C_{0} \cup R_{\mid r}, C_{1} \cup R_{r l}\right\rangle\right\}}
$$

- $E_{l r}, E_{r l} \subseteq E$ and $E^{\prime}=E \backslash\left(E_{l r} \cup E_{r l}\right)$
- $\mathcal{C}_{p}(\mathcal{N}) \cup\{s \rightarrow t\}$ terminates for all $p \in E_{l r}$, $\mathcal{C}_{p}(\mathcal{N}) \cup\{t \rightarrow s\}$ terminates for all $p \in E_{r l}$
- $R_{l r}=\left(E_{l r} \backslash E_{r l}\right) \cup\left\{p 0 \mid p \in\left(E_{r l} \cap E_{l r}\right)\right\}$, $R_{r l}=\left(E_{r l} \backslash E_{l r}\right) \cup\left\{p 1 \mid p \in\left(E_{r l} \cap E_{l r}\right)\right\}$
- $\operatorname{split}(\mathcal{N})$ replaces every $p \in E_{r l} \cap E_{l r}$ by $p 0, p 1$

Examples

Example (CGE_{2})

KBtt-based tool Slothrop was first to complete theory of two commuting group endomorphisms:

$$
\begin{array}{ccc}
\mathrm{e} \cdot \mathrm{x} \approx x & x^{-} \cdot x \approx \mathrm{e} & (x \cdot y) \cdot z \approx x \cdot(y \cdot z) \\
\mathrm{f}(x \cdot y) \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{g}(x \cdot y) \approx \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{f}(x) \cdot \mathrm{g}(y) \approx \mathrm{g}(y) \cdot \mathrm{f}(x)
\end{array}
$$

Examples

Example (CGE_{2})

KBtt-based tool Slothrop was first to complete theory of two commuting group endomorphisms:

$$
\begin{array}{ccc}
\mathrm{e} \cdot x \approx x & x^{-} \cdot x \approx \mathrm{e} & (x \cdot y) \cdot z \approx x \cdot(y \cdot z) \\
\mathrm{f}(x \cdot y) \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{g}(x \cdot y) \approx \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{f}(x) \cdot \mathrm{g}(y) \approx \mathrm{g}(y) \cdot \mathrm{f}(x)
\end{array}
$$

Example (CGE_{n})

$\mathrm{mkb}_{\mathrm{TT}}$ completes theory CGE_{n} for $n \leq 5$:

$$
\begin{array}{rlrl}
\mathrm{e} \cdot x & \approx x & & x^{-} \cdot x \\
\mathrm{f}_{i}(x \cdot y) & \approx \mathrm{f} & \mathrm{f}(x) \cdot \mathrm{f}_{i}(y) & \\
\text { for } 1 \leq i \leq n & (x \cdot y) \cdot z \approx x \cdot(y \cdot z) \\
\mathrm{f}_{i}(x) \cdot \mathrm{f}_{j}(y) & \approx \mathrm{f}_{j}(y) \cdot \mathrm{f}_{i}(x) & & \text { for } 1 \leq i<j \leq n
\end{array}
$$

Examples

Example (CGE_{2})

KBtt-based tool Slothrop was first to complete theory of two commuting group endomorphisms:

$$
\begin{array}{ccc}
\mathrm{e} \cdot x \approx x & x^{-} \cdot x \approx \mathrm{e} & (x \cdot y) \cdot z \approx x \cdot(y \cdot z) \\
\mathrm{f}(x \cdot y) \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{g}(x \cdot y) \approx \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{f}(x) \cdot \mathrm{g}(y) \approx \mathrm{g}(y) \cdot \mathrm{f}(x)
\end{array}
$$

Example (CGE_{n})

$\mathrm{mkb}_{\text {TT }}$ completes theory CGE_{n} for $n \leq 5$:

$$
\begin{aligned}
\mathrm{e} \cdot x & \approx x & & x^{-} \cdot x \\
\mathrm{f}_{i}(x \cdot y) & \approx \mathrm{f}_{i}(x) \cdot \mathrm{f}_{i}(y) & & \text { for } 1 \leq i \leq n \\
\mathrm{f}_{i}(x) \cdot \mathrm{f}_{j}(y) & \approx \mathrm{f}_{j}(y) \cdot \mathrm{f}_{i}(x) & & \text { for } 1 \leq i<j \leq n
\end{aligned}
$$

- used in decision procedures for equality with uninterpreted functions

Ordered Completion

Limitation

KB fails if unorientable equation like $x \cdot y \approx y \cdot x$ persists even if convergent TRS exists!

Ordered Completion

Limitation

KB fails if unorientable equation like $x \cdot y \approx y \cdot x$ persists even if convergent TRS exists!

such that $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground-convergent and $\leftrightarrow_{\mathcal{E}_{0}}^{*}=\leftrightarrow_{\mathcal{E} \cup \mathcal{R}}^{*}$

Ordered Completion

Limitation

KB fails if unorientable equation like $x \cdot y \approx y \cdot x$ persists even if convergent TRS exists!

such that $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground-convergent and $\leftrightarrow_{\mathcal{E}_{0}}^{*}=\leftrightarrow_{\mathcal{E} \cup \mathcal{R}}^{*}$
orientable instances of \mathcal{E}

Ordered Completion

Limitation

KB fails if unorientable equation like $x \cdot y \approx y \cdot x$ persists even if convergent TRS exists!

$$
\begin{array}{ccc}
\mathcal{E}_{0} & \succ \\
\text { equations }
\end{array}+\begin{gathered}
\text { reduction order } \\
\text { total on ground terms }
\end{gathered} \quad \longrightarrow \text { OKB } \quad \begin{gathered}
\mathcal{E}, \mathcal{R} \\
\text { system }
\end{gathered}
$$

such that $\mathcal{E}_{\succ} \cup \mathcal{R}$ is ground-convergent and $\leftrightarrow_{\mathcal{E}_{0}}^{*}=\leftrightarrow_{\mathcal{E} \cup \mathcal{R}}^{*}$

Example (TPTP-GRP451-1)

can be handled by OKB using transfinite $\mathrm{KBO} \succ$:

$$
\begin{aligned}
y & \approx \mathrm{~d}(\mathrm{~d}(\mathrm{~d}(x, x), \mathrm{d}(x, \mathrm{~d}(y, \mathrm{~d}(\mathrm{~d}(\mathrm{~d}(x, x), x), z)))), z) \\
x \cdot y & \approx \mathrm{~d}(x, \mathrm{~d}(\mathrm{~d}(z, z), y)) \\
x^{-1} & \approx \mathrm{~d}(\mathrm{~d}(y, y), x)
\end{aligned}
$$

Definition (OKB)
\mathcal{E} : set of equations \mathcal{R} : set of rewrite rules $\quad \succ$: ground-total order

Definition (OKB)

\mathcal{E} : set of equations \mathcal{R} : set of rewrite rules $\quad \succ$: ground-total order inference system OKB consists of nine rules, including:
$\begin{array}{ll}\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}} \\ & \text { if } s \succ t\end{array}$

Definition (OKB)

\mathcal{E} : set of equations \mathcal{R} : set of rewrite rules \succ : ground-total order inference system OKB consists of nine rules, including:

$$
\begin{array}{ll}
\text { orient } & \mathcal{E} \cup\{s \approx t\}, \mathcal{R} \\
& \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{} \\
& \text { if } s \succ t \\
\text { collapse }_{2} & \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}} \\
& \text { if } t \rightarrow \mathcal{E}_{\succ} u
\end{array}
$$

Definition (OKB)

\mathcal{E} : set of equations \mathcal{R} : set of rewrite rules \succ : ground-total order inference system OKB consists of nine rules, including:

$$
\begin{array}{ll}
\text { orient } & \mathcal{E} \cup\{s \approx t\}, \mathcal{R} \\
& \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}}{} \\
& \text { if } s \succ t \\
\text { collapse }_{2} & \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}} \\
& \text { if } t \rightarrow \mathcal{E}_{\succ} u
\end{array}
$$

Theorem
Bachmair et al 1989
Let $\left(\mathcal{E}_{0}, \varnothing\right) \vdash \ldots \vdash\left(\mathcal{E}_{n}, \mathcal{R}_{n}\right)$ satisfy $\mathrm{CP}_{\succ}\left(\mathcal{R}_{n}\right) \subseteq \bigcup_{i \geqslant 0} \mathcal{E}_{i}$.
Then $\left(\mathcal{E}_{n}\right)_{\succ} \cup \mathcal{R}_{n}$ is ground-convergent.

Definition (OKBtt)

\mathcal{E} : set of equations \mathcal{R}, \mathcal{C} : sets of rewrite rules inference system OKBtt consists of nine rules, including:

$$
\begin{array}{ll}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C} \cup\{s \rightarrow t\}} \\
& \text { if } \mathcal{C} \cup\{s \rightarrow t\} \text { is totally terminating } \\
\text { collapse }_{2} & \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}, \mathcal{C}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}, \mathcal{C} \cup\{\ell \rightarrow r\}} \\
& \text { if } t \rightarrow \mathcal{E}_{\succ} u \text { using } \ell \rightarrow r \text { and } \mathcal{C} \cup\{\ell \rightarrow r\} \text { is totally terminating }
\end{array}
$$

Definition (OKBtt)

\mathcal{E} : set of equations \mathcal{R}, \mathcal{C} : sets of rewrite rules inference system OKBtt consists of nine rules, including:

$$
\begin{array}{ll}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{} \\
& \text { if } \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C} \cup\{s \rightarrow t\} \\
\text { collapse }_{2} & \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s \rightarrow s\}, \mathcal{C}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}, \mathcal{C} \cup\{\ell \rightarrow r\}} \\
& \text { if } t \rightarrow \mathcal{E}_{\succ} u \text { using } \ell \rightarrow r \text { and } \mathcal{C} \cup\{\ell \rightarrow r\} \text { is totally terminating }
\end{array}
$$

Theorem

Let $\left(\mathcal{E}_{0}, \varnothing, \varnothing\right) \vdash \ldots \vdash\left(\mathcal{E}_{n}, \mathcal{R}_{n}, \mathcal{C}_{n}\right)$ satisfy $\mathrm{CP}_{\triangleright}\left(\mathcal{R}_{n}\right) \subseteq \bigcup_{i \geqslant 0} \mathcal{E}_{i}$.
Then $\left(\mathcal{E}_{n}\right)_{\succ} \cup \mathcal{R}_{n}$ is ground-convergent for $\succ=\rightarrow_{\mathcal{C}_{n}}^{+}$.

Definition (OKBtt)

\mathcal{E} : set of equations \mathcal{R}, \mathcal{C} : sets of rewrite rules inference system OKBtt consists of nine rules, including:

$$
\begin{array}{ll}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C} \cup\{s \rightarrow t\}} \\
& \text { if } \mathcal{C} \cup\{s \rightarrow t\} \text { is totally terminating } \\
\text { collapse }_{2} & \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}, \mathcal{C}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}, \mathcal{C} \cup\{\ell \rightarrow r\}} \\
& \text { if } t \rightarrow \mathcal{E}_{\succ} u \text { using } \ell \rightarrow r \text { and } \mathcal{C} \cup\{\ell \rightarrow r\} \text { is totally terminating }
\end{array}
$$

Theorem

Let $\left(\mathcal{E}_{0}, \varnothing, \varnothing\right) \vdash \ldots \vdash\left(\mathcal{E}_{n}, \mathcal{R}_{n}, \mathcal{C}_{n}\right)$ satisfy $\mathrm{CP}_{\triangleright}\left(\mathcal{R}_{n}\right) \subseteq \bigcup_{i \geqslant 0} \mathcal{E}_{i}$.
Then $\left(\mathcal{E}_{n}\right)_{\succ} \cup \mathcal{R}_{n}$ is ground-convergent for $\succ=\rightarrow_{\mathcal{C}_{n}}^{+}$.

Remarks

- OKBtt can be combined with multi-completion

Definition (OKBtt)

\mathcal{E} : set of equations \mathcal{R}, \mathcal{C} : sets of rewrite rules inference system OKBtt consists of nine rules, including:

$$
\begin{array}{ll}
\text { orient } & \mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C} \\
& \frac{\mathcal{E}, \mathcal{R} \cup\{s \rightarrow t\}, \mathcal{C} \cup\{s \rightarrow t\}}{} \\
& \text { if } \mathcal{C} \cup\{s \rightarrow t\} \text { is totally terminating } \\
\text { collapse }_{2} & \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}, \mathcal{C}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}, \mathcal{C} \cup\{\ell \rightarrow r\}} \\
& \text { if } t \rightarrow \mathcal{E}_{\succ} \cup u \text { using } \ell \rightarrow r \text { and } \mathcal{C} \cup\{\ell \rightarrow r\} \text { is totally terminating }
\end{array}
$$

Theorem

Let $\left(\mathcal{E}_{0}, \varnothing, \varnothing\right) \vdash \ldots \vdash\left(\mathcal{E}_{n}, \mathcal{R}_{n}, \mathcal{C}_{n}\right)$ satisfy $\mathrm{CP}_{\triangleright}\left(\mathcal{R}_{n}\right) \subseteq \bigcup_{i \geqslant 0} \mathcal{E}_{i}$.
Then $\left(\mathcal{E}_{n}\right)_{\succ} \cup \mathcal{R}_{n}$ is ground-convergent for $\succ=\rightarrow_{\mathcal{C}_{n}}^{+}$.

Remarks

- OKBtt can be combined with multi-completion
- applicable termination techniques are severely restricted, critical pairs have to be over-approximated

Normalized Completion

Limitation

if input contains $\mathrm{AC}=\{x \cdot y \approx y \cdot x, x \cdot(y \cdot z) \approx(x \cdot y) \cdot z\}$ then KB fails and OKB is inefficient

Normalized Completion

Limitation

if input contains $\mathrm{AC}=\{x \cdot y \approx y \cdot x, x \cdot(y \cdot z) \approx(x \cdot y) \cdot z\}$ then KB fails and OKB is inefficient

Normalized Completion

Limitation

if input contains $\mathrm{AC}=\{x \cdot y \approx y \cdot x, x \cdot(y \cdot z) \approx(x \cdot y) \cdot z\}$ then KB fails and OKB is inefficient

- succeeds if \mathcal{R} is \mathcal{S}-convergent and $\leftrightarrow_{\mathcal{E} \cup \mathcal{S} \cup A C}^{*}=\leftrightarrow_{\mathcal{R} \cup \mathcal{S} \cup A C}^{*}$
- may also fail or loop

Normalized Completion

Limitation

if input contains $\mathrm{AC}=\{x \cdot y \approx y \cdot x, x \cdot(y \cdot z) \approx(x \cdot y) \cdot z\}$ then KB fails and OKB is inefficient

- succeeds if \mathcal{R} is \mathcal{S}-convergent and $\leftrightarrow_{\mathcal{E} \cup \mathcal{S} \cup A C}^{*}=\leftrightarrow_{\mathcal{R} \cup \mathcal{S} \cup A C}^{*}$
- may also fail or loop

Definition (Normalized Rewriting)

- $t \rightarrow_{\mathcal{R} \backslash \mathcal{S}} u$ if $t \rightarrow_{\mathcal{S} / \mathrm{AC}}^{!} \rightarrow_{\ell \rightarrow r / \mathrm{AC}} u$ for some $\ell \rightarrow r$ in \mathcal{R}

Normalized Completion

Limitation

if input contains $\mathrm{AC}=\{x \cdot y \approx y \cdot x, x \cdot(y \cdot z) \approx(x \cdot y) \cdot z\}$ then KB fails and OKB is inefficient

$\underset{$| AC-convergent |
| :---: |
| theory |$}{\mathcal{S}}+\underset{\text { equations }}{\mathcal{E}}+\underset{$| AC-compatible |
| :---: |
| reduction order |$}{\succ} \longrightarrow$| $\mathcal{A K B}$ |
| :---: |$\underset{$| rewrite |
| :---: |
| system |$}{\mathcal{R}}$

- succeeds if \mathcal{R} is \mathcal{S}-convergent and $\leftrightarrow_{\mathcal{E} \cup \mathcal{S} \cup A C}^{*}=\leftrightarrow_{\mathcal{R} \cup \mathcal{S} \cup A C}^{*}$
- may also fail or loop

Definition (Normalized Rewriting)

- $t \rightarrow_{\mathcal{R} \backslash \mathcal{S}} u$ if $t \rightarrow_{\mathcal{S} / \mathrm{AC}}^{!} \rightarrow_{\ell \rightarrow r / \mathrm{AC}} u$ for some $\ell \rightarrow r$ in \mathcal{R}
- \mathcal{R} is \mathcal{S}-convergent for \mathcal{E} if $\rightarrow_{\mathcal{R} \backslash \mathcal{S}}$ is AC-terminating and $\leftrightarrow_{\mathcal{E} \cup \mathcal{S} \cup \mathrm{AC}}^{*}=\rightarrow_{\mathcal{R} \backslash \mathcal{S}}^{!} \cdot \leftrightarrow_{\mathcal{S} \cup \mathrm{AC}}^{*} \cdot \mathcal{R} \backslash \dot{\mathcal{S}}^{\prime} \leftarrow$

Definition (NKB)

\mathcal{E} : set of equations \mathcal{R} : set of rewrite rules \succ : AC-reduction order inference system NKB consists of seven rules, including:
orient $\frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{} \begin{array}{ll}\text { if } s \succ t \\ & \end{array}$

Definition (NKB)

\mathcal{E} : set of equations \mathcal{R} : set of rewrite rules \succ : AC-reduction order inference system NKB consists of seven rules, including:

orient	$\mathcal{E} \cup\{s \approx t\}, \mathcal{R}$
	$\overline{\mathcal{E} \cup \Theta(s, t), \mathcal{R} \cup \Psi(s, t)}$
	if $s \succ t$
	(Θ, Ψ) form \mathcal{S}-normalizing pair

Definition (NKB)

\mathcal{E} : set of equations \mathcal{R} : set of rewrite rules \succ : AC-reduction order inference system NKB consists of seven rules, including:

$$
\begin{array}{ll}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{} \begin{array}{ll}
\mathcal{E} \cup \Theta(s, t), \mathcal{R} \cup \Psi(s, t) \\
\text { if } s \succ t \\
\text { collapse } & \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}} \\
& \text { if } t \rightarrow \mathcal{R} \backslash \mathcal{S} u
\end{array}
\end{array}
$$

Definition (NKB)

\mathcal{E} : set of equations \mathcal{R} : set of rewrite rules \succ : AC-reduction order inference system NKB consists of seven rules, including:

$$
\begin{array}{ll}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}}{} \begin{array}{ll}
\mathcal{E} \cup \Theta(s, t), \mathcal{R} \cup \Psi(s, t) \\
& \text { if } s \succ t \\
\text { collapse } & \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}} \\
& \text { if } t \rightarrow \mathcal{R} \backslash \mathcal{S} u
\end{array}
\end{array}
$$

Theorem

Let $\left(\mathcal{E}_{0}, \varnothing\right) \vdash \ldots \vdash\left(\varnothing, \mathcal{R}_{n}\right)$ satisfy $\mathrm{CP}_{\mathrm{AC}}\left(\mathcal{R}_{n}, \mathcal{R}_{n}^{e}\right) \subseteq \bigcup_{i \geqslant 0} \mathcal{E}_{i}$.
Then \mathcal{R}_{n} is \mathcal{S}-convergent.

Definition (NKBtt)

\mathcal{E} : set of equations \mathcal{R}, \mathcal{C} : sets of rewrite rules inference system NKBtt consists of seven rules, including:

$$
\begin{array}{ll}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{\mathcal{E} \cup \Theta(s, t), \mathcal{R} \cup \Psi(s, t), \mathcal{C} \cup \Psi(s, t)} \\
& \text { if } \mathcal{C} \cup \mathcal{S} \cup \Psi(s, t) \text { is AC-terminating } \\
\text { collapse } & \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}, \mathcal{C}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}, \mathcal{C}} \\
& \text { if } t \rightarrow \mathcal{R} \backslash \mathcal{S} u
\end{array}
$$

Definition (NKBtt)

\mathcal{E} : set of equations \mathcal{R}, \mathcal{C} : sets of rewrite rules inference system NKBtt consists of seven rules, including:

$$
\begin{array}{ll}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{} \\
& \overline{\mathcal{E} \cup \Theta(s, t), \mathcal{R} \cup \Psi(s, t), \mathcal{C} \cup \Psi(s, t)} \\
& \text { if } \mathcal{C} \cup \mathcal{S} \cup \Psi(s, t) \text { is AC-terminating } \\
\text { collapse } & \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}, \mathcal{C}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}, \mathcal{C}} \\
& \text { if } t \rightarrow \mathcal{R} \backslash \mathcal{S} u
\end{array}
$$

Theorem

Let $\left(\mathcal{E}_{0}, \varnothing, \varnothing\right) \vdash \ldots \vdash\left(\varnothing, \mathcal{R}_{n}, \mathcal{C}_{n}\right)$ satisfy $\operatorname{CP}_{\mathrm{AC}}\left(\mathcal{R}_{n}, \mathcal{R}_{n}^{e}\right) \subseteq \bigcup_{i \geqslant 0} \mathcal{E}_{i}$. Then \mathcal{R}_{n} is \mathcal{S}-convergent.

Definition (NKBtt)

\mathcal{E} : set of equations \mathcal{R}, \mathcal{C} : sets of rewrite rules
inference system NKBtt consists of seven rules, including:

$$
\begin{array}{ll}
\text { orient } & \frac{\mathcal{E} \cup\{s \approx t\}, \mathcal{R}, \mathcal{C}}{\mathcal{E} \cup \Theta(s, t), \mathcal{R} \cup \Psi(s, t), \mathcal{C} \cup \Psi(s, t)} \\
& \text { if } \mathcal{C} \cup \mathcal{S} \cup \Psi(s, t) \text { is AC-terminating } \\
\text { collapse } & \frac{\mathcal{E}, \mathcal{R} \cup\{t \rightarrow s\}, \mathcal{C}}{\mathcal{E} \cup\{u \approx s\}, \mathcal{R}, \mathcal{C}} \\
& \text { if } t \rightarrow \mathcal{R} \backslash \mathcal{S} u
\end{array}
$$

Theorem

Let $\left(\mathcal{E}_{0}, \varnothing, \varnothing\right) \vdash \ldots \vdash\left(\varnothing, \mathcal{R}_{n}, \mathcal{C}_{n}\right)$ satisfy $\operatorname{CP}_{\mathrm{AC}}\left(\mathcal{R}_{n}, \mathcal{R}_{n}^{e}\right) \subseteq \bigcup_{i \geqslant 0} \mathcal{E}_{i}$. Then \mathcal{R}_{n} is \mathcal{S}-convergent.

Remark

NKBtt can be combined with multi-completion

Example: CGA

$\mathrm{mkb}_{\text {тT }}$ using MuTerm can apply normalized completion to handle theory of commuting group action:

$$
\begin{aligned}
& x \cdot \mathrm{e} \approx x \quad(x \cdot y) \cdot z \approx x \cdot(y \cdot z) \\
& \phi(\mathrm{e}, x) \approx x \quad \phi(x, \phi(y, z)) \approx \phi(x \cdot y, z) \\
& \mathrm{f}(\mathrm{e}) \approx \mathrm{e} \quad \mathrm{f}(x \cdot y) \approx \mathrm{f}(x) \cdot \mathrm{f}(y) \\
& \mathrm{g}(\mathrm{e}) \approx \mathrm{e} \quad \mathrm{~g}(x \cdot y) \approx \mathrm{g}(x) \cdot \mathrm{g}(y) \\
& x \cdot x^{-1} \approx \mathrm{e} \\
& \phi(\mathrm{f}(x), \mathrm{g}(y)) \approx \phi(\mathrm{g}(y), \mathrm{f}(x)) \\
& x \cdot y \approx y \cdot x
\end{aligned}
$$

Implementation: mkb ${ }_{\text {TT }}$

- standard, normalized, and ordered multi-completion with termination tools

Implementation: mkbTT

- standard, normalized, and ordered multi-completion with termination tools
- interfaces arbitrary termination prover, or uses $\mathrm{T}_{\boldsymbol{T}} \mathrm{T}_{2}$ internally

Implementation: mkb ${ }_{\text {TT }}$

- standard, normalized, and ordered multi-completion with termination tools
- interfaces arbitrary termination prover, or uses $\mathrm{T}_{\boldsymbol{T}} \mathrm{T}_{2}$ internally
- available via web interface or as OCaml source code

Implementation: mkbTT

- standard, normalized, and ordered multi-completion with termination tools
- interfaces arbitrary termination prover, or uses $\mathrm{T}_{\boldsymbol{T}} \mathrm{T}_{2}$ internally
- available via web interface or as OCaml source code
- various optimizations

Implementation: mkb ${ }_{\text {TT }}$

- standard, normalized, and ordered multi-completion with termination tools
- interfaces arbitrary termination prover, or uses $\mathrm{T}_{\boldsymbol{T}} \mathrm{T}_{2}$ internally
- available via web interface or as OCaml source code
- various optimizations

Implementation: mkb ${ }_{\text {TT }}$

- standard, normalized, and ordered multi-completion with termination tools
- interfaces arbitrary termination prover, or uses $\mathrm{T}_{\boldsymbol{T}} \mathrm{T}_{2}$ internally
- available via web interface or as OCaml source code
- various optimizations

Implementation: mkbTT

- standard, normalized, and ordered multi-completion with termination tools
- interfaces arbitrary termination prover, or uses $\mathrm{T}_{\boldsymbol{T}} \mathrm{T}_{2}$ internally
- available via web interface or as OCaml source code
- various optimizations

Implementation: mkbTT

- standard, normalized, and ordered multi-completion with termination tools
- interfaces arbitrary termination prover, or uses $\mathrm{T}_{\boldsymbol{T}} \mathrm{T}_{2}$ internally
- available via web interface or as OCaml source code
- various optimizations

Results

Knuth-Bendix Completion

	mkb	Slothrop	KBCV	Maxcomp
BGK94-M $_{12}$	∞	38.8	6.0	39.6
SK90-3.26	∞	∞	20.9	∞
SK90-3.28	223.8	436.6	∞	15.9
TPTP-GRP454-1	9.6	∞	6.2	2.0
WS06-proofreduct	237.9	208.2	∞	∞
WSW06-equiv-proofs	7.3	33.5	∞	∞
\#successes (A)	87	76	87	86

- completion time in seconds, ∞ is timeout (600 seconds)
(A) 115 problems collected from the literature

Results

Knuth-Bendix Completion

	mkb $_{\text {TT }}$	Slothrop	KBCV	Maxcomp
BGK94-M $_{12}$	∞	38.8	6.0	39.6
SK90-3.26	∞	∞	20.9	∞
SK90-3.28	223.8	436.6	∞	15.9
TPTP-GRP454-1	9.6	∞	6.2	2.0
WS06-proofreduct	237.9	208.2	∞	∞
WSW06-equiv-proofs	7.3	33.5	∞	∞
\#successes (A)	87	76	87	86
\#successes (B)	1109			821

- completion time in seconds, ∞ is timeout (600 seconds)
(A) 115 problems collected from the literature
(B) all 3061 non-convergent TRSs in standard category of TPDB 7

Results

Ordered Completion

	Ipo	kbo	tkbo	lpo + kbo	total
KH11-fib	1.8	∞	∞	2.6	15.7
KH11-rl-theory	4.3	244.9	293.2	4.5	10.5
TPTP-GRP445-1	∞	5.8	11.4	5.5	11.7
TPTP-GRP452-1	∞	∞	192.1	∞	∞
Example 13	∞	∞	0.2	∞	0.1
\#successes (C)	89	88	81	96	90

\rightarrow completion time in seconds, ∞ is timeout (600 seconds)
\rightarrow (C) 138 problems collected from the literature

Results

Ordered Completion

	Ipo	kbo	tkbo	lpo+kbo	total
KH11-fib	1.8	∞	∞	2.6	15.7
KH11-rl-theory	4.3	244.9	293.2	4.5	10.5
TPTP-GRP445-1	∞	5.8	11.4	5.5	11.7
TPTP-GRP452-1	∞	∞	192.1	∞	∞
Example 13	∞	∞	0.2	∞	0.1
\#successes (C)	89	88	81	96	90

Theorem Proving

	total	kbo	lpo	dp+lpo	Waldmeister
\#successes (D)	116	148	152	121	>400
\#successes (E)	149	163	164	138	>200

- completion time in seconds, ∞ is timeout (600 seconds)
- (C) 138 problems collected from the literature
- (D) 565 difficult and (E) 215 easy UEQ problems in TPTP 3.6.0

Results

Normalized Completion

	$\mathrm{mkb}_{T \mathrm{~T}}$			CiME
theory \mathcal{S}	AC	AG	auto	
G94-abelian groups (AG)	1.6	0.1	0.1	0.05
AG + homomorphism	181.7	4.8	4.8	0.05
LS96-G0	1.9	0.1	0.1	$?$
LS96-G1	∞	12.4	12.5	$?$
G94-arithmetic	14.9	-	13.8	$?$
G94-AC-ring with unit	22.9	7.2	0.1	0.1
MU04-binary arithmetic	2.9	-	3.0	$?$
MU04-ternary arithmetic	18.1	-	17.3	$?$
CGA	∞	15.4	15.2	$?$
CRE	∞	216.7	145.1	$?$
\#successes (F)	10	7	13	4

\rightarrow completion time in seconds, ∞ is timeout (600 seconds)

- ?: no suitable reduction order for CiME
- (F) 20 problems collected from the literature

Contributions: Completion

國 H. Sato, S. Winkler, M. Kurihara, and A. Middeldorp.
Multi-completion with Termination Tools (System Description).
In Proc. IJCAR 2008, volume 5195 of LNCS, pp 306-312, 2008.
國 S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara.
Optimizing mkbTT (System Description).
In Proc. RTA 2010, LIPIcs 13, pp 373-384, 2010.
R
S. Winkler and A. Middeldorp.

Termination Tools in Ordered Completion.
In Proc. IJCAR 2010, volume 6173 of LNCS, pp 518-532, 2010.
B
S. Winkler and A. Middeldorp.

AC Completion with Termination Tools.
In Proc. CADE-23, volume 6803 of LNCS, pp 492-498, 2011
S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara.

Multi-Completion with Termination Tools.
Journal of Automated Reasoning 50(3):317-354, 2013.

Contributions: Some Other Topics

C. Sternagel, R. Thiemann, S. Winkler, and H. Zankl.CeTA—A Tool for Certified Termination Analysis.
In Proc. WST 2009, pp 84-87, 2009.
H. Zankl, S. Winkler, and A. Middeldorp.

Automating Ordinal Interpretations.
In Proc. WST 2012, pp 94-98, 2012.S. Winkler, H. Zankl, and A. Middeldorp.

Ordinals and Knuth-Bendix Orders.
In Proc. LPAR 2012, volume 7180 of LNCS, pp 420-434, 2012.

Conclusion

Theory

- inference systems for standard, ordered, and normalized completion combining termination tools with multi-completion
- normalized completion \& ordered completion: simplified collapse rules, correctness of critical pair criteria
- normalized completion: new notions for fairness, normalizing pairs

Conclusion

Theory

- inference systems for standard, ordered, and normalized completion combining termination tools with multi-completion
- normalized completion \& ordered completion: simplified collapse rules, correctness of critical pair criteria
- normalized completion: new notions for fairness, normalizing pairs

Implementation

- mkbтт: state-of-the-art completion-based theorem prover
- first fully automatic tool for ordered and normalized completion
- novel convergent systems

Critical Pairs

Let $\ell_{1} \rightarrow r_{1}, \ell_{2} \rightarrow r_{2}$ be variable-disjoint.
Definition
$\left\langle\ell_{1} \rightarrow r_{1}, p, \ell_{2} \rightarrow r_{2}\right\rangle_{\sigma}$ is overlap if $p \in \mathcal{P o s}_{\mathcal{F}}\left(\ell_{2}\right), \sigma=\operatorname{mgu}\left(\ell_{1},\left.\ell_{2}\right|_{p}\right)$ and $p \neq \epsilon$ if $\ell_{1} \rightarrow r_{1} \doteq \ell_{2} \rightarrow r_{2}$. Then $\ell_{2} \sigma\left[r_{1} \sigma\right]_{p} \approx r_{2} \sigma$ is critical pair

Definition

Let \mathcal{E} set of equations, \mathcal{R} set of rewrite rules, \succ ground-total. $\left\langle\ell_{1} \approx r_{1}, p, \ell_{2} \approx r_{2}\right\rangle_{\sigma}$ is extended overlap if $\ell_{1} \simeq r_{1}, \ell_{2} \simeq r_{2} \in \mathcal{E} \cup \mathcal{R}$, $\sigma=\operatorname{mgu}\left(\ell_{1},\left.\ell_{2}\right|_{p}\right)$, and $r_{i} \sigma \nsucc \ell_{i} \sigma$ for $i \in\{1,2\}$. $\ell_{2} \sigma\left[r_{1} \sigma\right]_{p} \approx r_{2} \sigma$ constitutes an extended critical pair

Definition

\mathcal{T}-overlap is $\left\langle\ell_{1} \rightarrow r_{1}, p, \ell_{2} \rightarrow r_{2}\right\rangle_{\Sigma}$ such that $p \in \operatorname{Pos}_{\mathcal{F}}\left(\ell_{2}\right)$ and Σ is complete set of \mathcal{T}-unifiers of $\left.\ell_{2}\right|_{p}$ and ℓ_{1}.
$\ell_{2} \sigma\left[r_{1} \sigma\right]_{p} \approx r_{2} \sigma$ constitutes \mathcal{T}-critical pair $\forall \sigma \in \Sigma$

Definition (extended rules)
$\mathcal{R}^{e}=\mathcal{R} \cup\left\{f(\ell, x) \rightarrow f(r, x) \mid \ell \rightarrow r \in \mathcal{R}, \operatorname{root}(\ell)=f\right.$ and $f \in \mathcal{F}_{\mathrm{AC}}$
Definition (normalizing pair)
(Θ, Ψ) constitutes \mathcal{S}-normalizing pair for terms u, v if
(i) $\Theta(u, v)$ and $\Psi(u, v)$ are in $\leftrightarrow_{\mathcal{E} \cup \mathcal{R} \cup \mathcal{S} \cup \mathcal{T}}$,
(ii) $\Psi(u, v) \subseteq \succ$,
(iii) for $P: s \underset{u \approx v}{\stackrel{\epsilon, \sigma}{\leftrightarrows}} t \quad \exists Q$ in $(\mathcal{S}, \Theta(u, v), \Psi(u, v))$ such that $P \Rightarrow Q$
(iv) for all $\mathcal{R}, \ell \rightarrow r$ in $\Psi(u, v)$ and $P: s \mathcal{S} \leftarrow w \leftrightarrow_{A C}^{*} \cdot \rightarrow_{\ell \rightarrow r} \cdot \rightarrow_{\mathcal{R} \backslash \mathcal{S}}^{*} t$ $\exists Q$ in $(\mathcal{S}, \Theta(u, v), \Psi(u, v) \cup \mathcal{R})$ such that $P \Rightarrow Q$ and terms in Q are smaller than w

[^0]: Theorem
 Knuth \& Bendix 1970
 Let $\left(\mathcal{E}_{0}, \varnothing\right) \vdash \ldots \vdash\left(\varnothing, \mathcal{R}_{n}\right)$ satisfy $\mathrm{CP}\left(\mathcal{R}_{n}\right) \subseteq \bigcup_{i \geqslant 0} \mathcal{E}_{i}$.
 Then \mathcal{R}_{n} is convergent.

