Optimizing mkb ${ }_{T T}$ System Description

Sarah Winkler Haruhiko Sato Aart Middeldorp Masahito Kurihara

Institute of Computer Science
University of Innsbruck

Graduate School of Information Science and Technology Hokkaido University

21st International Conference on Rewriting Techniques and Applications

July 13, 2010

Content

$\mathrm{mkb}_{T T}$

$\mathrm{mkb}_{T T}$ is Knuth-Bendix completion tool

$\mathrm{mkb}_{T T}$

$\mathrm{mkb}_{T T}$ is Knuth-Bendix completion tool

$\mathrm{mkb}_{T T}$

$\mathrm{mkb}_{T T}$ is Knuth-Bendix completion tool

$\mathrm{mkb}_{T T}$

$\mathrm{mkb}_{T T}$ is Knuth-Bendix completion tool combining

- termination tools (Wehrman, Stump, Westbrook '06) instead of using reduction order

$\mathrm{mkb}_{T T}$

$\mathrm{mkb}_{T T}$ is Knuth-Bendix completion tool combining

- termination tools
(Wehrman, Stump, Westbrook '06) instead of using reduction order
- multi-completion
(Kondo, Kurihara '99)
simulating multiple parallel processes

$\mathrm{mkb}_{T T}$ in a Nutshell

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$

$\mathrm{mkb}_{T T}$ in a Nutshell

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ

$\mathrm{mkb}_{T T}$ in a Nutshell

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data)

$\mathrm{mkb}_{T T}$ in a Nutshell

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data) and process sets R_{0}, \ldots, C_{1} (labels)

$\mathrm{mkb}_{T T}$ in a Nutshell

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data) and process sets R_{0}, \ldots, C_{1} (labels)
- mkb ${ }_{T T}$ is described by inference system operating on node set

$\mathrm{mkb}_{T T}$ in a Nutshell

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data) and process sets R_{0}, \ldots, C_{1} (labels)
- mkb ${ }_{T T}$ is described by inference system operating on node set
- run is inference sequence

$$
\mathcal{N}_{0} \vdash \mathcal{N}_{1} \vdash \mathcal{N}_{2} \vdash \ldots
$$

$\mathrm{mkb}_{T T}$ in a Nutshell

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data) and process sets R_{0}, \ldots, C_{1} (labels)
- mkb ${ }_{T T}$ is described by inference system operating on node set
- run is inference sequence

$$
\mathcal{N}_{0} \vdash \mathcal{N}_{1} \vdash \mathcal{N}_{2} \vdash \ldots
$$

- initial node set for equations \mathcal{E} is

$$
\mathcal{N}_{\mathcal{E}}=\{\langle s: t, \varnothing, \varnothing,\{\epsilon\}, \varnothing, \varnothing\rangle \mid s \approx t \in \mathcal{E}\}
$$

$\mathrm{mkb}_{T T}$ in a Nutshell

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data) and process sets R_{0}, \ldots, C_{1} (labels)
- mkb ${ }_{T T}$ is described by inference system operating on node set
- run is inference sequence

$$
\mathcal{N}_{0} \vdash \mathcal{N}_{1} \vdash \mathcal{N}_{2} \vdash \ldots
$$

- initial node set for equations \mathcal{E} is

$$
\mathcal{N}_{\mathcal{E}}=\{\langle s: t, \varnothing, \varnothing,\{\epsilon\}, \varnothing, \varnothing\rangle \mid s \approx t \in \mathcal{E}\}
$$

- persistent nodes $\mathcal{N}_{\omega}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{N}_{j}$

$\mathrm{mkb}_{T T}$ in a Nutshell

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data) and process sets R_{0}, \ldots, C_{1} (labels)
- mkb ${ }_{T T}$ is described by inference system operating on node set
- run is inference sequence

$$
\mathcal{N}_{0} \vdash \mathcal{N}_{1} \vdash \mathcal{N}_{2} \vdash \ldots
$$

- initial node set for equations \mathcal{E} is

$$
\mathcal{N}_{\mathcal{E}}=\{\langle s: t, \varnothing, \varnothing,\{\epsilon\}, \varnothing, \varnothing\rangle \mid s \approx t \in \mathcal{E}\}
$$

- persistent nodes $\mathcal{N}_{\omega}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{N}_{j}$
- projection of node set \mathcal{N} to process p yields equations $E_{p}(\mathcal{N})$, rules $R_{p}(\mathcal{N})$ and constraints $C_{p}(\mathcal{N})$

$\mathrm{mkb}_{T T}$ in a Nutshell

- processes are strings in $\mathcal{L}\left((0+1)^{*}\right)$, initial process is ϵ
- node is tuple $\left\langle s: t, R_{0}, R_{1}, E, C_{0}, C_{1}\right\rangle$ of term pair $s: t$ (data) and process sets R_{0}, \ldots, C_{1} (labels)
- mkb ${ }_{T T}$ is described by inference system operating on node set
- run is inference sequence

$$
\mathcal{N}_{0} \vdash \mathcal{N}_{1} \vdash \mathcal{N}_{2} \vdash \ldots
$$

- initial node set for equations \mathcal{E} is

$$
\mathcal{N}_{\mathcal{E}}=\{\langle s: t, \varnothing, \varnothing,\{\epsilon\}, \varnothing, \varnothing\rangle \mid s \approx t \in \mathcal{E}\}
$$

- persistent nodes $\mathcal{N}_{\omega}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{N}_{j}$
- projection of node set \mathcal{N} to process p yields equations $E_{p}(\mathcal{N})$, rules $R_{p}(\mathcal{N})$ and constraints $C_{p}(\mathcal{N})$
- finite run is fair if all critical pairs with respect to \mathcal{N}_{ω} are deduced for some process p

The Control Loop

Improvement 1: Selection Strategies

- mkb ${ }_{T T}$ 1.0:
- select process for which $\left|E_{p}(\mathcal{N})\right|+\left|R_{p}(\mathcal{N})\right|$ is minimal
- select mostly small, sometimes old node for process
- $\mathrm{mkb}_{T T}$ 1.0:
- select process for which $\left|E_{p}(\mathcal{N})\right|+\left|R_{p}(\mathcal{N})\right|$ is minimal
- select mostly small, sometimes old node for process
- mkb ${ }_{T T}$ 2.0: strategy language

$$
\begin{aligned}
\text { strategy }::= & ? \mid \text { (node_property, strategy) } \\
& \mid \text { float(strategy:strategy) }
\end{aligned}
$$

- $\mathrm{mkb}_{T T}$ 1.0:
- select process for which $\left|E_{p}(\mathcal{N})\right|+\left|R_{p}(\mathcal{N})\right|$ is minimal
- select mostly small, sometimes old node for process
- mkb ${ }_{T T}$ 2.0: strategy language

$$
\begin{aligned}
\text { strategy }::= & ? \mid(\text { node_property }, \text { strategy) } \\
& \mid \text { float(strategy:strategy) }
\end{aligned}
$$

random

- $\mathrm{mkb}_{T T}$ 1.0:
- select process for which $\left|E_{p}(\mathcal{N})\right|+\left|R_{p}(\mathcal{N})\right|$ is minimal
- select mostly small, sometimes old node for process
- mkb ${ }_{T T}$ 2.0: strategy language

$$
\begin{aligned}
\text { strategy }::= & ? \mid \text { (node_property,strategy) } \\
& \mid \text { float(strategy:strategy) }
\end{aligned}
$$

tuple of node property and strategy, compared lexicographically

- $\mathrm{mkb}_{T T}$ 1.0:
- select process for which $\left|E_{p}(\mathcal{N})\right|+\left|R_{p}(\mathcal{N})\right|$ is minimal
- select mostly small, sometimes old node for process
- mkb ${ }_{T T}$ 2.0: strategy language

$$
\begin{aligned}
\text { strategy }::= & ? \mid \text { (node_property, strategy) } \\
& \mid \text { float(strategy:strategy) }
\end{aligned}
$$

$r\left(s_{1}, s_{2}\right)$ combines s_{1} and s_{2} according to ratio r

- $\mathrm{mkb}_{T T}$ 1.0:
- select process for which $\left|E_{p}(\mathcal{N})\right|+\left|R_{p}(\mathcal{N})\right|$ is minimal
- select mostly small, sometimes old node for process
- mkb ${ }_{T T}$ 2.0: strategy language

```
            strategy \(::=\quad\) ? (node_property, strategy)
            | float(strategy:strategy)
node_property \(::=\quad * \mid\) data(termpair_property) \(\mid\) el(pset_property)
```

- $\mathrm{mkb}_{T T}$ 1.0:
- select process for which $\left|E_{p}(\mathcal{N})\right|+\left|R_{p}(\mathcal{N})\right|$ is minimal
- select mostly small, sometimes old node for process
- mkb ${ }_{T T}$ 2.0: strategy language

```
            strategy \(::=\quad\) ? (node_property, strategy)
            | float(strategy:strategy)
node_property \(::=\quad * \mid\) data(termpair_property) \(\mid\) el(pset_property)
```

- $\mathrm{mkb}_{T T}$ 1.0:
- select process for which $\left|E_{p}(\mathcal{N})\right|+\left|R_{p}(\mathcal{N})\right|$ is minimal
- select mostly small, sometimes old node for process
- mkb ${ }_{T T}$ 2.0: strategy language

```
            strategy \(::=\quad\) ? (node_property, strategy)
            | float(strategy:strategy)
node_property \(::=\quad * \mid\) data(termpair_property) \(\mid\) el(pset_property)
```

- $\mathrm{mkb}_{T T}$ 1.0:
- select process for which $\left|E_{p}(\mathcal{N})\right|+\left|R_{p}(\mathcal{N})\right|$ is minimal
- select mostly small, sometimes old node for process
- mkb ${ }_{T T}$ 2.0: strategy language

```
                strategy ::= ?|(node_property,strategy)
    | float(strategy:strategy)
            node_property ::= * | data(termpair_property)| el(pset_property)
                        |- node_property | node_property + node_property
    pset_property ::= #| sum(process_property)|min(process_property)
    process_property ::= e(eqs_property)|r(trs_property)|c(trs_property)
        | process_property + process_property
        trs_property ::= sum(termpair_property)| cp(eqs_property)|#
        eqs_property ::= sum(termpair_property)|#
termpair_property ::= sizemax|sizesum
```

- $\mathrm{mkb}_{T T}$ 1.0:
- select process for which $\left|E_{p}(\mathcal{N})\right|+\left|R_{p}(\mathcal{N})\right|$ is minimal
- select mostly small, sometimes old node for process
- mkb ${ }_{T T}$ 2.0: strategy language

```
                strategy ::= ?|(node_property,strategy)
                        | float(strategy:strategy)
            node_property ::= * | data(termpair_property)| el(pset_property)
                        |- node_property | node_property + node_property
            pset_property ::= #| sum(process_property)|min(process_property)
process_property ::= e(eqs_property)|r(trs_property)|c(trs_property)
                        | process_property + process_property
            trs_property ::= sum(termpair_property)| cp(eqs_property)|#
                eqs_property ::= sum(termpair_property)|#
termpair_property ::= sizemax|sizesum
```

Example (size-age ratio)
choose mostly small, sometimes old node:

$$
0.9((\operatorname{data}(\text { sumsize),?):(*,?)) }
$$

- $\mathrm{mkb}_{T T}$ 1.0:
- select process for which $\left|E_{p}(\mathcal{N})\right|+\left|R_{p}(\mathcal{N})\right|$ is minimal
- select mostly small, sometimes old node for process
- mkb ${ }_{T T}$ 2.0: strategy language

```
                strategy ::= ?|(node_property,strategy)
                        | float(strategy:strategy)
            node_property ::= * | data(termpair_property)| el(pset_property)
                        |- node_property | node_property + node_property
            pset_property ::= #|sum(process_property)|\operatorname{min}(process_property)
process_property ::= e(eqs_property)|r(trs_property)|c(trs_property)
                        | process_property + process_property
                        trs_property ::= sum(termpair_property)| cp(eqs_property)|#
                eqs_property ::= sum(termpair_property)|#
termpair_property ::= sizemax|sizesum
```

Example (sum)
process with small $E_{p}(\mathcal{N})$ and $C_{p}(\mathcal{N})$, node with small terms and big $|E|$ $(\mathrm{el}(\min (\mathrm{e}(\operatorname{sum}(\operatorname{sizesum}))+c(\operatorname{sum}($ sizesum $)))),(\operatorname{data}($ sizesum $),(-e l(\#), ?))))$

Improvement 2: Process Isomorphisms

Example (Renaming Isomorphism)

$\checkmark \mathrm{mkb}_{T T}$ run on system of commuting group endomorphisms CGE_{2}

Example (Renaming Isomorphism)

$-\mathrm{mkb}_{T T}$ run on system of commuting group endomorphisms CGE_{2}

$$
\mathcal{N}_{0} \vdash \mathcal{N}_{1}
$$

Example (Renaming Isomorphism)

$-\mathrm{mkb}_{T T}$ run on system of commuting group endomorphisms CGE_{2}

$$
\mathcal{N}_{0} \vdash \mathcal{N}_{1} \vdash \mathcal{N}_{2}
$$

Example (Renaming Isomorphism)

- mkb ${ }_{T T}$ run on system of commuting group endomorphisms CGE_{2}

$$
\mathcal{N}_{0} \vdash \mathcal{N}_{1} \vdash \mathcal{N}_{2} \vdash \quad \cdots \quad \vdash \mathcal{N}_{i}
$$

$$
E_{p}=\left\{\begin{array}{c}
(x * y) * z \approx x *(y * z) \\
x * 1 x \\
\mathrm{f}(1) \approx 1 \\
\mathrm{~g}(1) \approx 1 \\
\mathrm{~g}(x) * \mathrm{f}(y) \approx \mathrm{f}(y) * \mathrm{~g}(x)
\end{array} \quad R_{p}=C_{p}=\left\{\begin{array}{l}
\mathrm{i}(x) * x \rightarrow 1 \\
\mathrm{f}(x * y) \rightarrow \mathrm{f}(x) * \mathrm{f}(y) \\
\mathrm{g}(x * y) \rightarrow \mathrm{g}(x) * \mathrm{~g}(y)
\end{array}\right.\right.
$$

Example (Renaming Isomorphism)

- mkb ${ }_{T T}$ run on system of commuting group endomorphisms CGE_{2}

$$
\text { orient }\langle\mathrm{g}(x) * \mathrm{f}(y): \mathrm{f}(y) * \mathrm{~g}(x), \varnothing, \varnothing,\{p\}, \varnothing, \varnothing\rangle
$$

$$
\mathcal{N}_{0} \vdash \mathcal{N}_{1} \vdash \mathcal{N}_{2} \vdash \quad \ldots \quad \vdash \mathcal{N}_{i} \vdash
$$

$$
E_{p}=\left\{\begin{array}{c}
(x * y) * z \approx x *(y * z) \\
x * 1 x \\
\mathrm{f}(1) \approx 1 \\
\mathrm{~g}(1) \approx 1 \\
\mathrm{~g}(x) * \mathrm{f}(y) \approx \mathrm{f}(y) * \mathrm{~g}(x)
\end{array} \quad R_{p}=C_{p}=\left\{\begin{array}{l}
\mathrm{i}(x) * x \rightarrow 1 \\
\mathrm{f}(x * y) \rightarrow \mathrm{f}(x) * \mathrm{f}(y) \\
\mathrm{g}(x * y) \rightarrow \mathrm{g}(x) * \mathrm{~g}(y)
\end{array}\right.\right.
$$

Example (Renaming Isomorphism)

- mkb ${ }_{T T}$ run on system of commuting group endomorphisms CGE_{2}

$$
\text { orient } \frac{\langle\mathrm{g}(x) * \mathrm{f}(y): \mathrm{f}(y) * \mathrm{~g}(x), \varnothing, \varnothing,\{p\}, \varnothing, \varnothing\rangle}{\langle\mathrm{g}(x) * \mathrm{f}(y): \mathrm{f}(y) * \mathrm{~g}(x),\{p 0\},\{p 1\}, \varnothing, \varnothing, \varnothing\rangle}
$$

$$
\mathcal{N}_{0} \vdash \mathcal{N}_{1} \vdash \mathcal{N}_{2} \vdash \quad \ldots \quad \vdash \mathcal{N}_{i} \vdash
$$

$$
E_{p}=\left\{\begin{array}{c}
(x * y) * z \approx x *(y * z) \\
x * 1 x \\
\mathrm{f}(1) \approx 1 \\
\mathrm{~g}(1) \approx 1 \\
\mathrm{~g}(x) * \mathrm{f}(y) \approx \mathrm{f}(y) * \mathrm{~g}(x)
\end{array} \quad R_{p}=C_{p}=\left\{\begin{array}{l}
\mathrm{i}(x) * x \rightarrow 1 \\
\mathrm{f}(x * y) \rightarrow \mathrm{f}(x) * \mathrm{f}(y) \\
\mathrm{g}(x * y) \rightarrow \mathrm{g}(x) * \mathrm{~g}(y)
\end{array}\right.\right.
$$

Example (Renaming Isomorphism)

$-\mathrm{mkb}_{T T}$ run on system of commuting group endomorphisms CGE_{2}

$$
\text { orient } \frac{\langle\mathrm{g}(x) * \mathrm{f}(y): \mathrm{f}(y) * \mathrm{~g}(x), \varnothing, \varnothing,\{p\}, \varnothing, \varnothing\rangle}{\langle\mathrm{g}(x) * \mathrm{f}(y): \mathrm{f}(y) * \mathrm{~g}(x),\{p 0\},\{p 1\}, \varnothing, \varnothing, \varnothing\rangle}
$$

$$
\mathcal{N}_{0} \vdash \mathcal{N}_{1} \vdash \mathcal{N}_{2} \vdash \quad \ldots \quad \vdash \mathcal{N}_{i} \vdash \mathcal{N}_{i+1}
$$

$$
\begin{aligned}
& E_{p 0}=\left\{\begin{array}{rl}
(x * y) * z & \approx x *(y * z) \\
x * 1 & \approx x \\
\mathrm{f}(1) & \approx 1 \\
\mathrm{~g}(1) & \approx 1
\end{array} \quad R_{p 0}=C_{p 0}=\left\{\begin{aligned}
& \mathrm{i}(x) * x \rightarrow 1 \\
& \mathrm{f}(x * y) \rightarrow \mathrm{f}(x) * \mathrm{f}(y) \\
& \mathrm{g}(x * y) \rightarrow \mathrm{g}(x) * \mathrm{~g}(y) \\
& \mathrm{g}(x) * \mathrm{f}(y) \rightarrow \mathrm{f}(y) * \mathrm{~g}(x)
\end{aligned}\right.\right. \\
& E_{p 1}=\left\{\begin{array}{rl}
(x * y) * z & \approx x *(y * z) \\
x * 1 & \approx x \\
\mathrm{f}(1) & \approx 1 \\
\mathrm{~g}(1) & \approx 1
\end{array} \quad R_{p 1}=C_{p 1}=\left\{\begin{aligned}
\mathrm{i}(x) * x \rightarrow 1 \\
\mathrm{f}(x * y) \rightarrow \mathrm{f}(x) * \mathrm{f}(y) \\
\mathrm{g}(x * y) \rightarrow \mathrm{g}(x) * \mathrm{~g}(y) \\
\mathrm{f}(y) * \mathrm{~g}(x) \rightarrow \mathrm{g}(x) * \mathrm{f}(y)
\end{aligned}\right.\right.
\end{aligned}
$$

Example (Renaming Isomorphism)

- mkb ${ }_{T T}$ run on system of commuting group endomorphisms CGE_{2}

$$
\mathcal{N}_{0} \vdash \mathcal{N}_{1} \vdash \mathcal{N}_{2} \vdash \quad \ldots \quad \vdash \mathcal{N}_{i} \vdash \mathcal{N}_{i+1}
$$

$$
\begin{aligned}
& E_{p 0}=\left\{\begin{array}{c}
(x * y) * z \approx x *(y * z) \\
x * 1 \approx x \\
\mathrm{f}(1) \approx 1 \\
\mathrm{~g}(1) \approx 1
\end{array} \quad R_{p 0}=C_{p 0}=\left\{\begin{aligned}
\mathrm{i}(x) * x & \rightarrow 1 \\
\mathrm{f}(x * y) & \rightarrow \mathrm{f}(x) * \mathrm{f}(y) \\
\mathrm{g}(x * y) & \rightarrow \mathrm{g}(x) * \mathrm{~g}(y) \\
\mathrm{g}(x) * \mathrm{f}(y) & \rightarrow \mathrm{f}(y) * \mathrm{~g}(x)
\end{aligned}\right.\right. \\
& E_{p 1}=\left\{\begin{array}{rl}
(x * y) * z & \approx x *(y * z) \\
x * 1 & \approx x \\
\mathrm{f}(1) & \approx 1 \\
\mathrm{~g}(1) & \approx 1
\end{array} \quad R_{p 1}=C_{p 1}=\left\{\begin{aligned}
\mathrm{i}(x) * x & \rightarrow 1 \\
\mathrm{f}(x * y) & \rightarrow \mathrm{f}(x) * \mathrm{f}(y) \\
\mathrm{g}(x * y) & \rightarrow \mathrm{g}(x) * \mathrm{~g}(y) \\
\mathrm{f}(y) * \mathrm{~g}(x) & \rightarrow \mathrm{g}(x) * \mathrm{f}(y)
\end{aligned}\right.\right.
\end{aligned}
$$

- states of $p 0$ and $p 1$ are identical up to renaming function symbols

Definition

$$
\mathcal{R} \cong_{\theta} \mathcal{R}^{\prime}
$$

i.e., rewrite systems $\mathcal{R}, \mathcal{R}^{\prime}$ are isomorphic via $\theta: \mathcal{T}(\mathcal{F}, \mathcal{V}) \rightarrow \mathcal{T}(\mathcal{F}, \mathcal{V})$ if

Definition

$$
\mathcal{R} \cong{ }_{\theta} \mathcal{R}^{\prime}
$$

i.e., rewrite systems $\mathcal{R}, \mathcal{R}^{\prime}$ are isomorphic via $\theta: \mathcal{T}(\mathcal{F}, \mathcal{V}) \rightarrow \mathcal{T}(\mathcal{F}, \mathcal{V})$ if

- $\mathcal{R}^{\prime}=\{\theta(I) \rightarrow \theta(r) \mid I \rightarrow r \in \mathcal{R}\}$,

Definition

$$
\mathcal{R} \cong{ }_{\theta} \mathcal{R}^{\prime}
$$

i.e., rewrite systems $\mathcal{R}, \mathcal{R}^{\prime}$ are isomorphic via $\theta: \mathcal{T}(\mathcal{F}, \mathcal{V}) \rightarrow \mathcal{T}(\mathcal{F}, \mathcal{V})$ if

- $\mathcal{R}^{\prime}=\{\theta(I) \rightarrow \theta(r) \mid I \rightarrow r \in \mathcal{R}\}$,
- $\forall s, t \quad s \rightarrow_{\mathcal{R}} t \quad$ if and only if $\quad \theta(s) \rightarrow_{\mathcal{R}^{\prime}} \theta(t)$

Definition

$$
\mathcal{R} \cong{ }_{\theta} \mathcal{R}^{\prime}
$$

i.e., rewrite systems $\mathcal{R}, \mathcal{R}^{\prime}$ are isomorphic via $\theta: \mathcal{T}(\mathcal{F}, \mathcal{V}) \rightarrow \mathcal{T}(\mathcal{F}, \mathcal{V})$ if

- $\mathcal{R}^{\prime}=\{\theta(I) \rightarrow \theta(r) \mid I \rightarrow r \in \mathcal{R}\}$,
- $\forall s, t \quad s \rightarrow_{\mathcal{R}} t \quad$ if and only if $\quad \theta(s) \rightarrow_{\mathcal{R}^{\prime}} \theta(t)$

Definition
processes p, q are isomorphic in node set \mathcal{N} if for some θ

Definition

$$
\mathcal{R} \cong{ }_{\theta} \mathcal{R}^{\prime}
$$

i.e., rewrite systems $\mathcal{R}, \mathcal{R}^{\prime}$ are isomorphic via $\theta: \mathcal{T}(\mathcal{F}, \mathcal{V}) \rightarrow \mathcal{T}(\mathcal{F}, \mathcal{V})$ if

- $\mathcal{R}^{\prime}=\{\theta(I) \rightarrow \theta(r) \mid I \rightarrow r \in \mathcal{R}\}$,
- $\forall s, t \quad s \rightarrow_{\mathcal{R}} t \quad$ if and only if $\quad \theta(s) \rightarrow_{\mathcal{R}^{\prime}} \theta(t)$

Definition
processes p, q are isomorphic in node set \mathcal{N} if for some θ

$$
R_{p}(\mathcal{N}) \cong{ }_{\theta} R_{q}(\mathcal{N})
$$

Definition

$$
\mathcal{R} \cong{ }_{\theta} \mathcal{R}^{\prime}
$$

i.e., rewrite systems $\mathcal{R}, \mathcal{R}^{\prime}$ are isomorphic via $\theta: \mathcal{T}(\mathcal{F}, \mathcal{V}) \rightarrow \mathcal{T}(\mathcal{F}, \mathcal{V})$ if

- $\mathcal{R}^{\prime}=\{\theta(I) \rightarrow \theta(r) \mid I \rightarrow r \in \mathcal{R}\}$,
- $\forall s, t \quad s \rightarrow_{\mathcal{R}} t \quad$ if and only if $\quad \theta(s) \rightarrow_{\mathcal{R}^{\prime}} \theta(t)$

Definition
processes p, q are isomorphic in node set \mathcal{N} if for some θ

$$
R_{p}(\mathcal{N}) \cong_{\theta} R_{q}(\mathcal{N}) \quad C_{p}(\mathcal{N}) \cong_{\theta} C_{q}(\mathcal{N})
$$

Definition

$$
\mathcal{R} \cong{ }_{\theta} \mathcal{R}^{\prime}
$$

i.e., rewrite systems $\mathcal{R}, \mathcal{R}^{\prime}$ are isomorphic via $\theta: \mathcal{T}(\mathcal{F}, \mathcal{V}) \rightarrow \mathcal{T}(\mathcal{F}, \mathcal{V})$ if

- $\mathcal{R}^{\prime}=\{\theta(I) \rightarrow \theta(r) \mid I \rightarrow r \in \mathcal{R}\}$,
- $\forall s, t \quad s \rightarrow_{\mathcal{R}} t \quad$ if and only if $\quad \theta(s) \rightarrow_{\mathcal{R}^{\prime}} \theta(t)$

Definition
processes p, q are isomorphic in node set \mathcal{N} if for some θ

$$
R_{p}(\mathcal{N}) \cong_{\theta} R_{q}(\mathcal{N}) \quad C_{p}(\mathcal{N}) \cong_{\theta} C_{q}(\mathcal{N}) \quad E_{p}(\mathcal{N}) \cong_{\theta} E_{q}(\mathcal{N})
$$

Definition

$$
\mathcal{R} \cong{ }_{\theta} \mathcal{R}^{\prime}
$$

i.e., rewrite systems $\mathcal{R}, \mathcal{R}^{\prime}$ are isomorphic via $\theta: \mathcal{T}(\mathcal{F}, \mathcal{V}) \rightarrow \mathcal{T}(\mathcal{F}, \mathcal{V})$ if

- $\mathcal{R}^{\prime}=\{\theta(I) \rightarrow \theta(r) \mid I \rightarrow r \in \mathcal{R}\}$,
- $\forall s, t \quad s \rightarrow_{\mathcal{R}} t \quad$ if and only if $\quad \theta(s) \rightarrow_{\mathcal{R}^{\prime}} \theta(t)$

Definition

processes p, q are isomorphic in node set \mathcal{N} if for some θ

$$
R_{p}(\mathcal{N}) \cong_{\theta} R_{q}(\mathcal{N}) \quad C_{p}(\mathcal{N}) \cong_{\theta} C_{q}(\mathcal{N}) \quad E_{p}(\mathcal{N}) \cong_{\theta} E_{q}(\mathcal{N})
$$

Lemma

Assume p, q are isomorphic in \mathcal{N}

Definition

$$
\mathcal{R} \cong{ }_{\theta} \mathcal{R}^{\prime}
$$

i.e., rewrite systems $\mathcal{R}, \mathcal{R}^{\prime}$ are isomorphic via $\theta: \mathcal{T}(\mathcal{F}, \mathcal{V}) \rightarrow \mathcal{T}(\mathcal{F}, \mathcal{V})$ if

- $\mathcal{R}^{\prime}=\{\theta(I) \rightarrow \theta(r) \mid I \rightarrow r \in \mathcal{R}\}$,
- $\forall s, t \quad s \rightarrow_{\mathcal{R}} t \quad$ if and only if $\quad \theta(s) \rightarrow_{\mathcal{R}^{\prime}} \theta(t)$

Definition

processes p, q are isomorphic in node set \mathcal{N} if for some θ

$$
R_{p}(\mathcal{N}) \cong_{\theta} R_{q}(\mathcal{N}) \quad C_{p}(\mathcal{N}) \cong_{\theta} C_{q}(\mathcal{N}) \quad E_{p}(\mathcal{N}) \cong_{\theta} E_{q}(\mathcal{N})
$$

Lemma

Assume p, q are isomorphic in \mathcal{N} and \exists fair $\mathcal{N} \vdash^{*} \mathcal{N}^{\prime}$ with $E_{p}\left(\mathcal{N}^{\prime}\right)=\varnothing$.

Definition

$$
\mathcal{R} \cong{ }_{\theta} \mathcal{R}^{\prime}
$$

i.e., rewrite systems $\mathcal{R}, \mathcal{R}^{\prime}$ are isomorphic via $\theta: \mathcal{T}(\mathcal{F}, \mathcal{V}) \rightarrow \mathcal{T}(\mathcal{F}, \mathcal{V})$ if

- $\mathcal{R}^{\prime}=\{\theta(I) \rightarrow \theta(r) \mid I \rightarrow r \in \mathcal{R}\}$,
- $\forall s, t \quad s \rightarrow_{\mathcal{R}} t \quad$ if and only if $\quad \theta(s) \rightarrow_{\mathcal{R}^{\prime}} \theta(t)$

Definition

processes p, q are isomorphic in node set \mathcal{N} if for some θ

$$
R_{p}(\mathcal{N}) \cong_{\theta} R_{q}(\mathcal{N}) \quad C_{p}(\mathcal{N}) \cong_{\theta} C_{q}(\mathcal{N}) \quad E_{p}(\mathcal{N}) \cong_{\theta} E_{q}(\mathcal{N})
$$

Lemma

Assume p, q are isomorphic in \mathcal{N} and \exists fair $\mathcal{N} \vdash^{*} \mathcal{N}^{\prime}$ with $E_{p}\left(\mathcal{N}^{\prime}\right)=\varnothing$. Then $\exists \mathcal{N}^{\prime \prime}$ such that $\mathcal{N} \vdash^{*} \mathcal{N}^{\prime \prime}$ is fair and $E_{q}\left(\mathcal{N}^{\prime \prime}\right)=\varnothing$.

Example (Function Symbol Renamings)

- let ρ be arity-preserving permutation of \mathcal{F}

Example (Function Symbol Renamings)

- let ρ be arity-preserving permutation of \mathcal{F}
- renaming isomorphism is given by

$$
\theta(t)= \begin{cases}t & \text { if } t \in \mathcal{V}\end{cases}
$$

Example (Function Symbol Renamings)

- let ρ be arity-preserving permutation of \mathcal{F}
- renaming isomorphism is given by

$$
\theta(t)= \begin{cases}t & \text { if } t \in \mathcal{V} \\ \rho(f)\left(\theta\left(t_{1}\right), \ldots, \theta\left(t_{n}\right)\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

Example (Function Symbol Renamings)

- let ρ be arity-preserving permutation of \mathcal{F}
- renaming isomorphism is given by

$$
\theta(t)= \begin{cases}t & \text { if } t \in \mathcal{V} \\ \rho(f)\left(\theta\left(t_{1}\right), \ldots, \theta\left(t_{n}\right)\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

Example (Argument Permutations)

- for $f \in \mathcal{F}$ with arity $n>0$ choose permutation π_{f} of $\{1, \ldots, n\}$

Example (Function Symbol Renamings)

- let ρ be arity-preserving permutation of \mathcal{F}
- renaming isomorphism is given by

$$
\theta(t)= \begin{cases}t & \text { if } t \in \mathcal{V} \\ \rho(f)\left(\theta\left(t_{1}\right), \ldots, \theta\left(t_{n}\right)\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

Example (Argument Permutations)

- for $f \in \mathcal{F}$ with arity $n>0$ choose permutation π_{f} of $\{1, \ldots, n\}$
- argument permutation isomorphism is given by

$$
\theta(t)= \begin{cases}t & \text { if } t \in \mathcal{V}\end{cases}
$$

Example (Function Symbol Renamings)

- let ρ be arity-preserving permutation of \mathcal{F}
- renaming isomorphism is given by

$$
\theta(t)= \begin{cases}t & \text { if } t \in \mathcal{V} \\ \rho(f)\left(\theta\left(t_{1}\right), \ldots, \theta\left(t_{n}\right)\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

Example (Argument Permutations)

- for $f \in \mathcal{F}$ with arity $n>0$ choose permutation π_{f} of $\{1, \ldots, n\}$
- argument permutation isomorphism is given by

$$
\theta(t)= \begin{cases}t & \text { if } t \in \mathcal{V} \\ f\left(\theta\left(t_{\pi_{f}(1)}\right), \ldots, \theta\left(t_{\pi_{f}(n)}\right)\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

Example (Function Symbol Renamings)

- let ρ be arity-preserving permutation of \mathcal{F}
- renaming isomorphism is given by

$$
\theta(t)= \begin{cases}t & \text { if } t \in \mathcal{V} \\ \rho(f)\left(\theta\left(t_{1}\right), \ldots, \theta\left(t_{n}\right)\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

Example (Argument Permutations)

- for $f \in \mathcal{F}$ with arity $n>0$ choose permutation π_{f} of $\{1, \ldots, n\}$
- argument permutation isomorphism is given by

$$
\theta(t)= \begin{cases}t & \text { if } t \in \mathcal{V} \\ f\left(\theta\left(t_{\pi_{f}(1)}\right), \ldots, \theta\left(t_{\pi_{f}(n)}\right)\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

Implementation

- check before process splits in orient, or repeatedly

Improvement 3: Critical Pair Criteria

Definition (Deduce in $\mathrm{mkb}_{T T}$)

$$
\begin{aligned}
\text { deduce } & \frac{\mathcal{N}}{} \\
& \text { if }\langle\mid: r, R, \ldots\rangle,\left\langle l^{\prime}: r^{\prime}, R^{\prime}, \ldots\right\rangle \in \mathcal{N}
\end{aligned}
$$

Definition (Deduce in $\mathrm{mkb}_{T T}$)
deduce $\frac{\mathcal{N}}{\text { if }\langle I: r, R, \ldots\rangle,\left\langle l^{\prime}: r^{\prime}, R^{\prime}, \ldots\right\rangle \in \mathcal{N}}$
such that $s \stackrel{!\rightarrow r}{\longleftrightarrow} u \xrightarrow{l^{\prime} \rightarrow r^{\prime}} t$ and $s \approx t$ is critical pair

Definition (Deduce in $\mathrm{mkb}_{T T}$)

$$
\begin{aligned}
\text { deduce } & \frac{\mathcal{N}}{\mathcal{N} \cup\left\langle s: t, \varnothing, \varnothing, R \cap R^{\prime}, \varnothing, \varnothing, \varnothing\right\rangle} \\
& \text { if }\langle I: r, R, \ldots\rangle,\left\langle l^{\prime}: r^{\prime}, R^{\prime}, \ldots\right\rangle \in \mathcal{N} \\
& \text { such that } s \stackrel{\leftrightarrow}{\longleftrightarrow} u \xrightarrow{\prime^{\prime} \rightarrow r^{\prime}} t \text { and } s \approx t \text { is critical pair }
\end{aligned}
$$

Definition (Deduce in $\mathrm{mkb}_{T T}$)

deduce

$$
\begin{aligned}
& \frac{\mathcal{N}}{\mathcal{N} \cup\left\langle s: t, \varnothing, \varnothing, R \cap R^{\prime}, \varnothing, \varnothing, \varnothing\right\rangle} \\
& \text { if }\langle I: r, R, \ldots\rangle,\left\langle I^{\prime}: r^{\prime}, R^{\prime}, \ldots\right\rangle \in \mathcal{N} \\
& \text { such that } s \stackrel{I \rightarrow r}{\longleftrightarrow} u \xrightarrow{I^{\prime} \rightarrow r^{\prime}} t \text { and } s \approx t \text { is critical pair }
\end{aligned}
$$

Example

$$
\begin{align*}
& \mathcal{N}: \quad\langle\sqrt{-x+x}: 0,\{0,1\}, \ldots\rangle \tag{1}\\
& \langle-0+0: 0,\{0,1\}, \ldots\rangle \tag{2}\\
& \langle-0: 0,\{0,1\}, \ldots\rangle \tag{3}
\end{align*}
$$

$C P(\mathcal{N}):$

$$
\begin{aligned}
\langle\sqrt{0}: 0, \varnothing, \varnothing,\{0,1\}, \ldots\rangle & \text { from }\langle(1), 1,(2)\rangle \\
\langle\sqrt{0+0}: 0, \varnothing, \varnothing,\{0,1\}, \ldots\rangle & \text { from }\langle(1), 11,(3)\rangle \\
\langle\sqrt{0}: 0, \varnothing, \varnothing,\{0,1\}, \ldots\rangle & \text { from }\langle(2), 1,(3)\rangle
\end{aligned}
$$

Definition (Deduce in $\mathrm{mkb}_{T T}$)

deduce

$$
\begin{aligned}
& \frac{\mathcal{N}}{\mathcal{N} \cup\left\langle s: t, \varnothing, \varnothing, R \cap R^{\prime}, \varnothing, \varnothing, \varnothing\right\rangle} \\
& \text { if }\langle I: r, R, \ldots\rangle,\left\langle I^{\prime}: r^{\prime}, R^{\prime}, \ldots\right\rangle \in \mathcal{N} \\
& \text { such that } s \stackrel{I \rightarrow r}{\longleftrightarrow} u \xrightarrow{I^{\prime} \rightarrow r^{\prime}} t \text { and } s \approx t \text { is critical pair }
\end{aligned}
$$

Example

> all critical pairs required?
from $\langle(1), 1,(2)\rangle$ from $\langle(1), 11,(3)\rangle$
from $\langle(2), 1,(3)\rangle$

Definition (Deduce in $\mathrm{mkb}_{T T}$)
deduce

$$
\begin{aligned}
& \frac{\mathcal{N}}{\mathcal{N} \cup\left\langle s: t, \varnothing, \varnothing, R \cap R^{\prime}, \varnothing, \varnothing, \varnothing\right\rangle} \\
& \text { if }\langle I: r, R, \ldots\rangle,\left\langle I^{\prime}: r^{\prime}, R^{\prime}, \ldots\right\rangle \in \mathcal{N} \\
& \text { such that } s \stackrel{l \rightarrow r}{\longleftrightarrow} u \xrightarrow{l^{\prime} \rightarrow r^{\prime}} t \text { and } s \approx t \text { is critical pair }
\end{aligned}
$$

Critical Pair Criteria in mkb ${ }_{T T}$

- primality criterion PCP

Kapur et al ' 88

- blocking criterion BCP

Bachmair/Dershowitz '88

- connectedness criterion CCP

Küchlin '85

Definition (Deduce in $\mathrm{mkb}_{T T}$)
deduce

$$
\begin{aligned}
& \frac{\mathcal{N}}{\mathcal{N} \cup\left\langle s: t, \varnothing, \varnothing, R \cap R^{\prime}, \varnothing, \varnothing, \varnothing\right\rangle} \\
& \text { if }\langle I: r, R, \ldots\rangle,\left\langle I^{\prime}: r^{\prime}, R^{\prime}, \ldots\right\rangle \in \mathcal{N} \\
& \text { such that } s \stackrel{I \rightarrow r}{\longleftrightarrow} u \xrightarrow{I^{\prime} \rightarrow r^{\prime}} t \text { and } s \approx t \text { is critical pair }
\end{aligned}
$$

Critical Pair Criteria in mkb ${ }_{T T}$

- primality criterion PCP
- blocking criterion BCP
- connectedness criterion CCP
exploit sharing
Kapur et al ' 88
Bachmair/Dershowitz '88
Küchlin ' 85

Improvement 4: Term Indexing

Term Indexing

Given

- set of terms L
- binary relation R on terms
- term t

Term Indexing

Given

- set of terms L
- binary relation R on terms
- term t
identify all $s \in L$ with $s R t$

Term Indexing

Given

- set of terms L
- binary relation R on terms
- term t
identify all $s \in L$ with $s R t$

retrieval condition
query term
index
candidate terms

Term Indexing

Given

- set of terms L
- binary relation R on terms
- term t
identify all $s \in L$ with $s R t$
retrieval condition
index
query term
candidate terms

Example
$\mathrm{mkb}_{T T}$ faces term indexing problem for

- retrieval of variants and encompassments in rewrite ${ }_{1}$ and rewrite ${ }_{2}$

Term Indexing

Given

- set of terms L
- binary relation R on terms
- term t
identify all $s \in L$ with $s R t$
retrieval condition
index
query term
candidate terms

Example

$\mathrm{mkb}_{T T}$ faces term indexing problem for

- retrieval of variants and encompassments in rewrite ${ }_{1}$ and rewrite ${ }_{2}$
- retrieval of unifiable terms in deduce

Term Indexing

Given

- set of terms L index
- binary relation R on terms
- term t
identify all $s \in L$ with $s R t$
retrieval condition
candidate terms

Example

$\mathrm{mkb}_{T T}$ faces term indexing problem for

- retrieval of variants and encompassments in rewrite ${ }_{1}$ and rewrite ${ }_{2}$
- retrieval of unifiable terms in deduce

Implementation

- path indexing and discrimination trees for unifiable terms
- additionally also code trees for encompassments and variants

Experiments

hardware: database: settings:

AMD Opteron ${ }^{\circledR} 885,2.6 \mathrm{GHz}, 64 \mathrm{~GB}$ memory 101 systems collected from various papers 600 seconds timeout, termination checks with $\mathrm{T}_{\boldsymbol{\top}} \mathrm{T}_{2}$

Experiments

hardware: AMD Opteron ${ }^{\circledR} 885,2.6 \mathrm{GHz}, 64 \mathrm{~GB}$ memory database: 101 systems collected from various papers settings: $\quad 600$ seconds timeout, termination checks with $\mathrm{T}_{\mathrm{T}} \mathrm{T}_{2}$

Overall Result

- 74 (mkb ${ }_{T T} 2.0$) instead of 48 (mkb TT 1.0) systems solved
- speedup of 40%

Experiments

hardware: database: settings:

AMD Opteron ${ }^{\circledR} 885,2.6 \mathrm{GHz}, 64 \mathrm{~GB}$ memory 101 systems collected from various papers 600 seconds timeout, termination checks with $\mathrm{T}_{\boldsymbol{\top}} \mathrm{T}_{2}$

Overall Result

- 74 (mkb ${ }_{T T} 2.0$) instead of 48 ($\mathrm{mkb}_{T T} 1.0$) systems solved
- speedup of 40%

New!

First automatical completion of CGE_{4} system

$$
\begin{array}{rlrl}
\mathrm{e} \cdot x & \approx x & \mathrm{f}_{\mathrm{i}}(x \cdot y) & \approx \mathrm{f}_{\mathrm{i}}(x) \cdot \mathrm{f}_{\mathrm{i}}(y) \\
x^{-} \cdot x & 1 \leq \mathrm{e} & 1 \leq 4 \\
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & \mathrm{f}_{\mathrm{i}}(x) \cdot \mathrm{f}_{\mathrm{j}}(y) \approx \mathrm{f}_{\mathrm{j}}(y) \cdot \mathrm{f}_{\mathrm{i}}(x) & 1 \leq i<j \leq 4
\end{array}
$$

into a 38 rule convergent TRS in 622 seconds

Selection Strategies

	sum	\max	slothrop	old
CGE $_{2}$	138	9	16	8

time in seconds

Selection Strategies

	sum	max	slothrop	old
CGE_{2}	138	9	16	8
CGE_{3}	∞	190	343	∞

time in seconds

Selection Strategies

	sum	\max	slothrop	old
CGE $_{2}$	138	9	16	8
CGE $_{3}$	∞	190	343	∞
SK3.4	75	2	3	38
GRP484-1	252	∞	∞	∞

time in seconds

Selection Strategies

	sum	max	slothrop	old
CGE_{2}	138	9	16	8
CGE_{3}	∞	190	343	∞
SK3.4	75	2	3	38
GRP484-1	252	∞	∞	∞
\vdots	\vdots	\vdots	\vdots	\vdots
\# successes	74	71	69	66

time in seconds

Selection Strategies

	sum	max	slothrop	old
CGE_{2}	138	9	16	8
CGE_{3}	∞	190	343	∞
SK3.4	75	2	3	38
GRP484-1	252	∞	∞	∞
\vdots	\vdots	\vdots	\vdots	\vdots
\# successes	74	71	69	66
time	22.2	12.8	38.9	23.5

time in seconds

Selection Strategies

	sum	\max	slothrop	old
CGE $_{2}$	138	9	16	8
CGE $_{3}$	∞	190	343	∞
SK3.4	75	2	3	38
GRP484-1	252	∞	∞	∞
\vdots	\vdots	\vdots	\vdots	\vdots
\# successes	74	71	69	66
time	22.2	12.8	38.9	23.5

time in seconds

Isomorphisms

- renaming isomorphisms

Selection Strategies

	sum	\max	slothrop	old
CGE $_{2}$	138	9	16	8
CGE $_{3}$	∞	190	343	∞
SK3.4	75	2	3	38
GRP484-1	252	∞	∞	∞
\vdots	\vdots	\vdots	\vdots	\vdots
\# successes	74	71	69	66
time	22.2	12.8	38.9	23.5

time in seconds

Isomorphisms

- renaming isomorphisms
- $\mathrm{CGE}_{2}: 4$ instead of 138 seconds, $\mathrm{CGE}_{3}: 30$ instead of 192 seconds

Selection Strategies

	sum	\max	slothrop	old
CGE $_{2}$	138	9	16	8
CGE $_{3}$	∞	190	343	∞
SK3.4	75	2	3	38
GRP484-1	252	∞	∞	∞
\vdots	\vdots	\vdots	\vdots	\vdots
\# successes	74	71	69	66
time	22.2	12.8	38.9	23.5

time in seconds

Isomorphisms

- renaming isomorphisms
- $\mathrm{CGE}_{2}: 4$ instead of 138 seconds, $\mathrm{CGE}_{3}: 30$ instead of 192 seconds
- on database: number of processes and time decreased by 15%

Selection Strategies

	sum	\max	slothrop	old
CGE $_{2}$	138	9	16	8
CGE $_{3}$	∞	190	343	∞
SK3.4	75	2	3	38
GRP484-1	252	∞	∞	∞
\vdots	\vdots	\vdots	\vdots	\vdots
\# successes	74	71	69	66
time	22.2	12.8	38.9	23.5

time in seconds

Isomorphisms

- renaming isomorphisms
- $\mathrm{CGE}_{2}: 4$ instead of 138 seconds, $\mathrm{CGE}_{3}: 30$ instead of 192 seconds
- on database: number of processes and time decreased by 15%
- argument permutations
- no improvement

Critical Pair Criteria

	none	PCP		BCP		CCP		all	
	(1)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
Chr89-A	126	133	70	134	51	168	25	137	75
GRP463-1	8	5	24	7	24	9	9	6	27

(1) time in seconds
(2) redundant critical pairs for successful process

Critical Pair Criteria

	none	PCP		BCP		CCP		all	
	(1)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
Chr89-A	126	133	70	134	51	168	25	137	75
GRP463-1	8	5	24	7	24	9	9	6	27
BGK94-D	∞	550	28	550	28	∞	549	28	

(1) time in seconds
(2) redundant critical pairs for successful process

Critical Pair Criteria

	none	PCP		BCP		CCP		all	
	(1)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
Chr89-A	126	133	70	134	51	168	25	137	75
GRP463-1	8	5	24	7	24	9	9	6	27
BGK94-D	∞	550	28	550	28	∞		549	28
WS06-1	138	139	0	140	0	139	0	138	0

(1) time in seconds
(2) redundant critical pairs for successful process

Critical Pair Criteria

(1) time in seconds
(2) redundant critical pairs for successful process

Critical Pair Criteria

	none	PCP		BCP		CCP		all	
	(1)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
Chr89-A ${ }_{2}$	126	133	70	134	51	168	25	137	75
GRP463-1	8	5	24	7	24	9	9	6	27
BGK94-D8	∞	550	28	550	28			549	28
WS06-1	138	139	0	140	0	139	0	138	0
.									
successes	70								

(1) time in seconds
(2) redundant critical pairs for successful process

Term Indexing

percentage of retrieval time compared to naive search

	path indexing	discrimination trees	code trees
encompassments	89	39	27
variants	19	6	6
unifiable terms	90	30	

Critical Pair Criteria

	none	PCP		BCP		CCP		all	
	(1)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
Chr89-A ${ }_{2}$	126	133	70	134	51	168	25	137	75
GRP463-1	8	5	24	7	24	9	9	6	27
BGK94-D8	∞	550	28	550	28	∞		549	28
WS06-1	138	139	0	140	0	139	0	138	0
.									
successes	70					7			

(1) time in seconds
(2) redundant critical pairs for successful process

Term Indexing

percentage of retrieval time compared to naive search

	path indexing	discrimination trees	code trees
encompassments	89	39	27
variants	19	6	6
unifiable terms	90	30	
execution time	95	83	78

Conclusion

$\mathrm{mkb}_{T T}$ is automatic completion tool with

- indexing techniques (pay off)
- selection strategies (considerable impact - optimal one?)
- critical pair criteria (tiny improvements)
- isomorphisms (renamings are useful for special systems)

Conclusion

$\mathrm{mkb}_{T T}$ is automatic completion tool with

- indexing techniques (pay off)
- selection strategies (considerable impact - optimal one?)
- critical pair criteria (tiny improvements)
- isomorphisms (renamings are useful for special systems)
$\mathrm{mkb}_{T T}$ Online
various options can be controlled via web interface:
http://cl-informatik.uibk.ac.at/software/mkbtt

