

Normalized Completion Revisited

Sarah Winkler

Aart Middeldorp

Institute of Computer Science University of Innsbruck Austria

> RTA 2013 June 24, 2013

Example (Abelian Group

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$$

 $x \cdot e \approx x$

$$x \cdot y \approx y \cdot x$$

 $x \cdot x^{-1} \approx e$

Example (Abelian Group + Endomorphisms

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$$
 $\qquad \qquad x \cdot y \approx y \cdot x$ $\qquad \qquad x \cdot e \approx x$ $\qquad \qquad x \cdot x^{-1} \approx e$ $\qquad \qquad f(x \cdot y) \approx f(x) \cdot f(y)$ $\qquad \qquad f(e) \approx e$ $\qquad g(x \cdot y) \approx g(x) \cdot g(y)$ $\qquad g(e) \approx e$

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad x \cdot y \approx y \cdot x$$

$$x \cdot e \approx x \qquad x \cdot x^{-1} \approx e$$

$$f(x \cdot y) \approx f(x) \cdot f(y) \qquad f(e) \approx e$$

$$g(x \cdot y) \approx g(x) \cdot g(y) \qquad g(e) \approx e$$

$$\phi(x, \phi(y, z)) \approx \phi(x \cdot y, z) \qquad \phi(e, x) \approx x$$

$$\phi(f(x), g(y)) \approx \phi(g(y), f(x))$$

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad x \cdot y \approx y \cdot x$$

$$x \cdot e \approx x \qquad x \cdot x^{-1} \approx e$$

$$f(x \cdot y) \approx f(x) \cdot f(y) \qquad f(e) \approx e$$

$$g(x \cdot y) \approx g(x) \cdot g(y) \qquad g(e) \approx e$$

$$\phi(x, \phi(y, z)) \approx \phi(x \cdot y, z) \qquad \phi(e, x) \approx x$$

$$\phi(f(x), g(y)) \approx \phi(g(y), f(x))$$

How to decide theory? ... e.g., check that $\phi(g(x), y) \not\approx \phi(x, g(y))$?

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad x \cdot y \approx y \cdot x$$

$$x \cdot e \approx x \qquad x \cdot x^{-1} \approx e$$

$$f(x \cdot y) \approx f(x) \cdot f(y) \qquad f(e) \approx e$$

$$g(x \cdot y) \approx g(x) \cdot g(y) \qquad g(e) \approx e$$

$$\phi(x, \phi(y, z)) \approx \phi(x \cdot y, z) \qquad \phi(e, x) \approx x$$

$$\phi(f(x), g(y)) \approx \phi(g(y), f(x))$$

How to decide theory? ... e.g., check that $\phi(g(x), y) \not\approx \phi(x, g(y))$?

Solve with term rewriting?

• Knuth-Bendix completion

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad \qquad x \cdot y \approx y \cdot x$$

$$x \cdot e \approx x \qquad \qquad x \cdot x^{-1} \approx e$$

$$f(x \cdot y) \approx f(x) \cdot f(y) \qquad \qquad f(e) \approx e$$

$$g(x \cdot y) \approx g(x) \cdot g(y) \qquad \qquad g(e) \approx e$$

$$\phi(x, \phi(y, z)) \approx \phi(x \cdot y, z) \qquad \qquad \phi(e, x) \approx x$$

$$\phi(f(x), g(y)) \approx \phi(g(y), f(x))$$

How to decide theory? ... e.g., check that $\phi(g(x), y) \not\approx \phi(x, g(y))$?

Solve with term rewriting?

• Knuth-Bendix completion

© unorientable equation

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad x \cdot y \approx y \cdot x$$

$$x \cdot e \approx x \qquad x \cdot x^{-1} \approx e$$

$$f(x \cdot y) \approx f(x) \cdot f(y) \qquad f(e) \approx e$$

$$g(x \cdot y) \approx g(x) \cdot g(y) \qquad g(e) \approx e$$

$$\phi(x, \phi(y, z)) \approx \phi(x \cdot y, z) \qquad \phi(e, x) \approx x$$

$$\phi(f(x), g(y)) \approx \phi(g(y), f(x))$$

How to decide theory? ... e.g., check that $\phi(g(x), y) \not\approx \phi(x, g(y))$?

Solve with term rewriting?

• Knuth-Bendix completion

© unorientable equation

ordered completion

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad x \cdot y \approx y \cdot x$$

$$x \cdot e \approx x \qquad x \cdot x^{-1} \approx e$$

$$f(x \cdot y) \approx f(x) \cdot f(y) \qquad f(e) \approx e$$

$$g(x \cdot y) \approx g(x) \cdot g(y) \qquad g(e) \approx e$$

$$\phi(x, \phi(y, z)) \approx \phi(x \cdot y, z) \qquad \phi(e, x) \approx x$$

$$\phi(f(x), g(y)) \approx \phi(g(y), f(x))$$

How to decide theory? ... e.g., check that $\phi(g(x), y) \not\approx \phi(x, g(y))$?

- Knuth-Bendix completion
- ordered completion

- unorientable equation
- inefficient in presence of AC

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad x \cdot y \approx y \cdot x$$

$$x \cdot e \approx x \qquad x \cdot x^{-1} \approx e$$

$$f(x \cdot y) \approx f(x) \cdot f(y) \qquad f(e) \approx e$$

$$g(x \cdot y) \approx g(x) \cdot g(y) \qquad g(e) \approx e$$

$$\phi(x, \phi(y, z)) \approx \phi(x \cdot y, z) \qquad \phi(e, x) \approx x$$

$$\phi(f(x), g(y)) \approx \phi(g(y), f(x))$$

How to decide theory? ... e.g., check that $\phi(g(x), y) \not\approx \phi(x, g(y))$?

- Knuth-Bendix completion
- ordered completion
- AC completion

- unorientable equation
- © inefficient in presence of AC

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad x \cdot y \approx y \cdot x$$

$$x \cdot e \approx x \qquad x \cdot x^{-1} \approx e$$

$$f(x \cdot y) \approx f(x) \cdot f(y) \qquad f(e) \approx e$$

$$g(x \cdot y) \approx g(x) \cdot g(y) \qquad g(e) \approx e$$

$$\phi(x, \phi(y, z)) \approx \phi(x \cdot y, z) \qquad \phi(e, x) \approx x$$

$$\phi(f(x), g(y)) \approx \phi(g(y), f(x))$$

How to decide theory? ... e.g., check that $\phi(g(x), y) \not\approx \phi(x, g(y))$?

- Knuth-Bendix completion
- ordered completion
- AC completion

- unorientable equation
- inefficient in presence of AC
- © many CPs

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$$

$$x \cdot y \approx y \cdot x$$

$$x \cdot e \approx x$$

$$x \cdot x^{-1} \approx e$$

$$f(x \cdot y) \approx f(x) \cdot f(y)$$

$$g(x \cdot y) \approx g(x) \cdot g$$

$$\phi(x, \phi(y, z)) \approx \phi(x \cdot y, \phi(f(x), g(y)) \approx \phi(g(y), \phi(x))$$

$$(x \cdot y) \cdot z \Rightarrow x \cdot (y \cdot z)$$

$$x \cdot e \Rightarrow x \quad (x \cdot y) \cdot z \Rightarrow x \cdot (y \cdot z)$$

$$x \cdot x^{-1} \Rightarrow e \quad e^{-1} \Rightarrow e$$

$$(x^{-1})^{-1} \Rightarrow x \quad (x \cdot y)^{-1} \Rightarrow x^{-1} \cdot y^{-1}$$

How to decide theory? ... e.g., check that $\phi(g(x), y) \not\approx \phi(x, g(y))$?

- Knuth-Bendix completion
- ordered completion
- AC completion

- unorientable equation
- inefficient in presence of AC
- © many CPs

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad x \cdot y \approx y \cdot x$$

$$x \cdot e \approx x \qquad x \cdot x^{-1} \approx e$$

$$f(x \cdot y) \approx f(x) \cdot f(y) \qquad f(e) \approx e$$

$$g(x \cdot y) \approx g(x) \cdot g(y) \qquad g(e) \approx e$$

$$\phi(x, \phi(y, z)) \approx \phi(x \cdot y, z) \qquad \phi(e, x) \approx x$$

$$\phi(f(x), g(y)) \approx \phi(g(y), f(x))$$

How to decide theory? ... e.g., check that $\phi(g(x), y) \not\approx \phi(x, g(y))$?

- Knuth-Bendix completion
- ordered completion
- AC completion
- normalized completion

- unorientable equation
- inefficient in presence of AC
- © many CPs
- © e.g. modulo group theory

Bibliography

C. Marché

Réécriture modulo une théorie présentée par un système convergent et décidabilité du problème du mot dans certaines classes de théories équationnelles.

PhD thesis, Université Paris-Sud, 1993.

C. Marché

Normalised rewriting and normalised completion.

Proc. LICS 1994, pp. 394-403. IEEE Computer Society, 1994.

C. Marché.

Normalized rewriting.

An alternative to rewriting modulo a set of equations.

Journal of Symbolic Computation, 21(3):253-288, 1996.

E. Contejean and C. Marché.

CiME: Completion modulo E.

Proc. RTA 1996, volume 1103 of LNCS, pp. 416-419, 1996.

C. Marché.

Normalized rewriting: An unified view of Knuth-Bendix completion and Gröbner bases computation.

Symbolic Rewriting Techniques, volume 15 of Progress in Computer Science and Applied Logic, pages 193–208. Birkhäuser, 1998.

Content

- Preliminaries
- Normalized Completion
- Normalized Completion with Termination Tools
- Implementation
- Conclusion

$$AC = \{ f(x, f(y, z)) \approx f(f(x, y), z), f(x, y) \approx f(y, x) \mid f \in \mathcal{F}_{AC} \}$$

$$AC = \{ f(x, f(y, z)) \approx f(f(x, y), z), f(x, y) \approx f(y, x) \mid f \in \mathcal{F}_{AC} \}$$

Definition (AC Rewriting)

- $u \xrightarrow[\ell \to r/AC]{p} t \text{ if } u \leftrightarrow_{AC}^* \cdot \xrightarrow[\ell \to r]{p} \cdot \leftrightarrow_{AC}^* t$
- $u \to_{R/AC} t$ if $u \xrightarrow[\ell \to r/AC]{p} t$ for some $\ell \to r \in R$ and position p

$$AC = \{ f(x, f(y, z)) \approx f(f(x, y), z), f(x, y) \approx f(y, x) \mid f \in \mathcal{F}_{AC} \}$$

Definition (AC Rewriting)

- $u \xrightarrow[\ell \to r/AC]{p} t \text{ if } u \leftrightarrow_{AC}^* \cdot \xrightarrow[\ell \to r]{p} \cdot \leftrightarrow_{AC}^* t$
- $u \to_{R/AC} t$ if $u \xrightarrow[\ell \to r/AC]{p} t$ for some $\ell \to r \in R$ and position p

Definition

• TRS R is AC terminating if $\nexists t_0 \rightarrow_{R/AC} t_1 \rightarrow_{R/AC} t_2 \rightarrow_{R/AC} \dots$

$$AC = \{ f(x, f(y, z)) \approx f(f(x, y), z), f(x, y) \approx f(y, x) \mid f \in \mathcal{F}_{AC} \}$$

Definition (AC Rewriting)

- $u \xrightarrow[\ell \to r/AC]{p} t \text{ if } u \leftrightarrow_{AC}^* \cdot \xrightarrow[\ell \to r]{p} \cdot \leftrightarrow_{AC}^* t$
- $u \to_{R/AC} t$ if $u \xrightarrow[\ell \to r/AC]{p} t$ for some $\ell \to r \in R$ and position p

Definition

- TRS R is AC terminating if $\sharp t_0 \rightarrow_{R/AC} t_1 \rightarrow_{R/AC} t_2 \rightarrow_{R/AC} \dots$
- TRS R is AC convergent if AC terminating and $\forall u, t$

$$u \stackrel{*}{\underset{R \cup AC}{\longleftrightarrow}} t$$
 iff $u \stackrel{*}{\underset{R/AC}{\longleftrightarrow}} \cdot \stackrel{*}{\underset{AC}{\longleftrightarrow}} \cdot \stackrel{*}{\underset{R/AC}{\longleftrightarrow}} t$

$$AC = \{ f(x, f(y, z)) \approx f(f(x, y), z), f(x, y) \approx f(y, x) \mid f \in \mathcal{F}_{AC} \}$$

Definition (AC Rewriting)

- $u \xrightarrow[\ell \to r/AC]{p} t \text{ if } u \leftrightarrow_{AC}^* \cdot \xrightarrow[\ell \to r]{p} \cdot \leftrightarrow_{AC}^* t$
- $u \to_{R/AC} t$ if $u \xrightarrow[\ell \to r/AC]{p} t$ for some $\ell \to r \in R$ and position p

Definition

- TRS R is AC terminating if $\sharp t_0 \rightarrow_{R/AC} t_1 \rightarrow_{R/AC} t_2 \rightarrow_{R/AC} \dots$
- TRS R is AC convergent if AC terminating and $\forall u, t$

$$u \stackrel{*}{\underset{R \cup AC}{\longleftrightarrow}} t$$
 iff $u \stackrel{*}{\underset{R/AC}{\longleftrightarrow}} \cdot \stackrel{*}{\underset{AC}{\longleftrightarrow}} \cdot \stackrel{*}{\underset{R/AC}{\longleftrightarrow}} t$

Fact

R is AC terminating iff compatible with AC reduction order \succ

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup AC}^* = \leftrightarrow_T^*$ and $S \subseteq \succ$.

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup AC}^* = \leftrightarrow_T^*$ and $S \subseteq \succ$.

Example

associativity, commutativity & identity

```
T: x \cdot y \approx y \cdot x S: x \cdot e \rightarrow x

(x \cdot y) \cdot z \approx x \cdot (y \cdot z)

x \cdot e \approx x
```

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup AC}^* = \leftrightarrow_T^*$ and $S \subseteq \succ$.

Example

associativity, commutativity & identity

$$T: x \cdot y \approx y \cdot x$$
 $S: x \cdot e \rightarrow x$ $(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$ $x \cdot e \approx x$

Abelian group theory

$$T: \qquad x \cdot y \approx y \cdot x \qquad \qquad S: \qquad x \cdot e \to x \\ (x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad \qquad x^{-1} \cdot x \to e \\ x \cdot e \approx x \qquad \qquad e^{-1} \to e \\ x^{-1} \cdot x \approx e \qquad \qquad (x^{-1})^{-1} \to x \\ (x \cdot y)^{-1} \to x^{-1} \cdot y^{-1}$$

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup AC}^* = \leftrightarrow_T^*$ and $S \subseteq \succ$.

Example

associativity, commutativity & identity

$$T: x \cdot y \approx y \cdot x$$
 $S: x \cdot e \rightarrow x$ $(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$ $x \cdot e \approx x$

Abelian group theory

$$T: \qquad x \cdot y \approx y \cdot x \qquad \qquad S: \qquad x \cdot e \to x$$

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad \qquad x^{-1} \cdot x \to e$$

$$x \cdot e \approx x \qquad \qquad e^{-1} \to e$$

$$x^{-1} \cdot x \approx e \qquad \qquad (x^{-1})^{-1} \to x$$

$$(x \cdot y)^{-1} \to x^{-1} \cdot y^{-1}$$

• commutative ring theory, theory of finite rings, ...

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup AC}^* = \leftrightarrow_T^*$ and $S \subseteq \succ$.

Definition (Normalized Rewriting)

$$u \xrightarrow[R \setminus S]{} t \text{ if } u' = u \downarrow_S$$

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup AC}^* = \leftrightarrow_T^*$ and $S \subseteq \succ$.

Definition (Normalized Rewriting)

$$u \xrightarrow[R \setminus S]{} t \text{ if } u' = u \downarrow_S$$

 $u\downarrow_S$ is $\rightarrow_{S/AC}$ -normal form of u

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup AC}^* = \leftrightarrow_T^*$ and $S \subseteq \succ$.

Definition (Normalized Rewriting)

$$u \xrightarrow[R \setminus S]{} t \text{ if } u' = u \downarrow_S \text{ and } u' \xrightarrow[R/AC]{} t$$

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup AC}^* = \leftrightarrow_T^*$ and $S \subseteq \succ$.

Definition (Normalized Rewriting)

$$u \xrightarrow[R \setminus S]{} t \text{ if } u' = u \downarrow_S \text{ and } u' \xrightarrow[R/AC]{} t$$

Example

associativity, commutativity & identity

$$T: \qquad x \cdot y \approx y \cdot x \qquad S: \quad x \cdot e \to x$$

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$$

$$x \cdot e \approx x \qquad (x \cdot y)^{-1} \to x^{-1} \cdot y^{-1}$$
for $R = \{(x \cdot y)^{-1} \to x^{-1} \cdot y^{-1}\}$ have

$$(a \cdot b)^{-1} \xrightarrow{R \setminus S} a^{-1} \cdot b^{-1} \qquad (e \cdot b)^{-1} \xrightarrow{R \setminus S} e^{-1} \cdot b^{-1}$$

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup AC}^* = \leftrightarrow_T^*$ and $S \subseteq \succ$.

Definition (Normalized Rewriting)

$$u \xrightarrow[R \setminus S]{} t \text{ if } u' = u \downarrow_S \text{ and } u' \xrightarrow[R/AC]{} t$$

Definition (S-convergence)

R is S-convergent for set of equations E if $\rightarrow_{R \setminus S}$ is well-founded and

$$t \xleftarrow{\quad * \quad \atop E \cup S \cup \mathsf{AC}} u$$

implies existence of rewrite proof

$$t \xrightarrow[R \setminus S]{!} \cdot \stackrel{*}{\longleftrightarrow} \cdot \stackrel{!}{\longleftrightarrow} u$$

E: equations R: rewrite rules \succ : AC-reduction order, $S \subseteq \succ$

if $u \leftrightarrow_{R \cup T}^* v$

E: equations R: rewrite rules \succ : AC-reduction order, $S \subseteq \succ$

deduce

$$\frac{E, R}{E \cup \{\mathbf{u} \approx \mathbf{v}\}, R}$$
if $\mathbf{u} \leftrightarrow^*_{R \cup T} \mathbf{v}$

$$\begin{array}{ll} \text{deduce} & \frac{E,R}{E \cup \{u \approx v\},R} \\ & \text{if } u \leftrightarrow^*_{R \cup T} v \end{array}$$

simplify
$$\frac{E \uplus \{u \simeq v\}, R}{\text{if } u \to_{R \backslash S} t}$$

deduce
$$\frac{E,R}{E \cup \{u \approx v\}, R}$$
if $u \leftrightarrow_{R \cup T}^* v$

simplify
$$\frac{E \uplus \{u \simeq v\}, R}{E \cup \{t \simeq v\}, R}$$
if $u \rightarrow_{R \backslash S} t$

deduce
$$\frac{E,R}{E \cup \{u \approx v\},R}$$
 if $u \leftrightarrow_{R \cup T}^* v$ collapse
$$\frac{E,R \uplus \{u \to v\}}{E}$$

simplify
$$\frac{E \uplus \{u \simeq v\}, R}{E \cup \{t \simeq v\}, R}$$
if $u \rightarrow_{R \backslash S} t$

E: equations *R*: rewrite rules \succ : AC-reduction order, $S \subseteq \succ$

simplify $\frac{E \uplus \{u \simeq v\}, R}{E \cup \{t \simeq v\}, R}$

if $u \rightarrow_{R \setminus S} t$

deduce
$$\frac{E, R}{E \cup \{u \approx v\}, R}$$
if $u \leftrightarrow_{R \cup T}^* v$

collapse
$$\frac{E, R \uplus \{u \to v\}}{E \cup \{t \approx v\}, R}$$

collapse
$$\frac{E, R \oplus \{u \to v\}}{E \cup \{t \approx v\}, R}$$
if $u \to_{R \setminus S} t$

E: equations *R*: rewrite rules \succ : AC-reduction order, $S \subseteq \succ$

$$\frac{E, R}{E \cup \{u \approx v\}, R}$$
if $u \leftrightarrow^*_{R \cup T} v$

simplify
$$\frac{E \uplus \{u \simeq v\}, R}{E \cup \{t \simeq v\}, R}$$
if $u \rightarrow_{R \setminus S} t$

collapse

$$\frac{E, R \uplus \{u \to v\}}{E \cup \{t \approx v\}, R}$$

if
$$u \rightarrow_{R \setminus S} t$$

slightly simpler than in Marché 1996

E: equations *R*: rewrite rules \succ : AC-reduction order, $S \subseteq \succ$

deduce
$$\frac{E,R}{E \cup \{u \approx v\},R} \qquad \text{simplify} \qquad \frac{E \uplus \{u \simeq v\},R}{E \cup \{t \simeq v\},R}$$

$$\text{if } u \leftrightarrow_{R \cup T}^* v \qquad \text{if } u \rightarrow_{R \setminus S} t$$

$$\text{collapse} \qquad \frac{E,R \uplus \{u \rightarrow v\}}{E \cup \{u \rightarrow v\}} \qquad \text{compose} \qquad \frac{E,R \uplus \{v \rightarrow u\}}{E \cup \{u \rightarrow v\}}$$

collapse $\frac{E, R \oplus \{u \to v\}}{E \cup \{t \approx v\}, R}$ if $u \to_{R \setminus S} t$

$$\begin{array}{lll} \text{deduce} & \frac{E,R}{E\cup\{u\approx v\},R} & \text{simplify} & \frac{E\uplus\{u\simeq v\},R}{E\cup\{t\simeq v\},R} \\ & \text{if } u\leftrightarrow_{R\cup T}^* v & \text{if } u\to_{R\backslash S} t \\ \\ \text{collapse} & \frac{E,R\uplus\{u\to v\}}{E\cup\{t\approx v\},R} & \text{compose} & \frac{E,R\uplus\{v\to u\}}{E\cup\{t\approx v\},R} \\ & \text{if } u\to_{R\backslash S} t & \text{if } u\to_{R\backslash S} t \end{array}$$

$$\begin{array}{ll} \operatorname{deduce} & \frac{E,R}{E \cup \{u \approx v\},R} & \operatorname{simplify} & \frac{E \uplus \{u \simeq v\},R}{E \cup \{t \simeq v\},R} \\ & \operatorname{if} u \leftrightarrow_{R \cup T}^* v & \operatorname{if} u \rightarrow_{R \backslash S} t \end{array}$$

$$\begin{array}{ccc} \text{collapse} & \frac{E,R \uplus \{u \to v\}}{E \cup \{t \approx v\},R} & \text{compose} & \frac{E,R \uplus \{v \to u\}}{E,R \cup \{v \to t\}} \\ & \text{if } u \to_{R \backslash S} t & \text{if } u \to_{R \backslash S} t \end{array}$$

$$\begin{array}{ll} \text{deduce} & \frac{E,R}{E \cup \{u \approx v\},R} \\ & \text{if } u \leftrightarrow_{R \cup T}^* v \end{array} \qquad \begin{array}{ll} \text{simplify} & \frac{E \uplus \{u \simeq v\},R}{E \cup \{t \simeq v\},R} \\ & \text{if } u \rightarrow_{R \backslash S} t \end{array}$$

collapse
$$\frac{E, R \uplus \{u \to v\}}{E \cup \{t \approx v\}, R}$$
 compose
$$\frac{E, R \uplus \{v \to u\}}{E, R \cup \{v \to t\}}$$
 if $u \to_{R \setminus S} t$

normalize
$$E \uplus \{u \simeq v\}, R$$

if
$$u \neq u \downarrow_S$$
 or $v \neq v \downarrow_S$

$$\begin{array}{ll} \operatorname{deduce} & \frac{E,R}{E \cup \{u \approx v\},R} & \operatorname{simplify} & \frac{E \uplus \{u \simeq v\},R}{E \cup \{t \simeq v\},R} \\ & \operatorname{if} u \leftrightarrow_{R \cup T}^* v & \operatorname{if} u \rightarrow_{R \backslash S} t \end{array}$$

collapse
$$\frac{E, R \uplus \{u \to v\}}{E \cup \{t \approx v\}, R}$$
 compose
$$\frac{E, R \uplus \{v \to u\}}{E, R \cup \{v \to t\}}$$
 if $u \to_{R \setminus S} t$

normalize
$$\frac{E \uplus \{u \simeq v\}, R}{E \cup \{u \downarrow_S \simeq v \downarrow_S\}, R\}}$$
if $u \neq u \downarrow_S$ or $v \neq v \downarrow_S$

$$\begin{array}{lll} \operatorname{deduce} & \frac{E,R}{E \cup \{u \approx v\},R} & \operatorname{simplify} & \frac{E \uplus \{u \simeq v\},R}{E \cup \{t \simeq v\},R} \\ & \operatorname{if} u \leftrightarrow_{R \cup T}^* v & \operatorname{if} u \to_{R \backslash S} t \\ \\ \operatorname{collapse} & \frac{E,R \uplus \{u \to v\}}{E \cup \{t \approx v\},R} & \operatorname{compose} & \frac{E,R \uplus \{v \to u\}}{E,R \cup \{v \to t\}} \\ & \operatorname{if} u \to_{R \backslash S} t & \operatorname{if} u \to_{R \backslash S} t \\ \\ \operatorname{normalize} & \frac{E \uplus \{u \simeq v\},R}{E \cup \{u \downarrow_S \simeq v \downarrow_S\},R\}} & \operatorname{delete} & \frac{E \uplus \{u \simeq v\},R}{E \cup \{u \downarrow_S \simeq v \downarrow_S\},R\}} \\ & \operatorname{if} u \neq u \downarrow_S \text{ or } v \neq v \downarrow_S & \operatorname{if} u \leftrightarrow_{AC}^* v \\ \end{array}$$

$$\begin{array}{lll} \operatorname{deduce} & \frac{E,R}{E \cup \{u \approx v\},R} & \operatorname{simplify} & \frac{E \uplus \{u \simeq v\},R}{E \cup \{t \simeq v\},R} \\ & \operatorname{if} \ u \leftrightarrow_{R \cup T}^* v & \operatorname{if} \ u \rightarrow_{R \backslash S} t \\ \\ \operatorname{collapse} & \frac{E,R \uplus \{u \rightarrow v\}}{E \cup \{t \approx v\},R} & \operatorname{compose} & \frac{E,R \uplus \{v \rightarrow u\}}{E,R \cup \{v \rightarrow t\}} \\ & \operatorname{if} \ u \rightarrow_{R \backslash S} t & \operatorname{if} \ u \rightarrow_{R \backslash S} t \\ \\ \operatorname{normalize} & \frac{E \uplus \{u \simeq v\},R}{E \cup \{u \downarrow_S \simeq v \downarrow_S\},R\}} & \operatorname{delete} & \frac{E \uplus \{u \simeq v\},R}{E,R} \\ & \operatorname{if} \ u \neq u \downarrow_S \text{ or } v \neq v \downarrow_S & \operatorname{if} \ u \leftrightarrow_{AC}^* v \\ \\ \end{array}$$

$$\begin{array}{lll} \operatorname{deduce} & \frac{E,R}{E \cup \{u \approx v\},R} & \operatorname{simplify} & \frac{E \uplus \{u \simeq v\},R}{E \cup \{t \simeq v\},R} \\ & \operatorname{if} u \leftrightarrow_{R \cup T}^* v & \operatorname{if} u \rightarrow_{R \backslash S} t \\ \\ \operatorname{collapse} & \frac{E,R \uplus \{u \rightarrow v\}}{E \cup \{t \approx v\},R} & \operatorname{compose} & \frac{E,R \uplus \{v \rightarrow u\}}{E,R \cup \{v \rightarrow t\}} \\ & \operatorname{if} u \rightarrow_{R \backslash S} t & \operatorname{if} u \rightarrow_{R \backslash S} t \\ \\ \operatorname{normalize} & \frac{E \uplus \{u \simeq v\},R}{E \cup \{u \downarrow_S \simeq v \downarrow_S\},R\}} & \operatorname{delete} & \frac{E \uplus \{u \simeq v\},R}{E,R} \\ & \operatorname{if} u \neq u \downarrow_S \text{ or } v \neq v \downarrow_S & \operatorname{if} u \leftrightarrow_{AC}^* v \\ \\ \end{array}$$

$$\begin{array}{lll} \operatorname{deduce} & \frac{E,R}{E \cup \{u \approx v\},R} & \operatorname{simplify} & \frac{E \uplus \{u \simeq v\},R}{E \cup \{t \simeq v\},R} \\ & \operatorname{if} \ u \leftrightarrow_{R \cup T}^* v & \operatorname{if} \ u \to_{R \backslash S} t \\ \\ \operatorname{collapse} & \frac{E,R \uplus \{u \to v\}}{E \cup \{t \approx v\},R} & \operatorname{compose} & \frac{E,R \uplus \{v \to u\}}{E,R \cup \{v \to t\}} \\ & \operatorname{if} \ u \to_{R \backslash S} t & \operatorname{if} \ u \to_{R \backslash S} t \\ \\ \operatorname{normalize} & \frac{E \uplus \{u \simeq v\},R}{E \cup \{u \downarrow_S \simeq v \downarrow_S\},R\}} & \operatorname{delete} & \frac{E \uplus \{u \simeq v\},R}{E,R} \\ & \operatorname{if} \ u \neq u \downarrow_S \text{ or } v \neq v \downarrow_S & \operatorname{if} \ u \leftrightarrow_{AC}^* v \\ \\ \end{array}$$

$$\begin{array}{lll} \operatorname{deduce} & \frac{E,R}{E \cup \{u \approx v\},R} & \operatorname{simplify} & \frac{E \uplus \{u \simeq v\},R}{E \cup \{t \simeq v\},R} \\ & \operatorname{if} u \leftrightarrow_{R \cup T}^* v & \operatorname{if} u \to_{R \backslash S} t \\ \\ \operatorname{collapse} & \frac{E,R \uplus \{u \to v\}}{E \cup \{t \approx v\},R} & \operatorname{compose} & \frac{E,R \uplus \{v \to u\}}{E,R \cup \{v \to t\}} \\ & \operatorname{if} u \to_{R \backslash S} t & \operatorname{if} u \to_{R \backslash S} t \\ \\ \operatorname{normalize} & \frac{E \uplus \{u \simeq v\},R}{E \cup \{u \downarrow_S \simeq v \downarrow_S\},R\}} & \operatorname{delete} & \frac{E \uplus \{u \simeq v\},R}{E,R} \\ & \operatorname{if} u \neq u \downarrow_S \text{ or } v \neq v \downarrow_S & \operatorname{if} u \leftrightarrow_{AC}^* v \\ \\ \operatorname{orient} & \frac{E \uplus \{u \simeq v\},R}{E \cup \Theta(u,v),R \cup \Psi(u,v)} \\ & \operatorname{if} u = u \downarrow_S, \ v = v \downarrow_S \text{ and } u \succ v \\ \hline & (\Theta,\Psi) \text{ are } S\text{-normalizing pair} \\ \end{array}$$

$$\begin{array}{lll} \operatorname{deduce} & \frac{E,R}{E \cup \{u \approx v\},R} & \operatorname{simplify} & \frac{E \uplus \{u \simeq v\},R}{E \cup \{t \simeq v\},R} \\ & \operatorname{if} u \leftrightarrow_{R \cup T}^* v & \operatorname{if} u \rightarrow_{R \backslash S} t \\ \\ \operatorname{collapse} & \frac{E,R \uplus \{u \rightarrow v\}}{E \cup \{t \approx v\},R} & \operatorname{compose} & \frac{E,R \uplus \{v \rightarrow u\}}{E,R \cup \{v \rightarrow t\}} \\ & \operatorname{if} u \rightarrow_{R \backslash S} t & \operatorname{if} u \rightarrow_{R \backslash S} t \\ \\ \operatorname{normalize} & \frac{E \uplus \{u \simeq v\},R}{E \cup \{u \downarrow_S \simeq v \downarrow_S\},R\}} & \operatorname{delete} & \frac{E \uplus \{u \simeq v\},R}{E,R} \\ & \operatorname{if} u \neq u \downarrow_S \text{ or } v \neq v \downarrow_S \\ \\ \operatorname{orient} & \frac{E \uplus \{u \simeq v\},R}{E \cup \Theta(u,v),R \cup \Psi(u,v)} & \frac{\Theta_g(u,v) = \operatorname{CP}_{\operatorname{AC}}(\{u \rightarrow v\},S^e)}{\Psi_g(u,v) = \{u \rightarrow v\}} \\ & \operatorname{orient} & \frac{E \uplus \{u \simeq v\},R}{E \cup \Theta(u,v),R \cup \Psi(u,v)} & \frac{\Theta_g(u,v) = \operatorname{CP}_{\operatorname{AC}}(\{u \rightarrow v\},S^e)}{\Psi_g(u,v) = \{u \rightarrow v\}} \\ & \operatorname{orient} & \frac{(\Theta,\Psi) \text{ are } S\text{-normalizing pair}}{(\Theta,\Psi) \text{ are } S\text{-normalizing pair}} \end{array}$$

$$\mathsf{run}\;(E_0,\varnothing)\vdash_{\mathcal{N}} (E_1,R_1)\vdash_{\mathcal{N}}\cdots\vdash_{\mathcal{N}} (E_k,R_k)$$

$$\text{run } (E_0,\varnothing) \vdash_{\mathcal{N}} (E_1,R_1) \vdash_{\mathcal{N}} \dots \vdash_{\mathcal{N}} (E_k,R_k) \text{ is fair if } \mathsf{CP}_L(R_k^e) \subseteq \bigcup_i \ E_i$$

run
$$(E_0,\varnothing)$$
 $\vdash_{\mathcal{N}} (E_1,R_1)$ $\vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}} (E_k,R_k)$ is fair if $\mathsf{CP}_{\boldsymbol{L}}(R_k^e) \subseteq \bigcup_i E_i$

L-critical pairs among (extended) rules of R_k

run
$$(E_0, \varnothing) \vdash_{\mathcal{N}} (E_1, R_1) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}} (E_k, R_k)$$
 is fair if $\mathsf{CP}_{\boldsymbol{L}}(R_k^e) \subseteq \bigcup_i E_i$

L-critical pairs among (extended) rules of R_k

 $AC \subseteq L \subseteq T$

 ${\it L}$ can be chosen to have good properties wrt unification

run $(E_0, \varnothing) \vdash_{\mathcal{N}} (E_1, R_1) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}} (E_k, R_k)$ is fair if for any proof P in $S \cup R_k$ which is not rewrite proof there is smaller proof Q in $S \cup E_i \cup R_i$

Theorem (Correctness)

Marché 1996

If $(E, \emptyset) \vdash_{\mathcal{N}}^* (\emptyset, R)$ is fair then R is S-convergent for E.

run $(E_0, \varnothing) \vdash_{\mathcal{N}} (E_1, R_1) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}} (E_k, R_k)$ is fair if for any proof P in $S \cup R_k$ which is not rewrite proof there is smaller proof Q in $S \cup E_i \cup R_i$

with respect to proof reduction order \succ

run $(E_0, \varnothing) \vdash_{\mathcal{N}} (E_1, R_1) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}} (E_k, R_k)$ is fair if for any proof P in $S \cup R_k$ which is not rewrite proof there is smaller proof Q in $S \cup E_i \cup R_i$

run $(E_0, \varnothing) \vdash_{\mathcal{N}} (E_1, R_1) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}} (E_k, R_k)$ is fair if for any proof P in $S \cup R_k$ which is not rewrite proof there is smaller proof Q in $S \cup E_i \cup R_i$

Lemma

run is fair if $CP_L(R_k^e) \subseteq \bigcup_i E_i$

run $(E_0, \varnothing) \vdash_{\mathcal{N}} (E_1, R_1) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}} (E_k, R_k)$ is fair if for any proof P in $S \cup R_k$ which is not rewrite proof there is smaller proof Q in $S \cup E_i \cup R_i$

Lemma

run is fair if $CP_L(R_k^e) \subseteq \bigcup_i E_i$

Theorem (Correctness)

If $(E, \emptyset) \vdash_{\mathcal{N}}^* (\emptyset, R)$ is fair then R is S-convergent for E.

run $(E_0, \emptyset) \vdash_{\mathcal{N}} (E_1, R_1) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}} (E_k, R_k)$ is fair if for any proof P in $S \cup R_k$ which is not rewrite proof there is smaller proof Q in $S \cup E_i \cup R_i$

Lemma

run is fair if $CP_L(R_k^e) \subseteq \bigcup_i E_i$

Theorem (Correctness)

If $(E,\varnothing)\vdash_{\mathcal{N}}^*(\varnothing,R)$ is fair then R is S-convergent for E.

Theorem (Completeness)

Let R be finite, reduced S-convergent TRS for E and let \succ be AC-compatible reduction order such that $R \cup S \subseteq \succ$.

run $(E_0, \emptyset) \vdash_{\mathcal{N}} (E_1, R_1) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}} (E_k, R_k)$ is fair if for any proof P in $S \cup R_k$ which is not rewrite proof there is smaller proof Q in $S \cup E_i \cup R_i$

Lemma

run is fair if $CP_L(R_k^e) \subseteq \bigcup_i E_i$

Theorem (Correctness)

If $(E,\varnothing) \vdash_{\mathcal{N}}^* (\varnothing,R)$ is fair then R is S-convergent for E.

Theorem (Completeness)

Let R be finite, reduced S-convergent TRS for E and let \succ be AC-compatible reduction order such that $R \cup S \subseteq \succ$.

Then for any fair run (E,\varnothing) $\vdash_{\mathcal{N}}^* (\varnothing,R')$ applying \succ and full inter-reduction R' is equal to R up to variable renaming and AC equivalence.

Marché 1996

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

Marché 1996

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

I for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u, v) \cup \Psi(u, v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and

Marché 1996

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

In for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u,v) \cup \Psi(u,v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and

ensures progress
e.g. by orienting equations

Marché 1996

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

- I for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u,v) \cup \Psi(u,v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and
- 2 for all $\ell \to r \in \Psi(u, v)$, TRSs R with $r \to_{R \setminus S}^* r'$ and minimal proof $s \to_{\ell \to r'} t$ there is proof P in $S \cup \Theta(u, v) \cup \Psi(u, v) \cup R$ such that $s \to_{\ell \to r'} t \Rightarrow P$

Marché 1996

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

- I for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u, v) \cup \Psi(u, v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and
- 2 for all $\ell \to r \in \Psi(u, v)$, TRSs R with $r \to_{R \setminus S}^* r'$ and minimal proof $s \to_{\ell \to r'} t$ there is proof P in $S \cup \Theta(u, v) \cup \Psi(u, v) \cup R$ such that $s \to_{\ell \to r'} t \Rightarrow P$

ensures that equational proofs decrease even if rules get composed

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

- **1** for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u, v) \cup \Psi(u, v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and
- 2 for all $\ell \to r \in \Psi(u, v)$, TRSs R with $r \to_{R \setminus S}^* r'$ and minimal proof $s \to_{\ell \to r'} t$ there is proof P in $S \cup \Theta(u,v) \cup \Psi(u,v) \cup R$ such that $s \rightarrow_{\ell \rightarrow r'} t \Rightarrow P$

Issue

does not preserve equational theory

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

- 1 for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u,v) \cup \Psi(u,v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and
- 2 for all $\ell \to r \in \Psi(u,v)$, TRSs R with $r \to_{R \setminus S}^* r'$ and minimal proof $s \to_{\ell \to r'} t$ there is proof P in $S \cup \Theta(u,v) \cup \Psi(u,v) \cup R$ such that $s \to_{\ell \to r'} t \Rightarrow P$
- $\Theta(u,v), \ \Psi(u,v) \ \text{are contained in } \leftrightarrow_{E \cup R \cup T}^*$

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

- **1** for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u, v) \cup \Psi(u, v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and
- 2 for all $\ell \to r \in \Psi(u, v)$, TRSs R with $r \to_{R \setminus S}^* r'$ and minimal proof $s \to_{\ell \to r'} t$ there is proof P in $S \cup \Theta(u,v) \cup \Psi(u,v) \cup R$ such that $s \rightarrow_{\ell \rightharpoonup r'} t \Rightarrow P$
- $\Theta(u,v), \Psi(u,v)$ are contained in $\leftrightarrow_{F \cup P \cup T}^*$

Issue

rules in Ψ need not terminate

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

- 1 for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u, v) \cup \Psi(u, v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and
- 2 for all $\ell \to r \in \Psi(u, v)$, TRSs R with $r \to_{R \setminus S}^* r'$ and minimal proof $s \to_{\ell \to r'} t$ there is proof P in $S \cup \Theta(u, v) \cup \Psi(u, v) \cup R$ such that $s \to_{\ell \to r'} t \Rightarrow P$
- $\Theta(u,v), \ \Psi(u,v) \ \text{are contained in} \ \leftrightarrow_{E\cup R\cup T}^* \ \text{and} \ \Psi(u,v) \subseteq \succ$

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

- 1 for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u, v) \cup \Psi(u, v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and
- 2 for all $\ell \to r \in \Psi(u, v)$, TRSs R with $r \to_{R \setminus S}^* r'$ and minimal proof $s \to_{\ell \to r'} t$ there is proof P in $S \cup \Theta(u, v) \cup \Psi(u, v) \cup R$ such that $s \to_{\ell \to r'} t \Rightarrow P$
- $egin{array}{c} \Theta(u,v),\ \Psi(u,v) \ ext{are contained in} \ \leftrightarrow^*_{E\cup R\cup \mathcal{T}} \ ext{and} \ \Psi(u,v)\subseteq \succ \end{array}$

Issue

▶ does not guarantee S-convergence: for $S = \{b + x \rightarrow b\}$ run

$$(\{a+x\approx a\},\varnothing)\vdash (\varnothing,\{a+x\rightarrow a\})$$

using $(\Theta, \Psi) = (\varnothing, \{a + x \to a\})$ is fair, but AC-critical pair $a \approx b$ is not joinable

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

- 1 for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u,v) \cup \Psi(u,v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and
- 2 for all $\ell \to r$ in $\Psi(u,v)$, proof $P \colon s \not\leftarrow w \leftrightarrow^*_{AC} \cdot \to_{\ell \to r} \cdot \to^*_{R \setminus S} t$ with TRS R there is proof Q in $S, \Theta(u,v), \Psi(u,v) \cup R$ such that $P \Rightarrow Q$ and terms in Q are smaller than W

Critical Pair Criteria

Aim: filter out superfluous critical pairs

Critical Pair Criteria

Definition

peak $P: s \leftarrow_p u \leftrightarrow_L^* u' \xrightarrow_\epsilon t$ is composite if there are

- terms u_0, \ldots, u_{n+1} such that $s = u_0$, $t = u_{n+1}$, and $u \succ u_i$
- proofs P_i proving $u_i \simeq u_{i+1}$ such that $P \gg P_i$ for all $1 \leqslant i \leqslant n$

proof ordering for normalized completion

Definition

peak $P: s \leftarrow_p u \leftrightarrow_L^* u' \xrightarrow_\epsilon t$ is composite if there are

- terms u_0, \ldots, u_{n+1} such that $s = u_0$, $t = u_{n+1}$, and $u \succ u_i$
- proofs P_i proving $u_i \simeq u_{i+1}$ such that $P \gg P_i$ for all $1 \leqslant i \leqslant n$

Lemma

Bachmair & Dershowitz 94

Composite critical pairs can be omitted in standard completion

Definition

peak $P: s \leftarrow_p u \leftrightarrow_L^* u' \xrightarrow_\epsilon t$ is composite if there are

- terms u_0, \ldots, u_{n+1} such that $s = u_0$, $t = u_{n+1}$, and $u \succ u_i$
- proofs P_i proving $u_i \simeq u_{i+1}$ such that $P \gg P_i$ for all $1 \leqslant i \leqslant n$

Lemma

Composite critical pairs can be omitted in normalized completion

Definition

peak $P: s \leftarrow_p u \leftrightarrow_L^* u' \xrightarrow_{\epsilon} t$ is composite if there are

- terms u_0, \ldots, u_{n+1} such that $s = u_0$, $t = u_{n+1}$, and $u \succ u_i$
- proofs P_i proving $u_i \simeq u_{i+1}$ such that $P \gg P_i$ for all $1 \leqslant i \leqslant n$

Lemma

Composite critical pairs can be omitted in normalized completion

Compositeness in normalized completion

peak P is composite

• if $u \neq u \downarrow_S$

S-reducibility

Definition

peak $P: s \leftarrow_p u \leftrightarrow_L^* u' \xrightarrow_\epsilon t$ is composite if there are

- terms u_0, \ldots, u_{n+1} such that $s = u_0$, $t = u_{n+1}$, and $u \succ u_i$
- proofs P_i proving $u_i \simeq u_{i+1}$ such that $P \gg P_i$ for all $1 \leqslant i \leqslant n$

Lemma

Composite critical pairs can be omitted in normalized completion

Compositeness in normalized completion

peak P is composite

• if $u \neq u \downarrow_S$

S-reducibility

• if *u* is reducible strictly below *p*

primality (Kapur et al 88)

Definition

peak $P: s \leftarrow_p u \leftrightarrow_L^* u' \xrightarrow_{\epsilon} t$ is composite if there are

- terms u_0, \ldots, u_{n+1} such that $s = u_0$, $t = u_{n+1}$, and $u \succ u_i$
- proofs P_i proving $u_i \simeq u_{i+1}$ such that $P \gg P_i$ for all $1 \leqslant i \leqslant n$

Lemma

Composite critical pairs can be omitted in normalized completion

Compositeness in normalized completion

peak P is composite

• if $u \neq u \downarrow_S$

S-reducibility

• if *u* is reducible strictly below *p*

primality (Kapur et al 88)

• if $u \rightarrow v$

Definition

peak $P: s \leftarrow_p u \leftrightarrow_L^* u' \xrightarrow_\epsilon t$ is composite if there are

- terms u_0, \ldots, u_{n+1} such that $s = u_0$, $t = u_{n+1}$, and $u \succ u_i$
- proofs P_i proving $u_i \simeq u_{i+1}$ such that $P \gg P_i$ for all $1 \leqslant i \leqslant n$

Lemma

Composite critical pairs can be omitted in normalized completion

Compositeness in normalized completion

peak P is composite

• if $u \neq u \downarrow_S$

- S-reducibility
- if *u* is reducible strictly below *p* primality (Kapur *et al* 88)
- if $u \rightarrow v$ and $s \simeq v$ and $t \simeq v$ were already considered connectedness (Küchlin 85)

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad x \cdot y \approx y \cdot x$$

$$x \cdot e \approx x \qquad x \cdot x^{-1} \approx e$$

$$f(x \cdot y) \approx f(x) \cdot f(y) \qquad f(e) \approx e$$

$$g(x \cdot y) \approx g(x) \cdot g(y) \qquad g(e) \approx e$$

$$\phi(x, \phi(y, z)) \approx \phi(x \cdot y, z) \qquad \phi(e, x) \approx x$$

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad x \cdot y \approx y \cdot x$$

$$x \cdot e \approx x \qquad x \cdot x^{-1} \approx e$$

$$f(x \cdot y) \approx f(x) \cdot f(y) \qquad f(e) \approx e$$

$$g(x \cdot y) \approx g(x) \cdot g(y) \qquad g(e) \approx e$$

$$(x, \phi(y, z)) \approx \phi(x \cdot y, z) \qquad \phi(e, x) \approx x$$

$$f(x), g(y) \approx \phi(g(y), f(x))$$

Normalized completion modulo *G*:

$$\mathbf{x} \cdot \mathbf{e} \to \mathbf{x}$$
 $(\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z} \to \mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z})$ $\mathbf{x} \cdot \mathbf{x}^{-1} \to \mathbf{e}$ $(\mathbf{z}^{-1})^{-1} \to \mathbf{x}$ $(\mathbf{x} \cdot \mathbf{y})^{-1} \to \mathbf{x}^{-1} \cdot \mathbf{y}^{-1}$

with CiME using ACRPO yields G-convergent TRS:

$$f(e) \rightarrow e$$
 $f(x \cdot y) \rightarrow f(x) \cdot f(y)$ $f(x)^{-1} \rightarrow f(x^{-1})$
 $g(e) \rightarrow e$ $g(x \cdot y) \rightarrow g(x) \cdot g(y)$ $g(x)^{-1} \rightarrow g(x^{-1})$

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad x \cdot y \approx y \cdot x$$

$$x \cdot e \approx x \qquad x \cdot x^{-1} \approx e$$

$$f(x \cdot y) \approx f(x) \cdot f(y) \qquad f(e) \approx e$$

$$g(x \cdot y) \approx g(x) \cdot g(y) \qquad g(e) \approx e$$

$$\phi(x, \phi(y, z)) \approx \phi(x \cdot y, z) \qquad \phi(f(x), g(y)) \approx \phi(g(y), f(x))$$

Normalized completion modulo *G*:

$$\mathbf{x} \cdot \mathbf{e} \to \mathbf{x}$$
 $(\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z} \to \mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z})$ $\mathbf{x} \cdot \mathbf{x}^{-1} \to \mathbf{e}$ $(\mathbf{z}^{-1})^{-1} \to \mathbf{x}$ $(\mathbf{x} \cdot \mathbf{y})^{-1} \to \mathbf{x}^{-1} \cdot \mathbf{y}^{-1}$

with CiME using ACRPO yields G-convergent TRS:

$$f(e) \rightarrow e$$
 $f(x \cdot y) \rightarrow f(x) \cdot f(y)$ $f(x)^{-1} \rightarrow f(x^{-1})$
 $g(e) \rightarrow e$ $g(x \cdot y) \rightarrow g(x) \cdot g(y)$ $g(x)^{-1} \rightarrow g(x^{-1})$

... but remaining equations cannot all be oriented

Definition (orient in \mathcal{N}_{TT})

E: set of equations R: set of rewrite rules C: set of rewrite rules

Definition (orient in \mathcal{N}_{TT})

E: set of equations R: set of rewrite rules

C: set of rewrite rules

orient

$$E \uplus \{u \simeq v\}, R, C$$

if $u = u \downarrow_S$, $v = v \downarrow_S$ and $C \cup \Psi(u, v) \cup S$ is AC terminating

Definition (orient in \mathcal{N}_{TT})

E: set of equations R: set of rewrite rules

C: set of rewrite rules

orient

$$\frac{E \uplus \{u \simeq v\}, R, C}{E \cup \Theta(u, v), R \cup \Psi(u, v), C \cup \Psi(u, v)}$$

if $u=u\!\downarrow_{\mathcal{S}}$, $v=v\!\downarrow_{\mathcal{S}}$ and $C\cup\Psi(u,v)\cup\mathcal{S}$ is AC terminating

Definition (orient in \mathcal{N}_{TT})

E: set of equations R: set of rewrite rules C: set of rewrite rules

orient
$$\frac{E \uplus \{u \simeq v\}, \ R, \ C}{E \cup \Theta(u, v), \ R \cup \Psi(u, v), \ C \cup \Psi(u, v)}$$
 if $u = u \downarrow_S, \ v = v \downarrow_S \ \text{and} \ C \cup \Psi(u, v) \cup S \ \text{is AC terminating}$

Lemma (Simulation Properties)

• if $(E_0, \varnothing, \varnothing) \vdash_{\mathcal{N}_{TT}}^* (E, R, C)$ then $(E_0, \varnothing) \vdash_{\mathcal{N}}^* (E, R)$

Definition (orient in \mathcal{N}_{TT})

E: set of equations R: set of rewrite rules C: set of rewrite rules

orient
$$\frac{E \uplus \{u \simeq v\}, \ R, \ C}{E \cup \Theta(u,v), \ R \cup \Psi(u,v), \ C \cup \Psi(u,v)}$$
 if $u = u \downarrow_S, \ v = v \downarrow_S \ \text{and} \ C \cup \Psi(u,v) \cup S \ \text{is AC terminating}$

Lemma (Simulation Properties)

• if $(E_0, \varnothing, \varnothing) \vdash_{\mathcal{N}_{TT}}^* (E, R, C)$ then $(E_0, \varnothing) \vdash_{\mathcal{N}}^* (E, R)$ using AC-compatible reduction order $\succ_C := \rightarrow_{(S \cup C)/AC}^+$

Definition (orient in \mathcal{N}_{TT})

E: set of equations R: set of rewrite rules C: set of rewrite rules

orient $\frac{E \uplus \{u \simeq v\}, \ R, \ C}{E \cup \Theta(u, v), \ R \cup \Psi(u, v), \ C \cup \Psi(u, v)}$ if $u = u \downarrow_S, \ v = v \downarrow_S \ \text{and} \ C \cup \Psi(u, v) \cup S \ \text{is AC terminating}$

Lemma (Simulation Properties)

- if $(E_0, \varnothing, \varnothing) \vdash_{\mathcal{N}_{TT}}^* (E, R, C)$ then $(E_0, \varnothing) \vdash_{\mathcal{N}}^* (E, R)$ using AC-compatible reduction order $\succ_C := \rightarrow_{(S \cup C)/AC}^+$
- if (E_0,\varnothing) $\vdash_{\mathcal{N}}^*$ (E,R) using \succ then $(E_0,\varnothing,\varnothing)$ $\vdash_{\mathcal{N}_{TT}}^*$ (E,R,C)

Definition (orient in \mathcal{N}_{TT})

E: set of equations R: set of rewrite rules C: set of rewrite rules

orient $\frac{E \uplus \{u \simeq v\}, \ R, \ C}{E \cup \Theta(u, v), \ R \cup \Psi(u, v), \ C \cup \Psi(u, v)}$ if $u = u \downarrow_S, \ v = v \downarrow_S \ \text{and} \ C \cup \Psi(u, v) \cup S \ \text{is AC terminating}$

Lemma (Simulation Properties)

- if $(E_0, \varnothing, \varnothing) \vdash_{\mathcal{N}_{TT}}^* (E, R, C)$ then $(E_0, \varnothing) \vdash_{\mathcal{N}}^* (E, R)$ using AC-compatible reduction order $\succ_C := \rightarrow_{(S \cup C)/AC}^+$
- if (E_0,\varnothing) $\vdash_{\mathcal{N}}^*$ (E,R) using \succ then $(E_0,\varnothing,\varnothing)$ $\vdash_{\mathcal{N}_{TT}}^*$ (E,R,C)

Corollary

If $(E, \emptyset, \emptyset) \vdash_{\mathcal{N}_{TT}}^* (\emptyset, R, C)$ is fair then R is S-convergent for E

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad x \cdot y \approx y \cdot x$$

$$x \cdot e \approx x \qquad x \cdot x^{-1} \approx e$$

$$f(x \cdot y) \approx f(x) \cdot f(y) \qquad f(e) \approx e$$

$$g(x \cdot y) \approx g(x) \cdot g(y) \qquad g(e) \approx e$$

$$\phi(x, \phi(y, z)) \approx \phi(x \cdot y, z) \qquad \phi(e, x) \approx x$$

$$\phi(f(x), g(y)) \approx \phi(g(y), f(x))$$

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad x \cdot y \approx y \cdot x$$

$$x \cdot e \approx x \qquad x \cdot x^{-1} \approx e$$

$$f(x \cdot y) \approx f(x) \cdot f(y) \qquad f(e) \approx e$$

$$g(x \cdot y) \approx g(x) \cdot g(y) \qquad g(e) \approx e$$

$$\phi(x, \phi(y, z)) \approx \phi(x \cdot y, z) \qquad \phi(e, x) \approx x$$

$$\phi(f(x), g(y)) \approx \phi(g(y), f(x))$$

Normalized completion with termination tools modulo G:

$$x \cdot e \to x$$
 $(x \cdot y) \cdot z \to x \cdot (y \cdot z)$ $x \cdot x^{-1} \to e$
 $e^{-1} \to e$ $(x^{-1})^{-1} \to x$ $(x \cdot y)^{-1} \to x^{-1} \cdot y^{-1}$

yields *G*-convergent TRS:

$$\begin{array}{lll} f(e) \rightarrow e & f(x \cdot y) \rightarrow f(x) \cdot f(y) & f(x)^{-1} \rightarrow f(x^{-1}) \\ g(e) \rightarrow e & g(x \cdot y) \rightarrow g(x) \cdot g(y) & g(x)^{-1} \rightarrow g(x^{-1}) \\ \phi(e,x) \rightarrow x & \phi(f(x),e) \rightarrow f(x) & \phi(x,f(y)) \rightarrow \phi(f(y) \cdot x,e) \\ \phi(g(x),e) \rightarrow g(x) & \phi(x,\phi(y,z)) \rightarrow \phi(x \cdot y,z) & \phi(x,g(y)) \rightarrow \phi(g(y) \cdot x,e) \end{array}$$

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z) \qquad x \cdot y \approx y \cdot x$$

$$x \cdot e \approx x \qquad x \cdot x^{-1} \approx e$$

$$f(x \cdot y) \approx f(x) \cdot f(y) \qquad f(e) \approx e$$

$$g(x \cdot y) \approx g(x) \cdot g(y) \qquad g(e) \approx e$$

$$\phi(x, \phi(y, z)) \approx \phi(x \cdot y, z) \qquad \phi(e, x) \approx x$$

$$\phi(f(x), g(y)) \approx \phi(g(y), f(x))$$

Normalized completion with termination tools modulo *GE*:

$$\begin{array}{lll} x \cdot \mathbf{e} \to x & (x \cdot y) \cdot z \to x \cdot (y \cdot z) & x \cdot x^{-1} \to \mathbf{e} \\ \mathbf{e}^{-1} \to \mathbf{e} & (x^{-1})^{-1} \to x & (x \cdot y)^{-1} \to x^{-1} \cdot y^{-1} \\ \mathbf{f}(\mathbf{e}) \to \mathbf{e} & \mathbf{f}(x \cdot y) \to \mathbf{f}(x) \cdot \mathbf{f}(y) & \mathbf{f}(x)^{-1} \to \mathbf{f}(x^{-1}) \\ \mathbf{g}(\mathbf{e}) \to \mathbf{e} & \mathbf{g}(x \cdot y) \to \mathbf{g}(x) \cdot \mathbf{g}(y) & \mathbf{g}(x)^{-1} \to \mathbf{g}(x^{-1}) \end{array}$$

yields GE-convergent TRS (much faster):

$$\begin{array}{ll} \phi(\mathsf{e},\mathsf{x}) \to \mathsf{x} & \phi(\mathsf{f}(\mathsf{x}),\mathsf{e}) \to \mathsf{f}(\mathsf{x}) & \phi(\mathsf{x},\mathsf{f}(y)) \to \phi(\mathsf{f}(y) \cdot \mathsf{x},\mathsf{e}) \\ \phi(\mathsf{g}(\mathsf{x}),\mathsf{e}) \to \mathsf{g}(\mathsf{x}) & \phi(\mathsf{x},\phi(y,z)) \to \phi(\mathsf{x} \cdot \mathsf{y},z) & \phi(\mathsf{x},\mathsf{g}(y)) \to \phi(\mathsf{g}(y) \cdot \mathsf{x},\mathsf{e}) \end{array}$$

Example (Binary Arithmetic)

$$x + y \approx y + x$$
 $(x + y)0 \approx x0 + y0$ $(x + y) + z \approx x + (y + z)$ $(x + y)1 \approx x0 + y1$ $x + \# \approx x$ $x0 + y0 + \#1 \approx x1 + y1$ triple $(x) \approx (x0 + x)$

cannot be completed with AC-RPO or AC-KBO.

Example (Binary Arithmetic)

$$x + y \approx y + x$$
 $(x + y)0 \approx x0 + y0$ $(x + y) + z \approx x + (y + z)$ $(x + y)1 \approx x0 + y1$ $x + \# \approx x$ $x0 + y0 + \#1 \approx x1 + y1$ triple $(x) \approx (x0 + x)$

cannot be completed with AC-RPO or AC-KBO.

Normalized completion with termination tools modulo $S = \{x + \# \rightarrow x\}$ produces S-convergent TRS:

$$x0 + y0 \rightarrow (x + y)0$$

$$x0 + y1 \rightarrow (x + y)1$$

$$x1 + y1 \rightarrow (x + y + #1)0$$

$$triple(x) \rightarrow (x0 + x)$$

- fully automatic in that
 - no reduction order required as input
 - applicable theory detected automatically (but theory can also be supplied by user)

- fully automatic in that
 - no reduction order required as input
 - applicable theory detected automatically (but theory can also be supplied by user)
- implemented in multi-completion variant

- fully automatic in that
 - no reduction order required as input
 - applicable theory detected automatically (but theory can also be supplied by user)
- implemented in multi-completion variant
- critical pair criteria

- fully automatic in that
 - no reduction order required as input
 - applicable theory detected automatically (but theory can also be supplied by user)
- implemented in multi-completion variant
- critical pair criteria
- AC-DPs, AC-RPO, AC-KBO, polynomials available via T_TT₂, alternatively external AC-termination tools can be interfaced

- fully automatic in that
 - no reduction order required as input
 - applicable theory detected automatically (but theory can also be supplied by user)
- implemented in multi-completion variant
- critical pair criteria
- AC-DPs, AC-RPO, AC-KBO, polynomials available via T_TT₂, alternatively external AC-termination tools can be interfaced
- term indexing with AC-discrimination trees

- fully automatic in that
 - no reduction order required as input
 - applicable theory detected automatically (but theory can also be supplied by user)
- implemented in multi-completion variant
- critical pair criteria
- AC-DPs, AC-RPO, AC-KBO, polynomials available via T_TT₂, alternatively external AC-termination tools can be interfaced
- term indexing with AC-discrimination trees
- source code, binary and web interface available on-line:

http://cl-informatik.uibk.ac.at/software/mkbtt

Experiments

20 problems collected from the literature.

	mkbtt			CiME
theory <i>S</i>	AC	AG	auto	
G94-abelian groups (AG)	1.6	0.1	0.1	0.05
AG + homomorphism	181.7	4.8	4.8	0.05
LS96-G0	1.9	0.1	0.1	?
LS96-G1	∞	12.4	12.5	?
G94-arithmetic	14.9	_	13.8	?
G94-AC-ring with unit	22.9	7.2	0.1	0.1
MU04-binary arithmetic	2.9	_	3.0	?
MU04-ternary arithmetic	18.1	_	17.3	?
CGA	∞	15.4	15.2	?
CRE	∞	216.7	145.1	?
#successes	10	7	13	4

- completion time in seconds, ∞ is timeout (600 seconds)
- ?: no suitable reduction order for CiME
- -: theory not applicable

Conclusion

- simpler collapse rule due to new proof order
- completeness, generalized fairness, critical pair criteria, new definition of normalizing pairs
- termination checks replace reduction order
- mkbtt supports automatic normalized multi-completion

Conclusion

- simpler collapse rule due to new proof order
- completeness, generalized fairness, critical pair criteria, new definition of normalizing pairs
- termination checks replace reduction order
- mkbtt supports automatic normalized multi-completion

Challenge: Tarski's High School Algebra Problem*

$$((1+x)^{y} + (1+x+x^{2})^{y})^{x} \cdot ((1+x^{3})^{x} + (1+x^{2}+x^{4})^{x})^{y}$$

$$\approx ((1+x)^{x} + (1+x+x^{2})^{x})^{y} \cdot ((1+x^{3})^{y} + (1+x^{2}+x^{4})^{y})^{x}$$

does not follow from "high school algebra":

$$\begin{array}{lll} x+y\approx y+x & (x+y)+z\approx x+(y+z) & x\cdot (y+z)\approx x\cdot y+x\cdot z\\ x\cdot y\approx y\cdot x & (x\cdot y)\cdot z\approx x\cdot (y\cdot z) & x\cdot 1\approx x\\ 1^x\approx 1 & x^1\approx x & x^{y+z}\approx x^y\cdot x^z\\ (x\cdot y)^z\approx x^z\cdot y^z & (x^y)^z\approx x^{y\cdot z} \end{array}$$

*thanks to Johannes Waldmann for communicating this example

$$R^e = R \cup \{f(\ell, x) \to f(r, x) \mid \ell \to r \in R, root(\ell) = f \in \mathcal{F}_{AC}, x \in \mathcal{V} \text{ fresh}\}$$

$$R^e = R \cup \{f(\ell, x) \to f(r, x) \mid \ell \to r \in R, root(\ell) = f \in \mathcal{F}_{AC}, x \in \mathcal{V} \text{ fresh}\}$$

Example

$$\begin{split} \text{for } \mathcal{F}_{\mathsf{AC}} = \{\cdot\} \text{ and } R = \{ \, \mathrm{e}^{-1} \to \mathrm{e}, \, x \cdot x^{-1} \to \mathrm{e} \, \}. \\ R^{\mathsf{e}} = \{ \, \mathrm{e}^{-1} \to \mathrm{e}, \, x \cdot x^{-1} \to \mathrm{e}, \, x \cdot x^{-1} \cdot y \to \mathrm{e} \cdot y \, \} \end{split}$$

$$R^e = R \cup \{f(\ell, x) \rightarrow f(r, x) \mid \ell \rightarrow r \in R, \mathsf{root}(\ell) = f \in \mathcal{F}_{\mathsf{AC}}, \, x \in \mathcal{V} \; \mathsf{fresh}\}$$

Definition (L-Overlap)

Let L have decidable and finite unification problem.

$$\langle \ell_1
ightarrow {\it r}_1, {\it p}, \ell_2
ightarrow {\it r}_2
angle$$
 is L-overlap if

$$R^e = R \cup \{f(\ell,x) \to f(r,x) \mid \ell \to r \in R, \mathsf{root}(\ell) = f \in \mathcal{F}_{\mathsf{AC}}, \, x \in \mathcal{V} \; \mathsf{fresh}\}$$

Definition (L-Overlap)

Let L have decidable and finite unification problem.

$$\langle \ell_1
ightarrow \mathit{r}_1, \mathit{p}, \ell_2
ightarrow \mathit{r}_2
angle$$
 is L-overlap if

• $\ell_1
ightarrow r_1$ and $\ell_2
ightarrow r_2$ are rules without common variables,

$$R^e = R \cup \{f(\ell, x) \rightarrow f(r, x) \mid \ell \rightarrow r \in R, \mathsf{root}(\ell) = f \in \mathcal{F}_{\mathsf{AC}}, \, x \in \mathcal{V} \; \mathsf{fresh}\}$$

Definition (L-Overlap)

Let L have decidable and finite unification problem.

$$\langle \ell_1
ightarrow \mathit{r}_1, \mathit{p}, \ell_2
ightarrow \mathit{r}_2
angle$$
 is L-overlap if

- $\ell_1
 ightarrow r_1$ and $\ell_2
 ightarrow r_2$ are rules without common variables,
- $p \in \mathcal{P}os_{\mathcal{F}}(\ell_1)$, and

$$R^e = R \cup \{f(\ell, x) \rightarrow f(r, x) \mid \ell \rightarrow r \in R, \mathsf{root}(\ell) = f \in \mathcal{F}_{\mathsf{AC}}, \, x \in \mathcal{V} \; \mathsf{fresh}\}$$

Definition (L-Overlap)

Let L have decidable and finite unification problem.

$$\langle \ell_1
ightarrow \mathit{r}_1, \mathit{p}, \ell_2
ightarrow \mathit{r}_2
angle$$
 is L-overlap if

- $\ell_1
 ightarrow r_1$ and $\ell_2
 ightarrow r_2$ are rules without common variables,
- $p \in \mathcal{P}os_{\mathcal{F}}(\ell_1)$, and
- $\ell_1|_p$ and ℓ_2 are L-unifiable with complete set of L-unifiers Σ

$$R^e = R \cup \{f(\ell, x) \rightarrow f(r, x) \mid \ell \rightarrow r \in R, \mathsf{root}(\ell) = f \in \mathcal{F}_{\mathsf{AC}}, \, x \in \mathcal{V} \; \mathsf{fresh}\}$$

Definition (L-Overlap)

Let L have decidable and finite unification problem.

$$\langle \ell_1
ightarrow \mathit{r}_1, \mathit{p}, \ell_2
ightarrow \mathit{r}_2
angle$$
 is L-overlap if

- $\ell_1 \rightarrow r_1$ and $\ell_2 \rightarrow r_2$ are rules without common variables,
- $p \in \mathcal{P}os_{\mathcal{F}}(\ell_1)$, and
- ullet $\ell_1|_p$ and ℓ_2 are L-unifiable with complete set of L-unifiers Σ

 $\ell_1 \sigma[r_2 \sigma]_p \approx r_1 \sigma$ for $\sigma \in \Sigma$ is *L*-critical pair

$$R^e = R \cup \{f(\ell, x) \rightarrow f(r, x) \mid \ell \rightarrow r \in R, \mathsf{root}(\ell) = f \in \mathcal{F}_{\mathsf{AC}}, \, x \in \mathcal{V} \; \mathsf{fresh}\}$$

Definition (L-Overlap)

Let L have decidable and finite unification problem.

$$\langle \ell_1
ightarrow \mathit{r}_1, \mathit{p}, \ell_2
ightarrow \mathit{r}_2
angle$$
 is L-overlap if

- $\ell_1
 ightarrow r_1$ and $\ell_2
 ightarrow r_2$ are rules without common variables,
- $p \in \mathcal{P}os_{\mathcal{F}}(\ell_1)$, and
- ullet $\ell_1|_p$ and ℓ_2 are \emph{L} -unifiable with complete set of \emph{L} -unifiers Σ

 $\ell_1\sigma[r_2\sigma]_ppprox r_1\sigma$ for $\sigma\in\Sigma$ is *L*-critical pair

 $CP_L(R)$ is set of *L*-critical pairs among rules in *R*

$$R^e = R \cup \{f(\ell, x) \rightarrow f(r, x) \mid \ell \rightarrow r \in R, \mathsf{root}(\ell) = f \in \mathcal{F}_{\mathsf{AC}}, \, x \in \mathcal{V} \; \mathsf{fresh}\}$$

Definition (L-Overlap)

Let L have decidable and finite unification problem.

$$\langle \ell_1
ightarrow \mathit{r}_1, \mathit{p}, \ell_2
ightarrow \mathit{r}_2
angle$$
 is L-overlap if

- $\ell_1
 ightarrow r_1$ and $\ell_2
 ightarrow r_2$ are rules without common variables,
- $p \in \mathcal{P}os_{\mathcal{F}}(\ell_1)$, and
- ullet $\ell_1|_p$ and ℓ_2 are L-unifiable with complete set of L-unifiers Σ

 $\ell_1 \sigma[r_2 \sigma]_p \approx r_1 \sigma$ for $\sigma \in \Sigma$ is *L*-critical pair $CP_L(R)$ is set of *L*-critical pairs among rules in R

Example

$$x \cdot x^{-1} \to e$$
 and $z \cdot z^{-1} \cdot y \to e \cdot y$ create $\mathsf{CP}_{\mathsf{AC}} \ e \cdot (z \cdot z^{-1})^{-1} \approx e$