Normalized Completion Revisited

Sarah Winkler
Aart Middeldorp

Institute of Computer Science
University of Innsbruck Austria
RTA 2013
June 24, 2013

Example (Abelian Group

$$
\begin{array}{rlrl}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & x \cdot y & \approx y \cdot x \\
x \cdot \mathrm{e} & \approx x & x \cdot x^{-1} \approx \mathrm{e}
\end{array}
$$

Example (Abelian Group + Endomorphisms

$$
\begin{aligned}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) \\
x \cdot \mathrm{e} & \approx x \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) \\
\mathrm{g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y)
\end{aligned}
$$

$$
\begin{aligned}
x \cdot y & \approx y \cdot x \\
x \cdot x^{-1} & \approx \mathrm{e} \\
\mathrm{f}(\mathrm{e}) & \approx \mathrm{e} \\
\mathrm{~g}(\mathrm{e}) & \approx \mathrm{e}
\end{aligned}
$$

Example (Abelian Group + Endomorphisms + Group Action)

$$
\begin{array}{rlrl}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & x \cdot y & \approx y \cdot x \\
x \cdot \mathrm{e} & \approx x & x \cdot x^{-1} & \approx \mathrm{e} \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{f}(\mathrm{e}) & \approx \mathrm{e} \\
\mathrm{~g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{g}(\mathrm{e}) & \approx \mathrm{e} \\
\phi(x, \phi(y, z)) & \approx \phi(x \cdot y, z) & \phi(\mathrm{e}, x) & \approx x \\
\phi(\mathrm{f}(x), \mathrm{g}(y)) & \approx \phi(\mathrm{g}(y), \mathrm{f}(x)) &
\end{array}
$$

Example (Abelian Group + Endomorphisms + Group Action)

$$
\begin{array}{rlrl}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & x \cdot y & \approx y \cdot x \\
x \cdot \mathrm{e} & \approx x & x \cdot x^{-1} & \approx \mathrm{e} \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{f}(\mathrm{e}) & \approx \mathrm{e} \\
\mathrm{~g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{g}(\mathrm{e}) & \approx \mathrm{e} \\
\phi(x, \phi(y, z)) & \approx \phi(x \cdot y, z) & \phi(\mathrm{e}, x) & \approx x \\
\phi(\mathrm{f}(x), \mathrm{g}(y)) & \approx \phi(\mathrm{g}(y), \mathrm{f}(x)) &
\end{array}
$$

How to decide theory? ... e.g., check that $\phi(\mathrm{g}(x), y) \not \approx \phi(x, \mathrm{~g}(y))$?

Example (Abelian Group + Endomorphisms + Group Action)

$$
\begin{array}{rlrl}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & x \cdot y & \approx y \cdot x \\
x \cdot \mathrm{e} & \approx x & x \cdot x^{-1} & \approx \mathrm{e} \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{f}(\mathrm{e}) & \approx \mathrm{e} \\
\mathrm{~g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{g}(\mathrm{e}) & \approx \mathrm{e} \\
\phi(x, \phi(y, z)) & \approx \phi(x \cdot y, z) & \phi(\mathrm{e}, x) & \approx x \\
\phi(\mathrm{f}(x), \mathrm{g}(y)) & \approx \phi(\mathrm{g}(y), \mathrm{f}(x)) &
\end{array}
$$

Solve with term rewriting?

- Knuth-Bendix completion

Example (Abelian Group + Endomorphisms + Group Action)

$$
\begin{array}{rlrl}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & x \cdot y & \approx y \cdot x \\
x \cdot \mathrm{e} & \approx x & x \cdot x^{-1} & \approx \mathrm{e} \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{f}(\mathrm{e}) & \approx \mathrm{e} \\
\mathrm{~g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{g}(\mathrm{e}) & \approx \mathrm{e} \\
\phi(x, \phi(y, z)) & \approx \phi(x \cdot y, z) & \phi(\mathrm{e}, x) & \approx x \\
\phi(\mathrm{f}(x), \mathrm{g}(y)) & \approx \phi(\mathrm{g}(y), \mathrm{f}(x)) &
\end{array}
$$

How to decide theory? ... e.g., check that $\phi(\mathrm{g}(x), y) \not \approx \phi(x, \mathrm{~g}(y))$?

Solve with term rewriting?

- Knuth-Bendix completion
(ㄹ) unorientable equation

Example (Abelian Group + Endomorphisms + Group Action)

$$
\begin{array}{rlrl}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & x \cdot y & \approx y \cdot x \\
x \cdot \mathrm{e} & \approx x & x \cdot x^{-1} & \approx \mathrm{e} \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{f}(\mathrm{e}) & \approx \mathrm{e} \\
\mathrm{~g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{g}(\mathrm{e}) & \approx \mathrm{e} \\
\phi(x, \phi(y, z)) & \approx \phi(x \cdot y, z) & \phi(\mathrm{e}, x) & \approx x \\
\phi(\mathrm{f}(x), \mathrm{g}(y)) & \approx \phi(\mathrm{g}(y), \mathrm{f}(x)) &
\end{array}
$$

Solve with term rewriting?

- Knuth-Bendix completion
() unorientable equation
- ordered completion

Example (Abelian Group + Endomorphisms + Group Action)

$$
\begin{array}{rlrl}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & x \cdot y & \approx y \cdot x \\
x \cdot \mathrm{e} & \approx x & x \cdot x^{-1} & \approx \mathrm{e} \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{f}(\mathrm{e}) & \approx \mathrm{e} \\
\mathrm{~g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{g}(\mathrm{e}) & \approx \mathrm{e} \\
\phi(x, \phi(y, z)) & \approx \phi(x \cdot y, z) & \phi(\mathrm{e}, x) & \approx x \\
\phi(\mathrm{f}(x), \mathrm{g}(y)) & \approx \phi(\mathrm{g}(y), \mathrm{f}(x)) &
\end{array}
$$

Solve with term rewriting?

- Knuth-Bendix completion
- ordered completion
() unorientable equation
(2) inefficient in presence of AC

Example (Abelian Group + Endomorphisms + Group Action)

$$
\begin{array}{rlrl}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & x \cdot y & \approx y \cdot x \\
x \cdot \mathrm{e} & \approx x & x \cdot x^{-1} & \approx \mathrm{e} \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{f}(\mathrm{e}) & \approx \mathrm{e} \\
\mathrm{~g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{g}(\mathrm{e}) & \approx \mathrm{e} \\
\phi(x, \phi(y, z)) & \approx \phi(x \cdot y, z) & \phi(\mathrm{e}, x) & \approx x \\
\phi(\mathrm{f}(x), \mathrm{g}(y)) & \approx \phi(\mathrm{g}(y), \mathrm{f}(x)) &
\end{array}
$$

Solve with term rewriting?

- Knuth-Bendix completion
- ordered completion
- AC completion

Example (Abelian Group + Endomorphisms + Group Action)

$$
\begin{aligned}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) \\
x \cdot \mathrm{e} & \approx x \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) \\
\mathrm{g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y) \\
\phi(x, \phi(y, z)) & \approx \phi(x \cdot y, z) \\
\phi(\mathrm{f}(x), \mathrm{g}(y)) & \approx \phi(\mathrm{g}(y), \mathrm{f}(x))
\end{aligned}
$$

$$
x \cdot y \approx y \cdot x
$$

$$
x \cdot x^{-1} \approx \mathrm{e}
$$

$$
f(e) \approx e
$$

$$
\mathrm{g}(\mathrm{e}) \approx \mathrm{e}
$$

$$
\phi(\mathrm{e}, x) \approx x
$$

Solve with term rewriting?

- Knuth-Bendix completion
- ordered completion
- AC completion
(:) unorientable equation
($)$ inefficient in presence of $A C$
(:) many CPs

Example (Abelian Group + Endomorphisms + Group Action)

How to decide theory? ... e.g., check that $\phi(\mathrm{g}(x), y) \not \approx \phi(x, \mathrm{~g}(y))$?
Solve with term rewriting?

- Knuth-Bendix completion
- ordered completion
- AC completion
(3) unorientable equation
© inefficient in presence of AC
© many CPs

Example (Abelian Group + Endomorphisms + Group Action)

$$
\begin{aligned}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) \\
x \cdot \mathrm{e} & \approx x \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) \\
\mathrm{g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y) \\
\phi(x, \phi(y, z)) & \approx \phi(x \cdot y, z) \\
\phi(\mathrm{f}(x), \mathrm{g}(y)) & \approx \phi(\mathrm{g}(y), \mathrm{f}(x))
\end{aligned}
$$

$$
x \cdot y \approx y \cdot x
$$

$$
x \cdot x^{-1} \approx \mathrm{e}
$$

$$
f(e) \approx e
$$

$$
\mathrm{g}(\mathrm{e}) \approx \mathrm{e}
$$

$$
\phi(\mathrm{e}, x) \approx x
$$

How to decide theory? ... e.g., check that $\phi(g(x), y) \not \approx \phi(x, g(y))$?

Solve with term rewriting?

- Knuth-Bendix completion
- ordered completion
- AC completion
- normalized completion
(:) unorientable equation
© inefficient in presence of AC
© many CPs
(;) e.g. modulo group theory

Bibliography

C. Marché

Réécriture modulo une théorie présentée par un système convergent et décidabilité du problème du mot dans certaines classes de théories équationnelles.

```
PhD thesis, Université Paris-Sud, 1993.
```

C. Marché.

Normalised rewriting and normalised completion.
Proc. LICS 1994, pp. 394-403. IEEE Computer Society, 1994.
C. Marché.

Normalized rewriting.
An alternative to rewriting modulo a set of equations.
Journal of Symbolic Computation, 21(3):253-288, 1996.

E. Contejean and C. Marché.

CiME: Completion modulo E.
Proc. RTA 1996, volume 1103 of LNCS, pp. 416-419, 1996.

C. Marché.

Normalized rewriting: An unified view of Knuth-Bendix completion and Gröbner bases computation.
Symbolic Rewriting Techniques, volume 15 of Progress in Computer Science and Applied Logic, pages 193-208. Birkhäuser, 1998.

Content

- Preliminaries
- Normalized Completion
- Normalized Completion with Termination Tools
- Implementation
- Conclusion

Consider signature \mathcal{F} containing AC-symbols $\mathcal{F}_{\mathrm{AC}} \subseteq \mathcal{F}$.

$$
\mathrm{AC}=\left\{f(x, f(y, z)) \approx f(f(x, y), z), f(x, y) \approx f(y, x) \mid f \in \mathcal{F}_{\mathrm{AC}}\right\}
$$

Consider signature \mathcal{F} containing AC -symbols $\mathcal{F}_{\mathrm{AC}} \subseteq \mathcal{F}$.

$$
\mathrm{AC}=\left\{f(x, f(y, z)) \approx f(f(x, y), z), f(x, y) \approx f(y, x) \mid f \in \mathcal{F}_{\mathrm{AC}}\right\}
$$

Definition (AC Rewriting)

- $u \xrightarrow[\ell \rightarrow r / \mathrm{AC}]{p} t$ if $u \leftrightarrow_{\mathrm{AC}}^{*} \cdot \xrightarrow[\ell \rightarrow r]{p} \cdot \leftrightarrow_{\mathrm{AC}}^{*} t$
- $u \rightarrow_{R / A C} t$ if $u \xrightarrow[\ell \rightarrow r / \mathrm{AC}]{p} t$ for some $\ell \rightarrow r \in R$ and position p

Consider signature \mathcal{F} containing AC-symbols $\mathcal{F}_{\mathrm{AC}} \subseteq \mathcal{F}$.

$$
\mathrm{AC}=\left\{f(x, f(y, z)) \approx f(f(x, y), z), f(x, y) \approx f(y, x) \mid f \in \mathcal{F}_{\mathrm{AC}}\right\}
$$

Definition (AC Rewriting)

- $u \xrightarrow[\ell \rightarrow r / \mathrm{AC}]{p} t$ if $u \leftrightarrow_{\mathrm{AC}}^{*} \cdot \xrightarrow[\ell \rightarrow r]{p} \cdot \leftrightarrow_{\mathrm{AC}}^{*} t$
- $u \rightarrow_{R / A C} t$ if $u \xrightarrow[\ell \rightarrow r / A C]{p} t$ for some $\ell \rightarrow r \in R$ and position p

Definition

- TRS R is AC terminating if $\nexists t_{0} \rightarrow_{R / A C} t_{1} \rightarrow_{R / A C} t_{2} \rightarrow_{R / A C} \cdots$

Consider signature \mathcal{F} containing AC-symbols $\mathcal{F}_{\mathrm{AC}} \subseteq \mathcal{F}$.

$$
\mathrm{AC}=\left\{f(x, f(y, z)) \approx f(f(x, y), z), f(x, y) \approx f(y, x) \mid f \in \mathcal{F}_{\mathrm{AC}}\right\}
$$

Definition (AC Rewriting)

- $u \xrightarrow[\ell \rightarrow r / \mathrm{AC}]{p} t$ if $u \leftrightarrow_{\mathrm{AC}}^{*} \cdot \xrightarrow[\ell \rightarrow r]{p} \cdot \leftrightarrow_{\mathrm{AC}}^{*} t$
- $u \rightarrow_{R / A C} t$ if $u \xrightarrow[\ell \rightarrow r / A C]{p} t$ for some $\ell \rightarrow r \in R$ and position p

Definition

- TRS R is AC terminating if $\nexists t_{0} \rightarrow_{R / A C} t_{1} \rightarrow_{R / A C} t_{2} \rightarrow_{R / A C} \cdots$
- TRS R is AC convergent if AC terminating and $\forall u, t$

$$
u \underset{R \cup \mathrm{AC}}{\stackrel{*}{\leftrightarrows}} t \quad \text { iff } \quad u \underset{R / \mathrm{AC}}{*} \cdot \stackrel{*}{\stackrel{\mathrm{AC}}{\leftrightarrows}} \cdot \stackrel{*}{R / \mathrm{AC}} t
$$

Consider signature \mathcal{F} containing AC-symbols $\mathcal{F}_{\mathrm{AC}} \subseteq \mathcal{F}$.

$$
\mathrm{AC}=\left\{f(x, f(y, z)) \approx f(f(x, y), z), f(x, y) \approx f(y, x) \mid f \in \mathcal{F}_{\mathrm{AC}}\right\}
$$

Definition (AC Rewriting)

- $u \xrightarrow[\ell \rightarrow r / \mathrm{AC}]{p} t$ if $u \leftrightarrow_{\mathrm{AC}}^{*} \cdot \xrightarrow[\ell \rightarrow r]{p} \cdot \leftrightarrow_{\mathrm{AC}}^{*} t$
- $u \rightarrow_{R / A C} t$ if $u \xrightarrow[\ell \rightarrow r / A C]{p} t$ for some $\ell \rightarrow r \in R$ and position p

Definition

- TRS R is AC terminating if $\nexists t_{0} \rightarrow_{R / A C} t_{1} \rightarrow_{R / A C} t_{2} \rightarrow_{R / A C} \cdots$
- TRS R is AC convergent if AC terminating and $\forall u, t$

$$
u \underset{R \cup \mathrm{AC}}{\stackrel{*}{\leftrightarrows}} t \quad \text { iff } \quad u \underset{R / \mathrm{AC}}{*} \cdot \stackrel{*}{\stackrel{\mathrm{AC}}{\leftrightarrows}} \cdot \stackrel{*}{R / \mathrm{AC}} t
$$

Fact
R is AC terminating iff compatible with AC reduction order \succ

Normalized Completion

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup A C}^{*}=\leftrightarrow_{T}^{*}$ and $S \subseteq \succ$.

Normalized Completion

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup A C}^{*}=\leftrightarrow_{T}^{*}$ and $S \subseteq \succ$.

Example

- associativity, commutativity \& identity

$$
\begin{aligned}
T: \quad x \cdot y & \approx y \cdot x \quad S: x \cdot e \rightarrow x \\
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) \\
x \cdot \mathrm{e} & \approx x
\end{aligned}
$$

Normalized Completion

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup A C}^{*}=\leftrightarrow_{T}^{*}$ and $S \subseteq \succ$.

Example

- associativity, commutativity \& identity

$$
\begin{aligned}
T: \quad x \cdot y & \approx y \cdot x \quad S: x \cdot e \rightarrow x \\
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) \\
x \cdot \mathrm{e} & \approx x
\end{aligned}
$$

- Abelian group theory

$$
\begin{aligned}
T: \quad x \cdot y & \approx y \cdot x \\
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) \\
x \cdot \mathrm{e} & \approx x \\
x^{-1} \cdot x & \approx \mathrm{e}
\end{aligned}
$$

$$
\begin{aligned}
S: \quad x \cdot \mathrm{e} & \rightarrow x \\
x^{-1} \cdot x & \rightarrow \mathrm{e} \\
\mathrm{e}^{-1} & \rightarrow \mathrm{e} \\
\left(x^{-1}\right)^{-1} & \rightarrow x \\
(x \cdot y)^{-1} & \rightarrow x^{-1} \cdot y^{-1}
\end{aligned}
$$

Normalized Completion

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup A C}^{*}=\leftrightarrow_{T}^{*}$ and $S \subseteq \succ$.

Example

- associativity, commutativity \& identity

$$
\begin{aligned}
T: \quad x \cdot y & \approx y \cdot x \quad S: x \cdot e \rightarrow x \\
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) \\
x \cdot \mathrm{e} & \approx x
\end{aligned}
$$

- Abelian group theory

$$
\begin{array}{rlrl}
T: & S: & x \cdot \mathrm{e} \rightarrow x \\
(x \cdot y) \cdot y & \approx y \cdot x & \approx x \cdot(y \cdot z) & \\
x \cdot e & \approx x & x^{-1} \cdot x & \rightarrow \mathrm{e} \\
\mathrm{e}^{-1} \rightarrow \mathrm{e} \\
x^{-1} \cdot x & \approx \mathrm{e} & & \left(x^{-1}\right)^{-1} \rightarrow x \\
& & (x \cdot y)^{-1} \rightarrow x^{-1} \cdot y^{-1}
\end{array}
$$

- commutative ring theory, theory of finite rings, ...

Normalized Completion

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup A C}^{*}=\leftrightarrow_{T}^{*}$ and $S \subseteq \succ$.
Definition (Normalized Rewriting)
$u \underset{R \backslash S}{ } t$ if $u^{\prime}=u \downarrow S$

Normalized Completion

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup A C}^{*}=\leftrightarrow_{T}^{*}$ and $S \subseteq \succ$.
Definition (Normalized Rewriting)
$u \underset{R \backslash S}{ } t$ if $u^{\prime}=u \downarrow S$
$u \downarrow_{S}$ is $\rightarrow_{S / A C}$-normal form of u

Normalized Completion

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup A C}^{*}=\leftrightarrow_{T}^{*}$ and $S \subseteq \succ$.

Definition (Normalized Rewriting)
$u \underset{R \backslash S}{ } t$ if $u^{\prime}=u \downarrow s$ and $u^{\prime} \xrightarrow[R / A C]{ } t$

Normalized Completion

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup A C}^{*}=\leftrightarrow_{T}^{*}$ and $S \subseteq \succ$.
Definition (Normalized Rewriting)
$u \underset{R \backslash S}{ } t$ if $u^{\prime}=u \downarrow s$ and $u^{\prime} \xrightarrow[R / A C]{ } t$

Example

associativity, commutativity \& identity
T:

$$
\begin{gathered}
x \cdot y \approx y \cdot x \\
(x \cdot y) \cdot z \approx x \cdot(y \cdot z) \\
x \cdot \mathrm{e} \approx x
\end{gathered}
$$

$$
S: x \cdot e \rightarrow x
$$

$$
(x \cdot y)^{-1} \rightarrow x^{-1} \cdot y^{-1}
$$

for $R=\left\{(x \cdot y)^{-1} \rightarrow x^{-1} \cdot y^{-1}\right\}$ have

$$
(\mathrm{a} \cdot \mathrm{~b})^{-1} \underset{R \backslash S}{\longrightarrow} \mathrm{a}^{-1} \cdot \mathrm{~b}^{-1} \quad(\mathrm{e} \cdot \mathrm{~b})^{-1} \underset{R \backslash S}{ } \mathrm{e}^{-1} \cdot \mathrm{~b}^{-1}
$$

Normalized Completion

Fix theory T with AC convergent TRS S with $\leftrightarrow_{S \cup A C}^{*}=\leftrightarrow_{T}^{*}$ and $S \subseteq \succ$.
Definition (Normalized Rewriting)
$u \underset{R \backslash S}{ } t$ if $u^{\prime}=u \downarrow s$ and $u^{\prime} \xrightarrow[R / A C]{ } t$

Definition (S-convergence)
R is S-convergent for set of equations E if $\rightarrow_{R \backslash S}$ is well-founded and

implies existence of rewrite proof

$$
t \underset{R \backslash S}{\stackrel{!}{\longrightarrow}} \cdot \stackrel{*}{\stackrel{\leftrightarrow}{\longrightarrow}} \cdot \stackrel{!}{R \backslash S} u
$$

Definition (\mathcal{N})

E : equations R : rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$ deduce $\quad \frac{E, R}{\text { if } u \leftrightarrow_{R \cup T}^{*} v}$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$

$$
\begin{array}{cc}
\text { deduce } & \frac{E, R}{E \cup\{u \approx v\}, R} \\
\text { if } u \not \leftrightarrow_{R \cup T}^{*} v
\end{array}
$$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$
deduce

$$
\begin{aligned}
& \frac{E, R}{E \cup\{u \approx v\}, R} \\
& \text { if } u \leftrightarrow \leftrightarrow_{R \cup T}^{*} v
\end{aligned}
$$

$$
\text { simplify } \quad \underline{E \uplus\{u \simeq v\}, R}
$$

$$
\text { if } u \rightarrow_{R \backslash S} t
$$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$
deduce

$$
\begin{aligned}
& \frac{E, R}{E \cup\{u \approx v\}, R} \\
& \text { if } u \leftrightarrow \leftrightarrow_{R \cup T}^{*} v
\end{aligned}
$$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$
deduce $\quad \frac{E, R}{E \cup\{u \approx v\}, R}$
simplify $\frac{E \uplus\{u \simeq v\}, R}{E \cup\{t \simeq v\}, R}$
if $u \rightarrow_{R \backslash S} t$
collapse $\underline{E, R \uplus\{u \rightarrow v\}}$

$$
\text { if } u \rightarrow_{R \backslash S} t
$$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$
deduce

$$
\begin{aligned}
& \frac{E, R}{E \cup\{u \approx v\}, R} \\
& \text { if } u \leftrightarrow_{R \cup T}^{*} v
\end{aligned}
$$

$$
\text { simplify } \frac{E \uplus\{u \simeq v\}, R}{E \cup\{t \simeq v\}, R}
$$

$$
\text { if } u \rightarrow_{R \backslash S} t
$$

collapse $\begin{gathered}\frac{E, R \uplus\{u \rightarrow v\}}{E \cup\{t \approx v\}, R} \\ \text { if } u \rightarrow_{R \backslash S} t\end{gathered}$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$

$$
\begin{array}{ccc}
\text { deduce } & \text { simplify } & \frac{E \uplus\{u \simeq v\}, R}{E \cup\{t \simeq v\}, R} \\
\text { if } u \leftrightarrow_{R \cup T}^{*} v & \text { if } u \rightarrow_{R \backslash S} t
\end{array}
$$

collapse $\frac{E, R \uplus\{u \rightarrow v\}}{E \cup\{t \approx v\}, R}$
if $u \rightarrow_{R \backslash S} t$

$$
\text { slightly simpler than in Marché } 1996
$$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$
deduce $\quad \frac{E, R}{E \cup\{u \approx v\}, R}$
simplify $\frac{E \uplus\{u \simeq v\}, R}{E \cup\{t \simeq v\}, R}$
if $u \rightarrow_{R \backslash S} t$
collapse $\frac{E, R \uplus\{u \rightarrow v\}}{E \cup\{t \approx v\}, R}$
compose $\underline{E, R \uplus\{v \rightarrow u\}}$
if $u \rightarrow_{R \backslash S} t$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$
deduce $\quad \frac{E, R}{E \cup\{u \approx v\}, R}$
simplify $\quad \frac{E \uplus\{u \simeq v\}, R}{E \cup\{t \simeq v\}, R}$
if $u \rightarrow_{R \backslash S} t$
collapse $\frac{E, R \uplus\{u \rightarrow v\}}{E \cup\{t \approx v\}, R}$
if $u \rightarrow_{R \backslash S} t$
compose $\underline{E, R \uplus\{v \rightarrow u\}}$
if $u \rightarrow_{R \backslash S} t$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$
deduce $\frac{E, R}{E \cup\{u \approx v\}, R}$
simplify $\frac{E \uplus\{u \simeq v\}, R}{E \cup\{t \simeq v\}, R}$ if $u \rightarrow_{R \backslash S} t$
collapse $\frac{E, R \uplus\{u \rightarrow v\}}{E \cup\{t \approx v\}, R}$
if $u \rightarrow_{R \backslash S} t$
compose $\frac{E, R \uplus\{v \rightarrow u\}}{E, R \cup\{v \rightarrow t\}}$
if $u \rightarrow_{R \backslash S} t$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$

$$
\begin{aligned}
& \text { deduce } \quad \frac{E, R}{E \cup\{u \approx v\}, R} \\
& \text { if } u \leftrightarrow_{R \cup T}^{*} v
\end{aligned}
$$

$$
\text { simplify } \frac{E \uplus\{u \simeq v\}, R}{E \cup\{t \simeq v\}, R}
$$

$$
\text { if } u \rightarrow_{R \backslash S} t
$$

collapse $\frac{E, R \uplus\{u \rightarrow v\}}{E \cup\{t \approx v\}, R}$
if $u \rightarrow_{R \backslash S} t$

$$
\begin{array}{ll}
\text { compose } & \frac{E, R \uplus\{v \rightarrow u\}}{E, R \cup\{v \rightarrow t\}} \\
& \text { if } u \rightarrow_{R \backslash S} t
\end{array}
$$

normalize $\quad E \uplus\{u \simeq v\}, R$

$$
\text { if } u \neq u \downarrow_{S} \text { or } v \neq v \downarrow_{S}
$$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$

$$
\begin{array}{ccc}
\text { deduce } & \frac{E, R}{E \cup\{u \approx v\}, R} & \text { simplify } \\
& \text { if } u \leftrightarrow_{R \cup T}^{*} v & \frac{E \uplus\{u \simeq v\}, R}{E \cup\{t \simeq v\}, R} \\
\text { collapse } & \frac{E, R \uplus\{u \rightarrow v\}}{E \cup\{t \approx v\}, R} & \text { if } u \rightarrow R \backslash S t \\
& \text { if } u \rightarrow_{R \backslash S} t & \text { compose }
\end{array} \frac{\frac{E, R \uplus\{v \rightarrow u\}}{E, R \cup\{v \rightarrow t\}}}{} \quad \begin{array}{ll}
\text { if } u \rightarrow_{R \backslash S} t
\end{array}
$$

normalize $\frac{E \uplus\{u \simeq v\}, R}{\left.E \cup\left\{u \downarrow_{S} \simeq v \downarrow_{S}\right\}, R\right\}}$
if $u \neq u \downarrow_{S}$ or $v \neq v \downarrow_{S}$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$
deduce $\frac{E, R}{E \cup\{u \approx v\}, R}$
collapse $\frac{E, R \uplus\{u \rightarrow v\}}{E \cup\{t \approx v\}, R}$
if $u \rightarrow_{R \backslash S} t$
normalize $\frac{E \uplus\{u \simeq v\}, R}{\left.E \cup\left\{u \downarrow_{S} \simeq v \downarrow_{s}\right\}, R\right\}}$
if $u \neq u \downarrow s$ or $v \neq v \downarrow s$
delete $\quad \underline{E \uplus\{u \simeq v\}, R}$
simplify $\frac{E \uplus\{u \simeq v\}, R}{E \cup\{t \simeq v\}, R}$ if $u \rightarrow_{R \backslash S} t$
compose $\frac{E, R \uplus\{v \rightarrow u\}}{E, R \cup\{v \rightarrow t\}}$
if $u \rightarrow_{R \backslash S} t$
if $u \leftrightarrow_{A C}^{*} v$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$
deduce $\frac{E, R}{E \cup\{u \approx v\}, R}$
collapse $\frac{E, R \uplus\{u \rightarrow v\}}{E \cup\{t \approx v\}, R}$
if $u \rightarrow_{R \backslash S} t$
normalize $\frac{E \uplus\{u \simeq v\}, R}{\left.E \cup\left\{u \downarrow_{s} \simeq v \downarrow_{s}\right\}, R\right\}}$
if $u \neq u \downarrow s$ or $v \neq v \downarrow s$

$$
\begin{array}{ll}
\text { simplify } & \frac{E \uplus\{u \simeq v\}, R}{E \cup\{t \simeq v\}, R} \\
& \text { if } u \rightarrow_{R \backslash S} t
\end{array}
$$

compose $\frac{E, R \uplus\{v \rightarrow u\}}{E, R \cup\{v \rightarrow t\}}$
if $u \rightarrow_{R \backslash S} t$
delete $\frac{E \uplus\{u \simeq v\}, R}{E, R}$
if $u \leftrightarrow_{A C}^{*} v$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$
deduce $\quad \frac{E, R}{E \cup\{u \approx v\}, R}$
simplify $\quad \frac{E \uplus\{u \simeq v\}, R}{E \cup\{t \simeq v\}, R}$ if $u \rightarrow_{R \backslash S} t$
collapse $\frac{E, R \uplus\{u \rightarrow v\}}{E \cup\{t \approx v\}, R}$
if $u \rightarrow_{R \backslash S} t$
normalize
$\frac{E \uplus\{u \simeq v\}, R}{\left.E \cup\left\{u \downarrow_{s} \simeq v \downarrow_{s}\right\}, R\right\}}$
if $u \neq u \downarrow_{S}$ or $v \neq v \downarrow_{S}$
compose $\frac{E, R \uplus\{v \rightarrow u\}}{E, R \cup\{v \rightarrow t\}}$
if $u \rightarrow_{R \backslash S} t$
delete $\quad \frac{E \uplus\{u \simeq v\}, R}{E, R}$
if $u \leftrightarrow_{A C}^{*} v$
orient $\quad E \uplus\{u \simeq v\}, R$

$$
\text { if } u=u \downarrow_{S}, v=v \downarrow_{S} \text { and } u \succ v
$$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$
deduce $\quad \frac{E, R}{E \cup\{u \approx v\}, R}$
simplify $\frac{E \uplus\{u \simeq v\}, R}{E \cup\{t \simeq v\}, R}$ if $u \rightarrow_{R \backslash S} t$
collapse $\frac{E, R \uplus\{u \rightarrow v\}}{E \cup\{t \approx v\}, R}$
compose $\frac{E, R \uplus\{v \rightarrow u\}}{E, R \cup\{v \rightarrow t\}}$
if $u \rightarrow_{R \backslash S} t$
if $u \rightarrow_{R \backslash S} t$
normalize

$$
\begin{aligned}
& \frac{E \uplus\{u \simeq v\}, R}{\left.E \cup\left\{u \downarrow_{S} \simeq v \downarrow_{s}\right\}, R\right\}} \\
& \text { if } u \neq u \downarrow_{S} \text { or } v \neq v \downarrow_{S}
\end{aligned}
$$

$$
\text { delete } \quad \frac{E \uplus\{u \simeq v\}, R}{E, R}
$$

$$
\text { if } u \leftrightarrow_{A C}^{*} v
$$

orient

$$
\begin{aligned}
& \frac{E \uplus\{u \simeq v\}, R}{E \cup \Theta(u, v), R \cup \Psi(u, v)} \\
& \text { if } u=u \downarrow_{s}, v=v \downarrow_{s} \text { and } u \succ v
\end{aligned}
$$

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$
deduce $\quad \frac{E, R}{E \cup\{u \approx v\}, R}$
simplify $\quad \frac{E \uplus\{u \simeq v\}, R}{E \cup\{t \simeq v\}, R}$ if $u \rightarrow_{R \backslash S} t$
collapse $\frac{E, R \uplus\{u \rightarrow v\}}{E \cup\{t \approx v\}, R}$

$$
\begin{array}{cl}
\text { compose } & \frac{E, R \uplus\{v \rightarrow u\}}{E, R \cup\{v \rightarrow t\}}
\end{array}
$$ if $u \rightarrow_{R \backslash S} t$

$$
\text { if } u \rightarrow_{R \backslash S} t
$$

normalize

$$
\begin{array}{ll}
\frac{E \uplus\{u \simeq v\}, R}{\left.E \cup\left\{u \downarrow_{s} \simeq v \downarrow_{s}\right\}, R\right\}} & \text { delete } \\
\text { if } u \neq u \downarrow s \text { or } v \neq v \downarrow_{s} & \text { if } u \leftrightarrow \\
& E \uplus\{u \simeq v\}, R \\
\hline E \cup \Theta(u, v), R \cup \Psi(u, v) \\
\text { if } u=u \downarrow_{s}, v=v \downarrow_{s} \text { an }\langle u \succ v \\
& (\Theta, \Psi) \text { are } S \text {-normalizing pair }
\end{array}
$$

normalize

Definition (\mathcal{N})

E : equations $\quad R$: rewrite rules $\quad \succ$: AC-reduction order, $S \subseteq \succ$

$$
\begin{array}{cc}
\text { deduce } & \frac{E, R}{E \cup\{u \approx v\}, R} \\
\text { if } u \not \leftrightarrow_{R \cup T}^{*} v
\end{array}
$$

$$
\text { simplify } \frac{E \uplus\{u \simeq v\}, R}{E \cup\{t \simeq v\}, R}
$$

$$
\text { if } u \rightarrow_{R \backslash S} t
$$

collapse $\frac{E, R \uplus\{u \rightarrow v\}}{E \cup\{t \approx v\}, R}$
compose $\frac{E, R \uplus\{v \rightarrow u\}}{E, R \cup\{v \rightarrow t\}}$
if $u \rightarrow_{R \backslash S} t$
if $u \rightarrow_{R \backslash S} t$
normalize
orient

$$
\begin{aligned}
& \text { if } u=u \downarrow_{s}, v=v \downarrow_{s} \text { and } u \succ v \\
& (\Theta, \Psi) \text { are } S \text {-normalizing pair }
\end{aligned}
$$

Definition (Fairness)

$$
\operatorname{run}\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}\left(E_{1}, R_{1}\right) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}}\left(E_{k}, R_{k}\right)
$$

Definition (Fairness)

run $\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}\left(E_{1}, R_{1}\right) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}}\left(E_{k}, R_{k}\right)$ is fair if $C P_{L}\left(R_{k}^{e}\right) \subseteq \bigcup_{i} E_{i}$

Definition (Fairness)

run $\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}\left(E_{1}, R_{1}\right) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}}\left(E_{k}, R_{k}\right)$ is fair if $\mathrm{CP}_{\perp}\left(R_{k}^{e}\right) \subseteq \bigcup_{i} E_{i}$

Definition (Fairness)

run $\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}\left(E_{1}, R_{1}\right) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}}\left(E_{k}, R_{k}\right)$ is fair if $\mathrm{CP}_{\llcorner }\left(R_{k}^{e}\right) \subseteq \bigcup_{i} E_{i}$

Definition (Fairness)

run $\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}\left(E_{1}, R_{1}\right) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}}\left(E_{k}, R_{k}\right)$ is fair if for any proof P in $S \cup R_{k}$ which is not rewrite proof there is smaller proof Q in $S \cup E_{i} \cup R_{i}$

Theorem (Correctness)
Marché 1996
If $(E, \varnothing) \vdash_{\mathcal{N}}^{*}(\varnothing, R)$ is fair then R is S-convergent for E.

Definition (Fairness)

run $\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}\left(E_{1}, R_{1}\right) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}}\left(E_{k}, R_{k}\right)$ is fair if for any proof P in $S \cup R_{k}$ which is not rewrite proof there is smaller proof Q in $S \cup E_{i} \cup R_{i}$

```
with respect to proof reduction order \(\nless\)
```


Definition (Fairness)

run $\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}\left(E_{1}, R_{1}\right) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}}\left(E_{k}, R_{k}\right)$ is fair if for any proof P in $S \cup R_{k}$ which is not rewrite proof there is smaller proof Q in $S \cup E_{i} \cup R_{i}$

Definition (Fairness)

run $\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}\left(E_{1}, R_{1}\right) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}}\left(E_{k}, R_{k}\right)$ is fair if for any proof P in $S \cup R_{k}$ which is not rewrite proof there is smaller proof Q in $S \cup E_{i} \cup R_{i}$

Lemma

run is fair if $\mathrm{CP}_{L}\left(R_{k}^{e}\right) \subseteq \bigcup_{i} E_{i}$

Definition (Fairness)

run $\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}\left(E_{1}, R_{1}\right) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}}\left(E_{k}, R_{k}\right)$ is fair if for any proof P in $S \cup R_{k}$ which is not rewrite proof there is smaller proof Q in $S \cup E_{i} \cup R_{i}$

Lemma

run is fair if $\mathrm{CP}_{L}\left(R_{k}^{e}\right) \subseteq \bigcup_{i} E_{i}$
Theorem (Correctness)
If $(E, \varnothing) \vdash_{\mathcal{N}}^{*}(\varnothing, R)$ is fair then R is S-convergent for E.

Definition (Fairness)

run $\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}\left(E_{1}, R_{1}\right) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}}\left(E_{k}, R_{k}\right)$ is fair if for any proof P in $S \cup R_{k}$ which is not rewrite proof there is smaller proof Q in $S \cup E_{i} \cup R_{i}$

Lemma

run is fair if $\mathrm{CP}_{L}\left(R_{k}^{e}\right) \subseteq \bigcup_{i} E_{i}$
Theorem (Correctness)
If $(E, \varnothing) \vdash_{\mathcal{N}}^{*}(\varnothing, R)$ is fair then R is S-convergent for E.
Theorem (Completeness)
Let R be finite, reduced S-convergent TRS for E and let \succ be AC-compatible reduction order such that $R \cup S \subseteq \succ$.

Definition (Fairness)

run $\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}\left(E_{1}, R_{1}\right) \vdash_{\mathcal{N}} \cdots \vdash_{\mathcal{N}}\left(E_{k}, R_{k}\right)$ is fair if for any proof P in $S \cup R_{k}$ which is not rewrite proof there is smaller proof Q in $S \cup E_{i} \cup R_{i}$

Lemma

run is fair if $\mathrm{CP}_{L}\left(R_{k}^{e}\right) \subseteq \bigcup_{i} E_{i}$

Theorem (Correctness)

If $(E, \varnothing) \vdash_{\mathcal{N}}^{*}(\varnothing, R)$ is fair then R is S-convergent for E.

Theorem (Completeness)

Let R be finite, reduced S-convergent $T R S$ for E and let \succ be AC-compatible reduction order such that $R \cup S \subseteq \succ$.
Then for any fair run $(E, \varnothing) \vdash_{\mathcal{N}}^{*}\left(\varnothing, R^{\prime}\right)$ applying \succ and full inter-reduction R^{\prime} is equal to R up to variable renaming and $A C$ equivalence.

Definition (S-Normalizing Pair)

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

Definition (S-Normalizing Pair)

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

1 for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u, v) \cup \Psi(u, v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and

Definition (S-Normalizing Pair)

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

1 for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u, v) \cup \Psi(u, v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and
ensures progress
e.g. by orienting equations

Definition (S-Normalizing Pair)

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

1 for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u, v) \cup \Psi(u, v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and

2 for all $\ell \rightarrow r \in \Psi(u, v)$, TRSs R with $r \rightarrow_{R \backslash S}^{*} r^{\prime}$ and minimal proof $s \rightarrow_{\ell \rightarrow r^{\prime}} t$ there is proof P in $S \cup \Theta(u, v) \cup \Psi(u, v) \cup R$ such that $s \rightarrow_{\ell \rightarrow r^{\prime}} t \Rightarrow P$

Definition (S-Normalizing Pair)

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

1 for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u, v) \cup \Psi(u, v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and

2 for all $\ell \rightarrow r \in \Psi(u, v)$, TRSs R with $r \rightarrow_{R \backslash S}^{*} r^{\prime}$ and minimal proof $s \rightarrow_{\ell \rightarrow r^{\prime}} t$ there is proof P in $S \cup \Theta(u, v) \cup \Psi(u, v) \cup R$ such that $s \rightarrow \ell \rightarrow r^{\prime} t \Rightarrow P$

Definition (S-Normalizing Pair)

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

1 for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u, v) \cup \Psi(u, v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and

2 for all $\ell \rightarrow r \in \Psi(u, v)$, TRSs R with $r \rightarrow_{R \backslash S}^{*} r^{\prime}$ and minimal proof $s \rightarrow_{\ell \rightarrow r^{\prime}} t$ there is proof P in $S \cup \Theta(u, v) \cup \Psi(u, v) \cup R$ such that $s \rightarrow \ell \rightarrow r^{\prime} t \Rightarrow P$

Issue

- does not preserve equational theory

Definition (S-Normalizing Pair)

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

1 for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u, v) \cup \Psi(u, v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and

2 for all $\ell \rightarrow r \in \Psi(u, v)$, TRSs R with $r \rightarrow_{R \backslash S}^{*} r^{\prime}$ and minimal proof $s \rightarrow_{\ell \rightarrow r^{\prime}} t$ there is proof P in $S \cup \Theta(u, v) \cup \Psi(u, v) \cup R$ such that $s \rightarrow_{\ell \rightarrow r^{\prime}} t \Rightarrow P$
$3 \Theta(u, v), \Psi(u, v)$ are contained in $\leftrightarrow_{E \cup R \cup T}^{*}$

Definition (S-Normalizing Pair)

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

1 for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u, v) \cup \Psi(u, v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and

2 for all $\ell \rightarrow r \in \Psi(u, v)$, TRSs R with $r \rightarrow_{R \backslash S}^{*} r^{\prime}$ and minimal proof $s \rightarrow_{\ell \rightarrow r^{\prime}} t$ there is proof P in $S \cup \Theta(u, v) \cup \Psi(u, v) \cup R$ such that $s \rightarrow \ell \rightarrow r^{\prime} t \Rightarrow P$
$3 \Theta(u, v), \Psi(u, v)$ are contained in $\leftrightarrow_{E \cup R \cup \mathcal{T}}^{*}$

Issue

- rules in Ψ need not terminate

Definition (S-Normalizing Pair)

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

1 for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u, v) \cup \Psi(u, v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and

2 for all $\ell \rightarrow r \in \Psi(u, v)$, TRSs R with $r \rightarrow_{R \backslash S}^{*} r^{\prime}$ and minimal proof $s \rightarrow_{\ell \rightarrow r^{\prime}} t$ there is proof P in $S \cup \Theta(u, v) \cup \Psi(u, v) \cup R$ such that $s \rightarrow_{\ell \rightarrow r^{\prime}} t \Rightarrow P$
$3 \Theta(u, v), \Psi(u, v)$ are contained in $\leftrightarrow_{E \cup R \cup \mathcal{T}}^{*}$ and $\Psi(u, v) \subseteq \succ$

Definition (S-Normalizing Pair)

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

1 for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u, v) \cup \Psi(u, v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and

2 for all $\ell \rightarrow r \in \Psi(u, v)$, TRSs R with $r \rightarrow_{R \backslash S}^{*} r^{\prime}$ and minimal proof $s \rightarrow_{\ell \rightarrow r^{\prime}} t$ there is proof P in $S \cup \Theta(u, v) \cup \Psi(u, v) \cup R$ such that $s \rightarrow \ell \rightarrow r^{\prime} t \Rightarrow P$
$3 \Theta(u, v), \Psi(u, v)$ are contained in $\leftrightarrow_{E \cup R \cup \mathcal{T}}^{*}$ and $\Psi(u, v) \subseteq \succ$

Issue

- does not guarantee S-convergence: for $S=\{b+x \rightarrow b\}$ run

$$
(\{a+x \approx a\}, \varnothing) \vdash(\varnothing,\{a+x \rightarrow a\})
$$

using $(\Theta, \Psi)=(\varnothing,\{a+x \rightarrow a\})$ is fair, but AC-critical pair $a \approx b$ is not joinable

Definition (S-Normalizing Pair)

for set of equations E containing $u \simeq v$ and set of rewrite rules R, (Θ, Ψ) constitutes S-normalizing pair if $u \succ v$ and

1 for any $s \leftrightarrow_{u \approx v} t$ there is a proof P in $S \cup \Theta(u, v) \cup \Psi(u, v)$ such that $s \leftrightarrow_{u \approx v} t \Rightarrow P$, and

2 for all $\ell \rightarrow r$ in $\Psi(u, v)$, proof $P: s s \leftarrow w \leftrightarrow_{A C}^{*} \cdot \rightarrow_{\ell \rightarrow r} \cdot \rightarrow_{R \backslash S}^{*} t$ with TRS R there is proof Q in $S, \Theta(u, v), \Psi(u, v) \cup R$ such that $P \Rightarrow Q$ and terms in Q are smaller than w
$3 \Theta(u, v), \Psi(u, v)$ are contained in $\leftrightarrow_{E \cup R \cup \mathcal{T}}^{*}$ and $\Psi(u, v) \subseteq \succ$

Critical Pair Criteria

Definition
peak $P: s \underset{p}{\leftarrow} u \leftrightarrow_{L}^{*} u^{\prime} \underset{\epsilon}{\rightarrow} t$ is composite if there are

- terms u_{0}, \ldots, u_{n+1} such that $s=u_{0}, t=u_{n+1}$, and $u \succ u_{i}$
- proofs P_{i} proving $u_{i} \simeq u_{i+1}$ such that $P \nsucc P_{i}$ for all $1 \leqslant i \leqslant n$

Critical Pair Criteria

Definition
peak $P: s \underset{p}{\leftarrow} u \leftrightarrow_{L}^{*} u^{\prime} \underset{\epsilon}{\rightarrow} t$ is composite if there are

- terms u_{0}, \ldots, u_{n+1} such that $s=u_{0}, t=u_{n+1}$, and $u \succ u_{i}$
- proofs P_{i} proving $u_{i} \simeq u_{i+1}$ such that $P \nsucc P_{i}$ for all $1 \leqslant i \leqslant n$

Lemma
Bachmair \& Dershowitz 94
Composite critical pairs can be omitted in standard completion

Critical Pair Criteria

Definition
peak $P: s \underset{p}{\leftarrow} u \leftrightarrow_{L}^{*} u^{\prime} \underset{\epsilon}{\rightarrow} t$ is composite if there are

- terms u_{0}, \ldots, u_{n+1} such that $s=u_{0}, t=u_{n+1}$, and $u \succ u_{i}$
- proofs P_{i} proving $u_{i} \simeq u_{i+1}$ such that $P \nsucc P_{i}$ for all $1 \leqslant i \leqslant n$

Lemma

Composite critical pairs can be omitted in normalized completion

Critical Pair Criteria

Definition
peak $P: s \underset{p}{\leftarrow} u \leftrightarrow_{L}^{*} u^{\prime} \underset{\epsilon}{\rightarrow} t$ is composite if there are

- terms u_{0}, \ldots, u_{n+1} such that $s=u_{0}, t=u_{n+1}$, and $u \succ u_{i}$
- proofs P_{i} proving $u_{i} \simeq u_{i+1}$ such that $P \nsucc P_{i}$ for all $1 \leqslant i \leqslant n$

Lemma

Composite critical pairs can be omitted in normalized completion
Compositeness in normalized completion peak P is composite

- if $u \neq u \downarrow_{s}$

Critical Pair Criteria

Definition
peak $P: s \underset{p}{\leftarrow} u \leftrightarrow_{L}^{*} u^{\prime} \underset{\epsilon}{\rightarrow} t$ is composite if there are

- terms u_{0}, \ldots, u_{n+1} such that $s=u_{0}, t=u_{n+1}$, and $u \succ u_{i}$
- proofs P_{i} proving $u_{i} \simeq u_{i+1}$ such that $P \nsucc P_{i}$ for all $1 \leqslant i \leqslant n$

Lemma

Composite critical pairs can be omitted in normalized completion
Compositeness in normalized completion peak P is composite

- if $u \neq u \downarrow_{S}$

S-reducibility

- if u is reducible strictly below p

Critical Pair Criteria

Definition
peak $P: s \underset{p}{\leftarrow} u \leftrightarrow_{L}^{*} u^{\prime} \underset{\epsilon}{\rightarrow} t$ is composite if there are

- terms u_{0}, \ldots, u_{n+1} such that $s=u_{0}, t=u_{n+1}$, and $u \succ u_{i}$
- proofs P_{i} proving $u_{i} \simeq u_{i+1}$ such that $P \nsucc P_{i}$ for all $1 \leqslant i \leqslant n$

Lemma

Composite critical pairs can be omitted in normalized completion
Compositeness in normalized completion peak P is composite

- if $u \neq u \downarrow_{S}$
- if u is reducible strictly below p primality (Kapur et al 88)
- if $u \rightarrow v$

Critical Pair Criteria

Definition
peak $P: s \underset{p}{\leftarrow} u \leftrightarrow_{L}^{*} u^{\prime} \underset{\epsilon}{\rightarrow} t$ is composite if there are

- terms u_{0}, \ldots, u_{n+1} such that $s=u_{0}, t=u_{n+1}$, and $u \succ u_{i}$
- proofs P_{i} proving $u_{i} \simeq u_{i+1}$ such that $P \nsucc P_{i}$ for all $1 \leqslant i \leqslant n$

Lemma

Composite critical pairs can be omitted in normalized completion
Compositeness in normalized completion peak P is composite

- if $u \neq u \downarrow_{S}$

S-reducibility

- if u is reducible strictly below p primality (Kapur et al 88)
- if $u \rightarrow v$ and $s \simeq v$ and $t \simeq v$ were already considered connectedness (Küchlin 85)

Example (Abelian Group + Endomorphisms + Group Action)

$$
\begin{array}{rlrl}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & x \cdot y & \approx y \cdot x \\
x \cdot \mathrm{e} & \approx x & x \cdot x^{-1} & \approx \mathrm{e} \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{f}(\mathrm{e}) & \approx \mathrm{e} \\
\mathrm{~g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{g}(\mathrm{e}) & \approx \mathrm{e} \\
\phi(x, \phi(y, z)) & \approx \phi(x \cdot y, z) & \phi(\mathrm{e}, x) \approx x \\
\phi(\mathrm{f}(x), \mathrm{g}(y)) & \approx \phi(\mathrm{g}(y), \mathrm{f}(x)) &
\end{array}
$$

正

Example (Abelian Group + Endomorphisms

$$
\begin{array}{rlrl}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & x \cdot y & \approx y \cdot x \\
x \cdot \mathrm{e} & \approx x & x \cdot x^{-1} & \approx \mathrm{e} \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{f}(\mathrm{e}) & \approx \mathrm{e} \\
\mathrm{~g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{g}(\mathrm{e}) & \approx \mathrm{e} \\
\phi(x, \phi(y, z)) & \approx \phi(x \cdot y, z) & \phi(\mathrm{e}, x) \approx x \\
\phi(\mathrm{f}(x), \mathrm{g}(y)) & \approx \phi(\mathrm{g}(y), \mathrm{f}(x)) &
\end{array}
$$

Normalized completion modulo G :

$$
\begin{aligned}
x \cdot \mathrm{e} & \rightarrow x & (x \cdot y) \cdot z & \rightarrow x \cdot(y \cdot z) \\
\mathrm{e}^{-1} & \rightarrow \mathrm{e} & \left(x^{-1}\right)^{-1} & \rightarrow x
\end{aligned} \quad x \cdot x^{-1} \rightarrow \mathrm{e}, ~(x \cdot y)^{-1} \rightarrow x^{-1} \cdot y^{-1}
$$

with CiME using ACRPO yields G-convergent TRS:

$$
\begin{array}{lll}
\mathrm{f}(\mathrm{e}) \rightarrow \mathrm{e} & \mathrm{f}(x \cdot y) \rightarrow \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{f}(x)^{-1} \rightarrow \mathrm{f}\left(x^{-1}\right) \\
\mathrm{g}(\mathrm{e}) \rightarrow \mathrm{e} & \mathrm{~g}(x \cdot y) \rightarrow \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{g}(x)^{-1} \rightarrow \mathrm{~g}\left(x^{-1}\right)
\end{array}
$$

Example (Abelian Group + Endomorphisms

$$
\begin{array}{rlrl}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & x \cdot y & \approx y \cdot x \\
x \cdot \mathrm{e} & \approx x & x \cdot x^{-1} & \approx \mathrm{e} \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{f}(\mathrm{e}) & \approx \mathrm{e} \\
\mathrm{~g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{g}(\mathrm{e}) & \approx \mathrm{e} \\
\phi(x, \phi(y, z)) & \approx \phi(x \cdot y, z) & \phi(\mathrm{e}, x) \approx x \\
\phi(\mathrm{f}(x), \mathrm{g}(y)) & \approx \phi(\mathrm{g}(y), \mathrm{f}(x)) &
\end{array}
$$

Normalized completion modulo G :

$$
\begin{array}{ccc}
x \cdot \mathrm{e} \rightarrow x & (x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z) & x \cdot x^{-1} \rightarrow \mathrm{e} \\
\mathrm{e}^{-1} \rightarrow \mathrm{e} & \left(x^{-1}\right)^{-1} \rightarrow x & (x \cdot y)^{-1} \rightarrow x^{-1} \cdot y^{-1}
\end{array}
$$

with CiME using ACRPO yields G-convergent TRS:

$$
\begin{array}{lll}
\mathrm{f}(\mathrm{e}) \rightarrow \mathrm{e} & \mathrm{f}(x \cdot y) \rightarrow \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{f}(x)^{-1} \rightarrow \mathrm{f}\left(x^{-1}\right) \\
\mathrm{g}(\mathrm{e}) \rightarrow \mathrm{e} & \mathrm{~g}(x \cdot y) \rightarrow \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{g}(x)^{-1} \rightarrow \mathrm{~g}\left(x^{-1}\right)
\end{array}
$$

... but remaining equations cannot all be oriented

Normalized Completion with Termination Tools
Definition (orient in $\mathcal{N}_{T T}$)
E : set of equations $\quad R$: set of rewrite rules $\quad C$: set of rewrite rules

Normalized Completion with Termination Tools

Definition (orient in $\mathcal{N}_{T T}$)
E : set of equations $\quad R$: set of rewrite rules $\quad C$: set of rewrite rules
orient $E \uplus\{u \simeq v\}, R, C$

$$
\text { if } u=u \downarrow_{s}, v=v \downarrow_{s} \text { and } C \cup \Psi(u, v) \cup S \text { is AC terminating }
$$

Normalized Completion with Termination Tools

Definition (orient in $\mathcal{N}_{T T}$)
E : set of equations $\quad R$: set of rewrite rules $\quad C$: set of rewrite rules
orient $\frac{E \uplus\{u \simeq v\}, R, C}{E \cup \Theta(u, v), R \cup \Psi(u, v), C \cup \Psi(u, v)}$
if $u=u \downarrow_{S}, v=v \downarrow_{S}$ and $C \cup \Psi(u, v) \cup S$ is AC terminating

Normalized Completion with Termination Tools

Definition (orient in $\mathcal{N}_{T T}$)
E : set of equations $\quad R$: set of rewrite rules $\quad C$: set of rewrite rules
orient $\frac{E \uplus\{u \simeq v\}, R, C}{E \cup \Theta(u, v), R \cup \Psi(u, v), C \cup \Psi(u, v)}$
if $u=u \downarrow_{s}, v=v \downarrow_{s}$ and $C \cup \Psi(u, v) \cup S$ is AC terminating
Lemma (Simulation Properties)

- if $\left(E_{0}, \varnothing, \varnothing\right) \vdash_{\mathcal{N}_{T T}}^{*}(E, R, C)$ then $\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}^{*}(E, R)$

Normalized Completion with Termination Tools

Definition (orient in $\mathcal{N}_{T T}$)
E : set of equations $\quad R$: set of rewrite rules $\quad C$: set of rewrite rules
orient $\frac{E \uplus\{u \simeq v\}, R, C}{E \cup \Theta(u, v), R \cup \Psi(u, v), C \cup \Psi(u, v)}$
if $u=u \downarrow_{S}, v=v \downarrow_{S}$ and $C \cup \Psi(u, v) \cup S$ is AC terminating
Lemma (Simulation Properties)

- if $\left(E_{0}, \varnothing, \varnothing\right) \vdash_{\mathcal{N}_{T T}}^{*}(E, R, C)$ then $\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}^{*}(E, R)$ using $A C$-compatible reduction order $\succ \mathrm{C}:=\rightarrow_{(S \cup C) / A C}^{+}$

Normalized Completion with Termination Tools

Definition (orient in $\mathcal{N}_{T T}$)
E : set of equations $\quad R$: set of rewrite rules $\quad C$: set of rewrite rules
orient $\frac{E \uplus\{u \simeq v\}, R, C}{E \cup \Theta(u, v), R \cup \Psi(u, v), C \cup \Psi(u, v)}$
if $u=u \downarrow_{S}, v=v \downarrow_{S}$ and $C \cup \Psi(u, v) \cup S$ is AC terminating
Lemma (Simulation Properties)

- if $\left(E_{0}, \varnothing, \varnothing\right) \vdash_{\mathcal{N}_{T T}}^{*}(E, R, C)$ then $\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}^{*}(E, R)$ using $A C$-compatible reduction order $\succ C:=\rightarrow_{(S \cup C) / A C}^{+}$
- if $\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}^{*}(E, R)$ using \succ then $\left(E_{0}, \varnothing, \varnothing\right) \vdash_{\mathcal{N}_{T T}}^{*}(E, R, C)$

Normalized Completion with Termination Tools

Definition (orient in $\mathcal{N}_{T T}$)
E : set of equations $\quad R$: set of rewrite rules $\quad C$: set of rewrite rules
orient

$$
\begin{aligned}
& \frac{E \uplus\{u \simeq v\}, R, C}{E \cup \Theta(u, v), R \cup \Psi(u, v), C \cup \Psi(u, v)} \\
& \text { if } u=u \downarrow_{S}, v=v \downarrow_{S} \text { and } C \cup \Psi(u, v) \cup S \text { is AC terminating }
\end{aligned}
$$

Lemma (Simulation Properties)

- if $\left(E_{0}, \varnothing, \varnothing\right) \vdash_{\mathcal{N}_{T T}}^{*}(E, R, C)$ then $\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}^{*}(E, R)$ using $A C$-compatible reduction order $\succ C:=\rightarrow_{(S \cup C) / A C}^{+}$
- if $\left(E_{0}, \varnothing\right) \vdash_{\mathcal{N}}^{*}(E, R)$ using \succ then $\left(E_{0}, \varnothing, \varnothing\right) \vdash_{\mathcal{N}_{T T}}^{*}(E, R, C)$

Corollary
If $(E, \varnothing, \varnothing) \vdash_{\mathcal{N}_{T T}}^{*}(\varnothing, R, C)$ is fair then R is S-convergent for E

$$
\begin{array}{rlrl}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & x \cdot y & \approx y \cdot x \\
x \cdot \mathrm{e} & \approx x & x \cdot x^{-1} & \approx \mathrm{e} \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{f}(\mathrm{e}) & \approx \mathrm{e} \\
\mathrm{~g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{g}(\mathrm{e}) & \approx \mathrm{e} \\
\phi(x, \phi(y, z)) & \approx \phi(x \cdot y, z) & \phi(\mathrm{e}, x) & \approx x \\
\phi(\mathrm{f}(x), \mathrm{g}(y)) & \approx \phi(\mathrm{g}(y), \mathrm{f}(x)) &
\end{array}
$$

Example (Abelian Group + Endomorphisms + Group Action)

$$
\begin{equation*}
-2+2 x+2 \tag{5}
\end{equation*}
$$

,

Example (Abelian Group + Endomorphisms + Group Action)

$$
\begin{array}{rlrl}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & x \cdot y & \approx y \cdot x \\
x \cdot \mathrm{e} & \approx x & x \cdot x^{-1} & \approx \mathrm{e} \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{f}(\mathrm{e}) & \approx \mathrm{e} \\
\mathrm{~g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{g}(\mathrm{e}) & \approx \mathrm{e} \\
\phi(x, \phi(y, z)) & \approx \phi(x \cdot y, z) & \phi(\mathrm{e}, x) & \approx x \\
\phi(\mathrm{f}(x), \mathrm{g}(y)) & \approx \phi(\mathrm{g}(y), \mathrm{f}(x)) &
\end{array}
$$

Normalized completion with termination tools modulo G :

$$
\left.\begin{array}{rlrl}
x \cdot \mathrm{e} & \rightarrow x & (x \cdot y) \cdot z & \rightarrow x \cdot(y \cdot z) \\
\mathrm{e}^{-1} & \rightarrow \mathrm{e} & \left(x^{-1}\right)^{-1} & \rightarrow x
\end{array} \quad x \cdot x^{-1} \rightarrow \mathrm{e}\right] \text { (x:y)}{ }^{-1} \rightarrow x^{-1} \cdot y^{-1}
$$

yields G-convergent TRS:

$$
\begin{aligned}
& f(e) \rightarrow e \\
& \mathrm{f}(x \cdot y) \rightarrow \mathrm{f}(x) \cdot \mathrm{f}(y) \\
& \mathrm{f}(x)^{-1} \rightarrow \mathrm{f}\left(x^{-1}\right) \\
& \mathrm{g}(\mathrm{e}) \rightarrow \mathrm{e} \\
& \mathrm{~g}(x \cdot y) \rightarrow \mathrm{g}(x) \cdot \mathrm{g}(y) \\
& \mathrm{g}(x)^{-1} \rightarrow \mathrm{~g}\left(x^{-1}\right) \\
& \phi(\mathrm{e}, x) \rightarrow x \\
& \phi(\mathrm{f}(x), \mathrm{e}) \rightarrow \mathrm{f}(x) \\
& \phi(x, \mathrm{f}(y)) \rightarrow \phi(\mathrm{f}(y) \cdot x, \mathrm{e}) \\
& \phi(g(x), e) \rightarrow g(x) \\
& \phi(x, \phi(y, z)) \rightarrow \phi(x \cdot y, z) \\
& \phi(x, \mathrm{~g}(y)) \rightarrow \phi(\mathrm{g}(y) \cdot x, \mathrm{e})
\end{aligned}
$$

Example (Abelian Group + Endomorphisms + Group Action)

$$
\begin{array}{rlrl}
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & x \cdot y & \approx y \cdot x \\
x \cdot \mathrm{e} & \approx x & x \cdot x^{-1} \approx \mathrm{e} \\
\mathrm{f}(x \cdot y) & \approx \mathrm{f}(x) \cdot \mathrm{f}(y) & \mathrm{f}(\mathrm{e}) & \approx \mathrm{e} \\
\mathrm{~g}(x \cdot y) & \approx \mathrm{g}(x) \cdot \mathrm{g}(y) & \mathrm{g}(\mathrm{e}) \approx \mathrm{e} \\
\phi(x, \phi(y, z)) & \approx \phi(x \cdot y, z) & \phi(\mathrm{e}, x) \approx x \\
\phi(\mathrm{f}(x), \mathrm{g}(y)) & \approx \phi(\mathrm{g}(y), \mathrm{f}(x)) &
\end{array}
$$

Normalized completion with termination tools modulo $G E$:

$$
\begin{aligned}
& x \cdot \mathrm{e} \rightarrow x \quad(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z) \\
& x \cdot x^{-1} \rightarrow \mathrm{e} \\
& \mathrm{e}^{-1} \rightarrow \mathrm{e} \quad\left(x^{-1}\right)^{-1} \rightarrow x \\
& \mathrm{f}(\mathrm{e}) \rightarrow \mathrm{e} \quad \mathrm{f}(x \cdot y) \rightarrow \mathrm{f}(x) \cdot \mathrm{f}(y) \\
& (x \cdot y)^{-1} \rightarrow x^{-1} \cdot y^{-1} \\
& \mathrm{f}(x)^{-1} \rightarrow \mathrm{f}\left(x^{-1}\right) \\
& g(e) \rightarrow e \quad g(x \cdot y) \rightarrow g(x) \cdot g(y) \\
& \mathrm{g}(x)^{-1} \rightarrow \mathrm{~g}\left(x^{-1}\right)
\end{aligned}
$$

yields GE-convergent TRS (much faster):

$$
\left.\begin{array}{rlrl}
\phi(\mathrm{e}, \mathrm{x}) & \rightarrow x & \phi(\mathrm{f}(x), \mathrm{e}) & \rightarrow \mathrm{f}(x) \\
\phi(\mathrm{g}(x), \mathrm{e}) & \rightarrow \mathrm{g}(x) & \phi(x, \phi(y, z)) & \rightarrow \phi(x \cdot y, z)
\end{array} \quad \phi(x, \mathrm{f}(y)) \rightarrow \phi(\mathrm{f}(y) \cdot x, \mathrm{e})\right)
$$

Example (Binary Arithmetic)

$$
\begin{aligned}
x+y & \approx y+x \\
(x+y)+z & \approx x+(y+z) \\
x+\# & \approx x
\end{aligned}
$$

$$
\begin{aligned}
(x+y) 0 & \approx x 0+y 0 \\
(x+y) 1 & \approx x 0+y 1 \\
x 0+y 0+\# 1 & \approx x 1+y 1 \\
\operatorname{triple}(x) & \approx(x 0+x)
\end{aligned}
$$

cannot be completed with AC-RPO or AC-KBO.

Example (Binary Arithmetic)

$$
\begin{aligned}
x+y & \approx y+x \\
(x+y)+z & \approx x+(y+z) \\
x+\# & \approx x
\end{aligned}
$$

$$
\begin{aligned}
(x+y) 0 & \approx x 0+y 0 \\
(x+y) 1 & \approx x 0+y 1 \\
x 0+y 0+\# 1 & \approx x 1+y 1 \\
\operatorname{triple}(x) & \approx(x 0+x)
\end{aligned}
$$

cannot be completed with AC-RPO or AC-KBO.
Normalized completion with termination tools modulo $S=\{x+\# \rightarrow x\}$ produces S-convergent TRS:

$$
\begin{aligned}
x 0+y 0 & \rightarrow(x+y) 0 \\
x 0+y 1 & \rightarrow(x+y) 1 \\
x 1+y 1 & \rightarrow(x+y+\# 1) 0 \\
\text { triple }(x) & \rightarrow(x 0+x)
\end{aligned}
$$

Implementation in mkbtt

- fully automatic in that
- no reduction order required as input
- applicable theory detected automatically (but theory can also be supplied by user)

Implementation in mkbtt

- fully automatic in that
- no reduction order required as input
- applicable theory detected automatically (but theory can also be supplied by user)
- implemented in multi-completion variant

Implementation in mkbtt

- fully automatic in that
- no reduction order required as input
- applicable theory detected automatically (but theory can also be supplied by user)
- implemented in multi-completion variant
- critical pair criteria

Implementation in mkbtt

- fully automatic in that
- no reduction order required as input
- applicable theory detected automatically (but theory can also be supplied by user)
- implemented in multi-completion variant
- critical pair criteria
- AC-DPs, AC-RPO, AC-KBO, polynomials available via $T_{\top} T_{2}$, alternatively external AC-termination tools can be interfaced

Implementation in mkbtt

- fully automatic in that
- no reduction order required as input
- applicable theory detected automatically (but theory can also be supplied by user)
- implemented in multi-completion variant
- critical pair criteria
- AC-DPs, AC-RPO, AC-KBO, polynomials available via $T_{T} T_{2}$, alternatively external AC-termination tools can be interfaced
- term indexing with AC-discrimination trees

Implementation in mkbtt

- fully automatic in that
- no reduction order required as input
- applicable theory detected automatically (but theory can also be supplied by user)
- implemented in multi-completion variant
- critical pair criteria
- AC-DPs, AC-RPO, AC-KBO, polynomials available via $T_{\top} T_{2}$, alternatively external AC-termination tools can be interfaced
- term indexing with AC-discrimination trees
- source code, binary and web interface available on-line:
http://cl-informatik.uibk.ac.at/software/mkbtt

Experiments

20 problems collected from the literature.

	mkbtt			CiME
theory S	AC	AG	auto	
G94-abelian groups (AG)	1.6	0.1	0.1	0.05
AG + homomorphism	181.7	4.8	4.8	0.05
LS96-G0	1.9	0.1	0.1	$?$
LS96-G1	∞	12.4	12.5	$?$
G94-arithmetic	14.9	-	13.8	$?$
G94-AC-ring with unit	22.9	7.2	0.1	0.1
MU04-binary arithmetic	2.9	-	3.0	$?$
MU04-ternary arithmetic	18.1	-	17.3	$?$
CGA	∞	15.4	15.2	$?$
CRE	∞	216.7	145.1	$?$
\#successes	10	7	13	4

- completion time in seconds, ∞ is timeout (600 seconds)
- ?: no suitable reduction order for CiME
- -: theory not applicable

Conclusion

- simpler collapse rule due to new proof order
- completeness, generalized fairness, critical pair criteria, new definition of normalizing pairs
- termination checks replace reduction order
- mkbtt supports automatic normalized multi-completion

Conclusion

- simpler collapse rule due to new proof order
- completeness, generalized fairness, critical pair criteria, new definition of normalizing pairs
- termination checks replace reduction order
- mkbtt supports automatic normalized multi-completion

Challenge: Tarski's High School Algebra Problem*

$$
\begin{aligned}
& \left((1+x)^{y}+\left(1+x+x^{2}\right)^{y}\right)^{x} \cdot\left(\left(1+x^{3}\right)^{x}+\left(1+x^{2}+x^{4}\right)^{x}\right)^{y} \\
& \quad \approx\left((1+x)^{x}+\left(1+x+x^{2}\right)^{x}\right)^{y} \cdot\left(\left(1+x^{3}\right)^{y}+\left(1+x^{2}+x^{4}\right)^{y}\right)^{x}
\end{aligned}
$$

does not follow from "high school algebra":

$$
\begin{array}{rlrlrl}
x+y & \approx y+x & (x+y)+z & \approx x+(y+z) & x \cdot(y+z) & \approx x \cdot y+x \cdot z \\
x \cdot y & \approx y \cdot x & (x \cdot y) \cdot z & \approx x \cdot(y \cdot z) & x \cdot 1 & \approx x \\
1^{x} & \approx 1 & x^{1} & \approx x & x^{y+z} & \approx x^{y} \cdot x^{z} \\
(x \cdot y)^{z} & \approx x^{z} \cdot y^{z} & \left(x^{y}\right)^{z} & \approx x^{y \cdot z} &
\end{array}
$$

*thanks to Johannes Waldmann for communicating this example

Definition (Extended Rules)
 $R^{e}=R \cup\left\{f(\ell, x) \rightarrow f(r, x) \mid \ell \rightarrow r \in R, \operatorname{root}(\ell)=f \in \mathcal{F}_{\mathrm{AC}}, x \in \mathcal{V}\right.$ fresh $\}$

Definition (Extended Rules)

$$
R^{e}=R \cup\left\{f(\ell, x) \rightarrow f(r, x) \mid \ell \rightarrow r \in R, \operatorname{root}(\ell)=f \in \mathcal{F}_{\mathrm{AC}}, x \in \mathcal{V} \text { fresh }\right\}
$$

Example

$$
\text { for } \begin{aligned}
\mathcal{F}_{\mathrm{AC}}=\{\cdot\} \text { and } R & =\left\{\mathrm{e}^{-1} \rightarrow \mathrm{e}, x \cdot x^{-1} \rightarrow \mathrm{e}\right\} . \\
R^{e} & =\left\{\mathrm{e}^{-1} \rightarrow \mathrm{e}, x \cdot x^{-1} \rightarrow \mathrm{e}, x \cdot x^{-1} \cdot y \rightarrow \mathrm{e} \cdot y\right\}
\end{aligned}
$$

Definition (Extended Rules)

$$
R^{e}=R \cup\left\{f(\ell, x) \rightarrow f(r, x) \mid \ell \rightarrow r \in R, \operatorname{root}(\ell)=f \in \mathcal{F}_{\mathrm{AC}}, x \in \mathcal{V} \text { fresh }\right\}
$$

Definition (L-Overlap)
Let L have decidable and finite unification problem.
$\left\langle\ell_{1} \rightarrow r_{1}, p, \ell_{2} \rightarrow r_{2}\right\rangle$ is L-overlap if

Definition (Extended Rules)

$$
R^{e}=R \cup\left\{f(\ell, x) \rightarrow f(r, x) \mid \ell \rightarrow r \in R, \operatorname{root}(\ell)=f \in \mathcal{F}_{\mathrm{AC}}, x \in \mathcal{V} \text { fresh }\right\}
$$

Definition (L-Overlap)
Let L have decidable and finite unification problem.
$\left\langle\ell_{1} \rightarrow r_{1}, p, \ell_{2} \rightarrow r_{2}\right\rangle$ is L-overlap if

- $\ell_{1} \rightarrow r_{1}$ and $\ell_{2} \rightarrow r_{2}$ are rules without common variables,

Definition (Extended Rules)

$$
R^{e}=R \cup\left\{f(\ell, x) \rightarrow f(r, x) \mid \ell \rightarrow r \in R, \operatorname{root}(\ell)=f \in \mathcal{F}_{\mathrm{AC}}, x \in \mathcal{V} \text { fresh }\right\}
$$

Definition (L-Overlap)
Let L have decidable and finite unification problem.
$\left\langle\ell_{1} \rightarrow r_{1}, p, \ell_{2} \rightarrow r_{2}\right\rangle$ is L-overlap if

- $\ell_{1} \rightarrow r_{1}$ and $\ell_{2} \rightarrow r_{2}$ are rules without common variables,
- $p \in \operatorname{Pos}_{\mathcal{F}}\left(\ell_{1}\right)$, and

Definition (Extended Rules)

$$
R^{e}=R \cup\left\{f(\ell, x) \rightarrow f(r, x) \mid \ell \rightarrow r \in R, \operatorname{root}(\ell)=f \in \mathcal{F}_{\mathrm{AC}}, x \in \mathcal{V} \text { fresh }\right\}
$$

Definition (L-Overlap)
Let L have decidable and finite unification problem.
$\left\langle\ell_{1} \rightarrow r_{1}, p, \ell_{2} \rightarrow r_{2}\right\rangle$ is L-overlap if

- $\ell_{1} \rightarrow r_{1}$ and $\ell_{2} \rightarrow r_{2}$ are rules without common variables,
- $p \in \mathcal{P o s}_{\mathcal{F}}\left(\ell_{1}\right)$, and
- $\left.\ell_{1}\right|_{p}$ and ℓ_{2} are L-unifiable with complete set of L-unifiers Σ

Definition (Extended Rules)

$$
R^{e}=R \cup\left\{f(\ell, x) \rightarrow f(r, x) \mid \ell \rightarrow r \in R, \operatorname{root}(\ell)=f \in \mathcal{F}_{\mathrm{AC}}, x \in \mathcal{V} \text { fresh }\right\}
$$

Definition (L-Overlap)

Let L have decidable and finite unification problem.
$\left\langle\ell_{1} \rightarrow r_{1}, p, \ell_{2} \rightarrow r_{2}\right\rangle$ is L-overlap if

- $\ell_{1} \rightarrow r_{1}$ and $\ell_{2} \rightarrow r_{2}$ are rules without common variables,
- $p \in \operatorname{Pos}_{\mathcal{F}}\left(\ell_{1}\right)$, and
- $\left.\ell_{1}\right|_{p}$ and ℓ_{2} are L-unifiable with complete set of L-unifiers Σ
$\ell_{1} \sigma\left[r_{2} \sigma\right]_{p} \approx r_{1} \sigma$ for $\sigma \in \Sigma$ is L-critical pair

Definition (Extended Rules)

$$
R^{e}=R \cup\left\{f(\ell, x) \rightarrow f(r, x) \mid \ell \rightarrow r \in R, \operatorname{root}(\ell)=f \in \mathcal{F}_{\mathrm{AC}}, x \in \mathcal{V} \text { fresh }\right\}
$$

Definition (L-Overlap)

Let L have decidable and finite unification problem.
$\left\langle\ell_{1} \rightarrow r_{1}, p, \ell_{2} \rightarrow r_{2}\right\rangle$ is L-overlap if

- $\ell_{1} \rightarrow r_{1}$ and $\ell_{2} \rightarrow r_{2}$ are rules without common variables,
- $p \in \operatorname{Pos}_{\mathcal{F}}\left(\ell_{1}\right)$, and
- $\left.\ell_{1}\right|_{p}$ and ℓ_{2} are L-unifiable with complete set of L-unifiers Σ
$\ell_{1} \sigma\left[r_{2} \sigma\right]_{\rho} \approx r_{1} \sigma$ for $\sigma \in \Sigma$ is L-critical pair
$\mathrm{CP}_{L}(R)$ is set of L-critical pairs among rules in R

Definition (Extended Rules)

$R^{e}=R \cup\left\{f(\ell, x) \rightarrow f(r, x) \mid \ell \rightarrow r \in R, \operatorname{root}(\ell)=f \in \mathcal{F}_{\mathrm{AC}}, x \in \mathcal{V}\right.$ fresh $\}$

Definition (L-Overlap)

Let L have decidable and finite unification problem.
$\left\langle\ell_{1} \rightarrow r_{1}, p, \ell_{2} \rightarrow r_{2}\right\rangle$ is L-overlap if

- $\ell_{1} \rightarrow r_{1}$ and $\ell_{2} \rightarrow r_{2}$ are rules without common variables,
- $p \in \operatorname{Pos}_{\mathcal{F}}\left(\ell_{1}\right)$, and
- $\left.\ell_{1}\right|_{p}$ and ℓ_{2} are L-unifiable with complete set of L-unifiers Σ
$\ell_{1} \sigma\left[r_{2} \sigma\right]_{\rho} \approx r_{1} \sigma$ for $\sigma \in \Sigma$ is L-critical pair
$\mathrm{CP}_{L}(R)$ is set of L-critical pairs among rules in R
Example
$x \cdot x^{-1} \rightarrow \mathrm{e}$ and $z \cdot z^{-1} \cdot y \rightarrow \mathrm{e} \cdot y$ create $\mathrm{CP}_{\mathrm{AC}} \mathrm{e} \cdot\left(z \cdot z^{-1}\right)^{-1} \approx \mathrm{e}$

