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Abstract

Abstract rewrite systems allow to capture properties common to different vari-
ants of rewrite systems. In this project a tool was developed which allows the
creation, manipulation and analysis of such systems. All necessary algorithms
to achieve this are introduced and analyzed. The tool is also equipped with a
game-like mode intended for students to test their knowledge about properties
of abstract rewrite systems. In the course of implementing the Abstract Rewrite
Tool it became clear that a method for automatic graph drawing was needed.
Thus a graph drawing algorithm was implemented which is also presented in
this thesis.
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1 Introduction

Abstract rewrite systems abstract, as the name indicates, some properties which
are common to different kinds of rewrite systems like term rewrite systems or
string rewrite systems. Certain properties and relationships can be analyzed in
abstract rewrite systems and then transferred to other rewrite systems. This
is for example done in the introductory course on term rewrite systems at the
University of Innsbruck.

To understand abstract rewrite systems it is usually necessary to practice
the identification of properties by hand on a sheet of paper. This approach has
some drawbacks. For a student who did not grasp some concept about abstract
rewrite systems it can be hard to understand why a given answer was wrong
even if the correct solution is presented.

On the other hand the preparation of examples for the students to solve can
be bothersome because graphs have to be drawn and the correct solution has
to be determined which, even if it is not difficult for a skilled person, takes time
and is prone to oversight.

To aid this process we have developed the Abstract Rewrite Tool. It allows
the creation and manipulation of abstract rewrite systems in an easy and in-
tuitive way. All properties of the resulting system are automatically analyzed
and it can either be embedded into a LATEX document or saved to a file and
passed on to the student.

In an additional mode of the tool the student can test her understanding
of abstract rewrite systems by identifying properties as she would on paper.
In contrast to working on paper the tool will, in case of a wrong answer, give
additional information why the input is wrong. Additionally to abstract rewrite
systems provided by a tutor it is also possible to practice on randomly generated
graphs.

Since there were two main problem areas to tackle while developing the tool
this thesis consists of two main parts. The first will introduce abstract rewrite
systems and their properties in Chapter 2 and present algorithms that can be
used to determine them in Chapter 3. The second part will look at the problem
of automatically drawing a graph in a visually pleasing manner and present a
solution to this problem with Graph Drawing by Force-directed Placement [2]
in Chapter 4. In Chapter 5 the Abstract Rewrite Tool will be presented and its
usage explained. At the end of this thesis in Chapter 6 we will give a conclusion
and some ideas about possible future work in this area.
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2 Abstract Rewrite Systems

Since it is necessary to understand abstract rewrite systems (ARSs) for this
thesis, a short description of them will now be given. Big parts of this chapter
are based on [4] and [1].

2.1 Motivation for ARSs

In mathematics and computer science you can find many so called rewrite sys-
tems or reduction systems. Two examples would be term rewrite systems and
string rewrite systems. In both examples part of an object (term or string) can
be replaced by another object following certain rules.

We can therefore extract the quintessential parts of a rewrite system (objects
are rewritten to other objects) and define abstract rewrite systems in which it
is not specified what is rewritten but only that rewriting can take place. This
alone is sufficient to define and examine important properties and characteristics
common to all rewrite systems.

2.2 Basic Definitions

Definition 2.1. An ARS A consists of a set of objects A and a binary relation
→ between them. A pair (a, b) ∈→ can also be written as a→ b and is called
a rewrite step.

Definition 2.2. A concatenation of zero or more rewrite steps is called a rewrite
sequence. A rewrite sequence starting at a ∈ A and ending in b ∈ A is denoted
by a →∗ b and we can also say “a rewrites to b”, “a reduces to b” or “b is a
successor of a”. A rewrite sequence with one or more rewrite steps is denoted
by a→+ b.

It is easy to see from Definition 2.1 that an ARS can be interpreted as a
directed graph.

Example 2.3. The corresponding graph for an ARS with A = {a, b, c, d} and
→= {(a, b), (a, c), (b, d), (c, d)} can be seen in Figure 2.1.

a b

c d

Figure 2.1: Example for a directed graph representation of an ARS.
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2.2 Basic Definitions

An ARS can by definition be infinite but in this thesis only finite ARSs will
be considered.

Joinability

Definition 2.4. Two elements a, b ∈ A are joinable inA, if both can be reduced
to common successor c ∈ A. This relation is denoted by a ↓ b.

Translated to a graph this means that two nodes are joinable if there exists
a node that is reachable from both nodes.

Example 2.5. In Figure 2.2 elements a and b are joinable because both can
be rewritten to d but b and e are not joinable because they have no common
successor.

It should be noted that the common element can be one of the two elements
that are being joined. So in Figure 2.2 elements b and d are also joinable
because b can be rewritten to d and d does not have to be rewritten.

a

b

c

d

e

Figure 2.2: Example for joinability.

Normal Form

Definition 2.6. An element a ∈ A is a normal form (NF) of A if there exists
no element b ∈ A so that a can be rewritten to b in one or more steps.

Given two elements a, b ∈ A where b is a normal form in A the fact that a
can be rewritten to the normal form b is denoted by a→! b.

Translated to a graph, this means that a node n is a normal form if and only
if there are no nonempty paths beginning at n. In graph theory such a node is
usually called a sink.

Example 2.7. In Figure 2.3 element b is a normal form, a and c are not.
Element c is not in normal form because a and b from Definition 2.6 can of
course be the same element. So the path c→ c prevents c from being a normal
form.

a b

c

Figure 2.3: Example for a normal form.
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2 Abstract Rewrite Systems

Informally this means that a rewrite process terminates once a normal form
is reached.

2.3 Properties

Every node of an ARS has a certain set of properties. If a property holds for
every node of an ARS the property holds for the ARS itself.

Strong Normalization

Definition 2.8. An element e ∈ A is strongly normalizing (SN) in A if there
exists no infinite rewrite sequence starting from e.

Translated to a graph this means a node is strongly normalizing if there are
no cycles reachable from that node.

Example 2.9. In Figure 2.4 element e is not strongly normalizing because it
can reach the cycle a → b → c → a. Because a, b and c are part of the cycle
themselves those elements are not strongly normalizing either.

e a b

c

d

Figure 2.4: Example for an ARS which is not strongly normalizing.

Informally this means that starting from a strongly normalizing element,
no matter which rewrite steps are chosen in a rewrite process, it will always
terminate at some point. On the other hand it means that if a rewrite sequence
starts from an element which is not strongly normalizing there is always at least
one way to select a next element so the rewriting process will never terminate.

Weak Normalization

Definition 2.10. An element a ∈ A is weakly normalizing (WN) in A if there
exists at least one rewrite sequence a→! b leading to a normal form b ∈ A.

Translated to a graph, this means that if a node n is weakly normalizing
there is at least one path leading to a sink.

Example 2.11. In Figure 2.5 elements a and d are weakly normalizing because
from both of them a normal form can be reached (in case of element d it is an
empty path). Elements b and c are not weakly normalizing since no normal
form can be reached from those.

Informally this means that for a rewriting process starting at an element
which is weakly normalizing there is at least one way to select the rewrite steps
so the process will terminate. It also means, if the rewriting process starts at an
element which is not weakly normalizing, no matter in which way the rewrite
steps are chosen, the process will never terminate.
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2.3 Properties

a b c

d

Figure 2.5: Example for weak normalization.

Unique Normal Forms

Definition 2.12. An element a ∈ A has unique normal forms (UN) in A if the
rewrite sequences a→! b and a→! c imply b = c.

Translated to a graph, this means that a node has unique normal forms if
there is at most one sink reachable from that node.

Example 2.13. In Figure 2.6 element a does not have unique normal forms
since it can be rewritten to the normal forms d and c. Elements b, c and d on
the other hand have unique normal forms since they all can only be rewritten
to one normal form.

a b c

d

Figure 2.6: Example for unique normal forms.

Informally this means that starting from an element which has unique normal
forms the process will always terminate in the same normal form if it terminates
at all. On the other hand, a rewrite process starting from an element which has
no unique normal forms can terminate in at least two different normal forms.

Church-Rosser Property

An element that has the Church-Rosser property (CR) is also called confluent.

Definition 2.14. An element a ∈ A is confluent in A if for all b, c ∈ A with
a→∗ b and a→∗ c element b can be joined with element c.

Translated to a graph, this means that all reachable nodes have to be pairwise
joinable to be confluent.

Example 2.15. In Figure 2.7 element a is confluent. The set of all reachable
elements from a is {b, c, d, e}. So every element from this set has to be joinable
with every other element. Elements b and c can be joined via the common
reducts {c, d, e}, b and d can be joined via the common reducts {d, e}, b and e
can be joined via the common reduct e, c and d can be joined via the common
reducts {d, e}, c and e can be joined via the common reduct e and d and e
can be joined via the common reduct e. In fact in Figure 2.7 all elements are
confluent.
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2 Abstract Rewrite Systems

a b

c d

e

Figure 2.7: Example for Church-Rosser property.

This means in essence that no matter which two rewrite sequences are taken
from an element which is confluent, there is always the possibility to reach the
same element and if the rewrite process terminates, it will always terminate in
the same normal form.

Weak Church-Rosser Property

An element that has the weak Church-Rosser property (WCR) is also called
locally confluent.

Definition 2.16. An element a ∈ A is locally confluent in A if for all b, c ∈ A
with a→ b and a→ c element b can be joined with element c.

Translated to a graph, this means that a node is locally confluent, if all pairs
of direct successors1 can be joined.

Example 2.17. In Figure 2.8 node a is locally confluent. The set of direct
successors is {b, d} and b and d can be joined via the common successor d. In
fact all elements in Figure 2.8 except c are locally confluent.

This is also a good example of elements which are locally confluent but not
confluent. For element a to be confluent d and e would also have to be joinable,
which they are not.

a

b c

d

e

Figure 2.8: Example for weak Church-Rosser property.

1All nodes reachable with a path of length one.

6



2.4 Relationships Between Properties

Example 2.18. To bring everything together we will now present a graph and
all properties of all its elements, see Figure 2.9.

d

a

h

c

f

g

b

e

SN WN CR WCR UN

a Ö X Ö X Ö

b Ö X Ö X Ö

c Ö X Ö Ö Ö

d Ö Ö X X X
e Ö X Ö X Ö

f Ö X Ö X Ö

g X X X X X
h X X X X X

Figure 2.9: An abstract rewrite system and all its properties.

2.4 Relationships Between Properties

Properties and combinations of properties can have certain relationships to one
another. We will now investigate some important examples of such relationships
for an element a ∈ A.

Lemma 2.19. SN(a) → WN(a)

Proof. Since SN(a) implies that every rewrite sequence starting from a has to
terminate in a finite number of steps there has to be at least one normal form
reachable from this node which implies that it is also weakly normalizing.

This relationship does not hold in the other direction though because of the
fact that there exists a rewrite sequence which ends in a normal form does not
imply that there cannot be other infinite sequences. Element a in Figure 2.9
would be an example for this.

Lemma 2.20. CR(a) → UN(a)

Proof. Since different normal forms are never joinable among each other an
element which is confluent can only have one normal form at most. An element
which has zero or one normal form has unique normal forms.

Lemma 2.21. CR(a) → WCR(a)

Proof. Since a is confluent, for all b and c with b ∗← a→∗ c we have b ↓ c. This
b ↓ c also holds for all b← a→ c which implies that a is locally confluent.

Lemma 2.22. SN(a) ∧ UN(a) → CR(a)

7



2 Abstract Rewrite Systems

Proof. Since a is strongly normalizing every element b with a →∗ b can be
rewritten to a normal form in a finite number of steps. Since a has unique
normal forms b→! c and b→! d implies c = d. Thus for all peaks e ∗← a→∗ f
the elements e and f have unique normal forms e′ and f ′. Since these are also
normal forms of a, e′ = f ′ and thus e ↓ f needs to hold, which implies that a is
confluent.

Lemma 2.23. ¬UN(a) → WN(a)

Proof. If an element does not have unique normal forms it has to have at least
two different normal forms. Every element which has at least one normal form
is weakly normalizing.

8



3 Implementation of Abstract Rewrite
Systems

This chapter will describe how abstract rewrite systems are represented in the
Abstract Rewrite Tool (ART) and how the properties are determined.

3.1 Representation of the ARS

Abstract rewrite systems in the ART are represented as a graph which is im-
plemented using adjacency lists. This means that there exists a list with all
nodes that are part of the graph and every node itself holds an adjacency list
containing references to all of its direct successors.

File Format

For loading and saving abstract rewrite systems a file format had to be specified.
Listing 3.1 shows the specification in extended Backus-Naur form.

ars ::= node { \n node }
node ::= ( id ( -> | : ) nodelist ) | id

nodelist ::= id { , id }
digit ::= 0 | 1 | 2 | 3 | ... | 9

alphabetic ::= A | B | ... | Z | a | b | ... | z

alphanum ::= digit | alphabetic

id ::= alphanum [ alphanum ]

Listing 3.1: File format description in extended Backus-Naur form.

For an example, see Listing 3.2.

1->5

5->2,7

2->3,1

3->6,4

6->5,7

Listing 3.2: Content of a file that describes the graph in Figure 3.2.

As can be seen in Listing 3.1 a colon can be used instead of ->. This is
mainly intended to speed up the creation of edges in the parse prompt. See
Section 5.3.1 for further information. It can also be seen that nodes can only
have names with two symbols at maximum. This is no general limitation of

9



3 Implementation of Abstract Rewrite Systems

the ART but names bigger than two symbols will not fit into the circles that
represent the nodes (see Figure 3.1) so it was decided to limit the size.

Figure 3.1: Example of a node with a name of length three.

3.2 Algorithms to Decide Properties

3.2.1 Auxiliary Algorithms

Transitive Closure

Definition 3.1. For a node n the transitive closure contains all nodes that are
reachable from n with a path of a length of at least one. The transitive closure
of a node n will be denoted by tc(n).

Definition 3.2. For a node n the reflexive transitive closure contains all nodes
that are reachable from n with a path of a length of at least zero. It is there-
fore the transitive closure of n extended with the node n itself. The reflexive
transitive closure of a node n will be denoted by rtc(n).

To determine the transitive closure Warshall’s algorithm [8] is being used.

Definition 3.3. Given a graph G with n nodes, a matrix A of size n × n is
called an adjacency matrix of G if Ai,j = 1 if there exists an edge from node i
to j and Ai,j = 0 if no such edge exists.

Example 3.4. Figure 3.2 gives an example how a graph and its adjacency
matrix correlate.

4

1

3

6

7

2

5



0 0 0 0 1 0 0
1 0 1 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 0 0



Figure 3.2: Correlation between a graph and its adjacency matrix.

The algorithm starts with the adjacency matrix M of size n× n and creates
a working copy T which will contain the result at the end.

It then iterates over every element in the matrix until a 1 is found. If the
position is i, j this means that there is an edge from node i to node j but this

10



3.2 Algorithms to Decide Properties

also means that every node which can be reached from j can also be reached
from node i via j. To express this, the nodes reachable from j have to be marked
reachable for i. This is done by iterating over every element of the jth row in
the matrix. If an entry with value 1 can be found at position k (which means
that k is reachable from j) the element on position i, k is also set to 1 which
represents the notion that k is reachable from i. Because it is equivalent and
more efficient than using conditional branching the formula Ti,k = Ti,k ∨ Tj,k is
used for every k ∈ {1, . . . , n} where 1 is interpreted as true and 0 as false.

1. for j in 1 to n

2. for i in 1 to n

3. if(Ti,j == 1)

4. for k in 1 to n

5. Ti,k = Ti,k ∨ Tj,k

Listing 3.3: Warshall’s algorithm.

The time complexity of Warshall’s algorithm for n nodes is O(n3) because
line 5 is executed n3 times at most. Since no additional memory is needed the
memory complexity is Θ(n2) for the matrix itself.

Example 3.5. The algorithm is performed on the following graph:

1 2

3

0 1 0
0 1 1
0 0 0



� T =

0 1 0
0 1 1
0 0 0


� i = 1 and j = 1; T1,1 = 0 ⇒ do nothing

� i = 2 and j = 1; T2,1 = 0 ⇒ do nothing

� i = 3 and j = 1; T3,1 = 0 ⇒ do nothing

� i = 1 and j = 2; T1,2 = 1 ⇒
T1,1 ∨ T2,1 = 0 ∨ 0 = 0⇒ T1,1 = 0
T1,2 ∨ T2,2 = 1 ∨ 1 = 1⇒ T1,2 = 1
T1,3 ∨ T2,3 = 0 ∨ 1 = 1⇒ T1,3 = 1

T =

0 1 1
0 1 1
0 0 0


� i = 2 and j = 2; T2,2 = 1⇒ since i and j are 2, T will not change because
Ti,k ∨ Tj,k = Ti,k if i == j

11



3 Implementation of Abstract Rewrite Systems

� i = 3 and j = 2; T3,1 = 0 ⇒ do nothing

� i = 1 and j = 3; T1,3 = 1 ⇒
T1,1 ∨ T3,1 = 0 ∨ 0 = 0⇒ T1,1 = 0
T1,2 ∨ T3,2 = 1 ∨ 0 = 1⇒ T1,2 = 1
T1,3 ∨ T3,3 = 1 ∨ 0 = 1⇒ T1,3 = 1

T =

0 1 1
0 1 1
0 0 0

 (nothing has changed)

� i = 2 and j = 3; T2,3 = 1 ⇒
T2,1 ∨ T3,1 = 0 ∨ 0 = 0⇒ T2,1 = 0
T2,2 ∨ T3,2 = 1 ∨ 0 = 1⇒ T2,2 = 1
T2,3 ∨ T3,3 = 1 ∨ 0 = 1⇒ T2,3 = 1

T =

0 1 1
0 1 1
0 0 0

 (nothing has changed)

� i = 3 and j = 3; T3,3 = 0 ⇒ do nothing

So the only thing that has changed is T1,3 = 1 which means that node 3 is
reachable from node 1 which is obviously correct.

Joinability

Joinability can be directly implemented as it is defined. Two nodes a and b are
joinable, if rtc(a) ∩ rtc(b) 6= ∅.

If the transitive closure is already calculated, checking joinability is a fairly
efficient approach. If data structures are used that allow a lookup in constant
time (for example a hash map) this algorithm has a complexity of O(n) for one
pair of nodes and

(
n
2

)
O(n) = O(n3) for all combinations of pairs.

Example 3.6. Given the following graph, we check the joinability of all nodes.

a b

cd
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3.2 Algorithms to Decide Properties

rtc(a) = {a, b}
rtc(b) = {b}
rtc(c) = {c, b, d}
rtc(d) = {d}

a ↓ b : {a, b} ∩ {b} = {b} ⇒ a and b are joinable

a ↓ c : {a, b} ∩ {c, b, d} = {b} ⇒ a and c are joinable

a ↓ d : {a, b} ∩ {d} = ∅ ⇒ a and d are not joinable

b ↓ c : {b} ∩ {c, b, d} = {b} ⇒ b and c are joinable

b ↓ d : {b} ∩ {d} = ∅ ⇒ b and d are not joinable

c ↓ d : {c, b, d} ∩ {d} = {d} ⇒ c and d are joinable

3.2.2 Strong Normalization

The question whether a node is strongly normalizing or not can be decided
as follows: A node is strongly normalizing if and only if all its successors are
strongly normalizing and it is not part of a cycle. This idea can be formalized
as follows. Here succ(n) contains all direct successors of an element n ∈ A.

Definition 3.7.

SN(n, visited) =


false if n ∈ visited
true if succ(n) = ∅
true if ∀s ∈ succ(n) : SN(s, visited ∪ {n}) = true
false if ∃s ∈ succ(n) : SN(s, visited ∪ {n}) = false

Lemma 3.8. An element e ∈ A is strongly normalizing in A iff SN(e,∅) =
true.

Again dynamic programming can be used to develop an efficient algorithm.
Instead of actually following all recursions, we use memoization to cache results
of function-calls. That guarantees that every node is only processed once. An
implementation of the algorithm in Scala can be seen in Listing 3.4. The mem-
oization is implemented by saving the results of every function call in a hash
map.

Since we have a depth first search without repetition we get a complexity
of O(|V | + |E|) where |V | is the number of nodes and |E| is the number of
edges. With n nodes in the worst case we could end up with n2 edges and
the complexity would become O(n2). The graphs used in the Abstract Rewrite
Tool however have usually between n and 2n edges which would result in a
complexity of O(n).

3.2.3 Weak Normalization and Unique Normal Forms

These two properties can be determined together. An implementation in pseudo
code can be seen in Listing 3.5.

13



3 Implementation of Abstract Rewrite Systems

def getSN() = {

val sn:Map[Node,Boolean] = Map.empty

def visit(n:Node,visited:Set[Node]) {

if(!(sn contains n)) {

if(visited contains n) sn += (n -> false)

else {

for(i <- n.connections) visit(i,visited + n)

sn += (n -> (n.connections.forall(sn(_) == true)))

}

}

}

for(i <- nodes if(!(sn contains i))) visit(i,Set.empty)

sn

}

Listing 3.4: Algorithm to calculate strong normalization for all nodes of a graph
implemented in Scala.

Since for a graph with n nodes the transitive closure of one node can at most
contain n nodes the complexity of the algorithm will be O(n). This of course
does not include the calculation of the transitive closure itself.

3.2.4 Church-Rosser Property

The Church-Rosser property for a node n can be determined by checking join-
ability for all pairs of nodes from the transitive closure of n. The node n has
the Church-Rosser property if and only if all pairs are joinable.

In the worst case starting from a node a ∈ A where A has n nodes, tc(a)
will also contain n nodes. To determine whether a is confluent or not the
joinability of

(
n
2

)
pairs has to be checked. Testing the joinability of a pair of

nodes has a complexity of O(n) so the complexity to test for confluence will be(
n
2

)
O(n) = O(n3). So checking the whole system for the Church-Rosser property

could have complexity O(n4). If the results for joinability are memoized this
can be brought down to a complexity of O(n3).

3.2.5 Weak Church-Rosser Property

The weak Church-Rosser property of a node a ∈ A can be determined by
checking the set of successors of a. If all pairs of nodes from that set are
joinable, a is locally confluent. Since in the worst case the set of successors
could be all nodes of the graph the same arguments as for the Church-Rosser
property can be made. We then end up with a complexity of O(n4) respective
O(n3) with memoization of joinability.
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3.3 Overall Complexity

1. count = 0

2. for all elements e ∈ tc(a)

3. if e is a normal form

4. count = count+ 1

5. if count < 2

6. UN(a) = true

7. else

8. UN(a) = false

9. if count > 0

10. WN(a) = true

11. else

12. WN(a) = false

Listing 3.5: Algorithm to determine WN(a) and UN(a).

3.3 Overall Complexity

We will now look at the complexity of calculating all properties of a graph with
n nodes with utilization of memoization. See Table 3.1 for a summary of the
complexities of all the used algorithms.

transitive closures O(n3)
joinability O(n3)

weak normalization and unique normal forms O(n2)
strong normalization O(n2)

Church-Rosser property O(n3)
weak Church-Rosser property O(n3)

Table 3.1: Complexities for the algorithms in the ART.

This leads to a total complexity of O(n3) +O(n3) +O(n2) +O(n2) +O(n3) +
O(n3) = O(n3).

3.4 Optimizations

3.4.1 Memoization

Memoization is a method which allows an algorithm to get higher performance
by using more memory. This is achieved by remembering the return value of a
function in relation to a set of input parameters. This of course only works as
long as the internal state of an object stays the same but then it ensures that
every computation only has to be done once.
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In the ART every function of the objects that represent the graph and the
nodes uses memoization. For example if the joinability of a pair of nodes should
be checked the responsible function will first look up if a value for this pair
was already calculated. If it was this value will be directly returned, if no
precalculated value exists it will be calculated, remembered and returned. The
next time the joinability of the same two nodes is requested the calculation can
be omitted.

Implementation

In the ART memoization is strictly separated from the classes representing
graphs and nodes. So the classes DirectedGraph and Node have an equivalent
MemDirectedGraph and MemNode whose only purpose is to support memoization
for every function of the two classes. Functions which do not need parameters
are memoized by a simple variable. Functions with parameters are memoized
using a hash map with the parameter values as keys. An example implementa-
tion of a memoization of the joinability function in Scala looks as follows:

var memJoins:HashMap[Node,Boolean] = HashMap.empty

override def joins(node: Node) = memJoins.getOrElseUpdate(node,

super.joins(node))

This example also shows how the functional capabilities of Scala can lead
to very natural and concise code. The first line creates a hash map that maps
from a node to a boolean value. The second line overwrites the original function
joins in the class Node. The method getOrElseUpdate is already provided by
HashMap and will check if the parameter node is already present in the hash
map. If it is, the saved value will be returned, if it is not, the second parameter
will be returned and at the same time saved in the hash map. Since the second
parameter is call-by-name it will only be evaluated if no precalculated result
can be found.

Advantages

There are different advantages of the general memoization of all functions. On
one hand many algorithms can be implemented directly in a recursive fashion
without performance impairments. For example the algorithm to determine
strong normalization can omit the dynamic programming approach because
the general memoization provides this automatically.

Additionally the code becomes more concise and easier to understand. For
example in the ART nodes that are normal forms will be drawn in a different
color. Since the information if a node is a normal form or not is needed on every
redraw this amounts to approximately sixty requests a second per node. This of
course is not practical and it would be necessary to create data structures in the
graphical part of the system to hold this information which also would have to
be synchronized in certain intervals to the actual values. With memoization the
information can be directly acquired from the core classes in a very transparent
way without impairing performance.
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3.4 Optimizations

Internal State

Memoization is of course only possible as long as the internal state of objects
does not change. For example if nodes and edges are removed and added in
a graph the memoized values may not be correct anymore. To alleviate this
problem all memoized values are discarded if the graph is manipulated.

Of course it would be possible to only discard certain memoized values re-
garding to what has changed in the graph but since the additional performance
gain is assumed to be relatively minuscule this possibility was never investigated
further.

Performance

To test the performance gained by memoization some benchmarks1 were taken.
The time needed to determine all properties of ten graphs with differing number
of nodes was measured. To obtain accurate measurements while using randomly
generated graphs actually 100,000 graphs were processed and the results calcu-
lated back for ten graphs. The results can be seen in Figure 3.3.

without memoization

with memoization
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Figure 3.3: Time required to determine all properties of ten random graphs with
memoization and without.

It is obvious to what a huge degree memoization increases performance. Al-
though even without memoization the algorithms would likely be fast enough
for the average graph used in the Abstract Rewrite Tool, it is clear that the
computational complexity would very quickly become unpractical for bigger
graphs.

3.4.2 Exploiting Relationships Between Properties

As we have seen in Section 2.4 some properties and combinations of properties
have relationships to one another. In theory this can of course be used to in-

1For all benchmarks in this thesis one core of an AMD Phenom II X4 920 2.8 GHz was used.
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3 Implementation of Abstract Rewrite Systems

crease the performance of the Abstract Rewrite Tool. Since not all relationships
between properties actually reduce the computational need we will now analyze
which relationships can be harnessed. One thing to keep in mind is that if all
properties have to be determined a fixed sequence has to be followed. This alone
already limits the relationships that can be used in practice. A good idea to
determine the sequence is to evaluate the properties in their order of complexity
since we want to omit as many calculations with high complexity as possible.
This leads to the following sequence: WN & UN ⇒ SN ⇒WCR⇒ CR.

It should be clear that with that order for example the relationship SN(a)
→ WN(a) is not useful. A list of all relationships that could be used with this
sequence looks as following:

1. ¬WN(a) → ¬SN(a) (contrapositive of Lemma 2.19)

2. ¬UN(a) → ¬CR(a) (contrapositive of Lemma 2.20)

3. ¬WCR(a) → ¬CR(a) (contrapositive of Lemma 2.21)

4. SN(a) ∧ UN(a) → CR(a) (Lemma 2.22)

The relationship ¬UN(a) → WN(a) (Lemma 2.23) is not being used since
unique normalization and weak normalization are determined together in the
same algorithm.

Performance

Since this relationships can only be used in some cases the worst-case-complexity
is not reduced and stays at O(n3). To determine the impact of this optimization
in practice some benchmarks were taken. As in the benchmarks for memoiza-
tion it was measured how long it takes to determine all properties of ten random
graphs with differing numbers of nodes. The results can be seen in Figure 3.4
3.4.
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Figure 3.4: Time required to determine all properties of ten random graphs with
utilization of relations between properties and without.

It is clear that the optimized version is much more efficient. In another test it
could also be determined that most of the performance gain can be attributed
to the relation ¬UN(a) → ¬CR(a).
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Implementation

If memoization is implemented it is very easy to implement the relationships as
well. For example if the function checking for weak normalization is called and
it finds that the property does not hold additional to memoizing the result for
weak normalization it also memoizes that strong normalization does not hold.

3.5 LATEX – Output

To use the created graphs in documents it is possible to export them in LATEX-
format. Specifically the TikZ package2 is being used to draw the graphs in
LATEX.

3.5.1 Conversion of Coordinates

TikZ supports absolute positioning, so it is relatively easy to translate coordi-
nates used for onscreen visualization to coordinates usable in TikZ. There are
two issues that have to be considered while converting from ART to TikZ:

� In TikZ a node with a greater value for the y-axis will lie further to the
top of the page while it will be further to the bottom of the screen in the
ART.

� In TikZ one unit refers by default to one centimeter while it refers to one
pixel in the ART.

A good ratio between centimeters and pixels of 1:70 was determined by trial
and error. The different orientation of the y-axis can be resolved by negating
the y-value. The resulting conversion formulas from ART to TikZ can be seen
in Equation 3.1 and 3.2.

XTikZ =
XART

70
(3.1)

YTikZ = −YART

70
(3.2)

3.5.2 Graph Drawing in TikZ

The graph has to be embedded in a TikZ environment which is opened and
closed by \begin{tikzpicture} and \end{tikzpicture}.

One node can be defined by \node (ref ) at (x-pos, y-pos ) {text };
where ref is an identifier that can be used to refer to the node, x- and y-pos

is the absolute position in centimeters and text is the text that will be displayed
in the document to name the node.

The nodes can then be connected by edges via \draw[->] (from-reference )

-- (to-reference ); where from- and to-reference are two identifiers given
to nodes earlier. To draw an edge that has the same origin and destination
\draw[->] (reference ) edge [loop above] (reference ); can be used.

2http://sourceforge.net/projects/pgf
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For an example how the right hand side graph of Figure 4.1 can be defined
in TikZ, see Listing 3.6.

\begin{tikzpicture}[scale=1.0]

%nodes

\node (d) at (2.4285715,-0.94285715) {d};

\node (a) at (3.5714285,-0.6) {a};

\node (c) at (4.6,-0.4) {c};

\node (f) at (3.6285715,-2.5285714) {f};

\node (g) at (3.0428572,-0.0) {g};

\node (b) at (2.7571428,-1.9285715) {b};

\node (e) at (3.942857,-1.4571428) {e};

%edges

\draw[->] (a) -- (e);

\draw[->] (c) -- (d);

\draw[->] (c) -- (f);

\draw[->] (f) -- (g);

\draw[->] (f) -- (e);

\draw[->] (b) -- (a);

\draw[->] (b) -- (c);

\draw[->] (e) -- (g);

\draw[->] (e) -- (b);

\end{tikzpicture}

Listing 3.6: TikZ definition of the right-hand side graph in Figure 4.1.

Unfortunately the conversion of ART-coordinates to TikZ coordinates does
not always give satisfactory results since the size of a graph in the ART can
vary widely and a constant relation between pixels and centimeters does not
always suffice. Fortunately TikZ is able to scale a graph by passing scale=x to
the TikZ environment where x should be smaller then one to shrink the graph
and bigger than one to enlarge it. So to shrink the size of a graph by 50% the
TikZ picture should start with \begin{tikzpicture}[scale=0.5].
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4 Graph Drawing Algorithm

Graph drawing algorithms try to generate a pleasing and easy to understand
visual representation of a given graph. This usually is done by calculating
positions for all nodes of the graph on a 2D plane. What “visually pleasing”
and “easy to understand” exactly means may vary from situation to situation
but as few intersections of edges as possible and a high symmetry are usually
regarded as good properties.

Figure 4.1 illustrates this very well. The two graphs are identical besides
the placement of the nodes. On the left side the nodes were put on a random
position, on the right side the positions were calculated by the graph drawing
algorithm used in the Abstract Rewrite Tool. It should be clear that it is
much easier to understand the structure of the graph in the symmetrical and
nonoverlapping representation.
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graph drawing algorithm

Figure 4.1: Difference between randomly positioned nodes and node positions
calculated with a graph drawing algorithm.

Since the Abstract Rewrite Tool should allow interactive editing of graphs
the algorithm used had to meet certain additional criteria. It had to be possible
to add and remove edges and nodes interactively without disrupting the whole
graph and confusing the user by suddenly presenting a completely different
representation of the graph.

To accommodate these special requirements it was decided to implement a
slightly altered version of Graph Drawing by Force-directed Placement [2] in the
ART.

Initially it was also considered using JUNG1 instead which is a graph frame-
work for Java but several problems led to the decision of not using it. For
example many supported methods to draw a graph do not allow the direct
manipulation of the graph while still automatically arranging the nodes. The

1http://jung.sourceforge.net/
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4 Graph Drawing Algorithm

method that does support direct manipulation which is based on a spring sys-
tem seemed not very good at preventing intersecting edges and still seemed
very slow and stiff. Additionally JUNG is not only a system to display graphs
but also a framework to analyze them. This would have meant that many
algorithms and methods described in this thesis would already have been im-
plemented in the framework. Since we did not want to just glue frameworks
and libraries together it was ultimately decided to implement everything from
scratch.

4.1 Graph Drawing by Force-Directed Placement

Graph Drawing by Force-Directed Placement (GDFP) is based on the simula-
tion of a physical system and uses ideas from Simulated Annealing to compen-
sate some shortcomings of the algorithm.

4.1.1 The Physical Component

In GDFP the positions of nodes are determined by running a simulation of a
system that consists of particles that repulse each other (for example electrons)
and springs connecting them.

It should be noted that what is actually simulated is a very abstracted form of
a physical system. For example forces do not influence particles by accelerating
them (in fact inertia is not simulated at all). A force in this context just means
a movement or displacement to or from the origin of that force. The formulas
used to “simulate” repulsion of particles and attraction by springs are also not
physically valid formulas.2 What remains is a simulation that captures the
basic premise of a system consisting of electrons and springs and feels natural
when working with it interactively.

A system consisting of two nodes will look as shown in Figure 4.2 and there
will be two forces acting on both particles. An attracting force fa and a repuls-
ing force fr. After a finite number of simulation steps the two nodes will end
up at a relative distance where fr = fa.

- -

fa

fr

Figure 4.2: Basic model of the particle-spring-system.

Similar to an actual physical system consisting of charged particles and
springs the repulsing force gets stronger the closer two nodes get to each other
and the attracting force gets stronger the farther apart two nodes get.

2It has also to be noted that it would be most difficult to glue springs onto electrons in
practice.
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4.1 Graph Drawing by Force-Directed Placement

This relationship can be seen in Figure 4.3. The distance where the two forces
cancel each other out can be changed by setting the constant k.

fa

fr
distance

force

k

k

Figure 4.3: Relationship of repulsive and attractive force.

The exact formulas for the forces used in the algorithm can be seen in Equa-
tions 4.1 and 4.2 where d represents the distance between two nodes and k the
medium distance between nodes that the system should settle on.

fa(d) =
d2

k
(4.1)

fr(d) =

{
k2

d d 6= 0

∞ d = 0
(4.2)

The conditional branching in Equation 4.2 for fr is needed to prevent division
by zero. If the distance is zero, the repulsive force is assumed to be infinite.
In practice the arbitrary (but high enough) value of 1000 is used. This is of
course an inaccuracy of the formula but has negligible influence on the final
result since forces over 300 are usually capped to keep the system stable. This
will be described in more detail shortly.

Application on a whole graph

To translate a whole graph into such a system consisting of electrons and springs
each node is converted into a particle and every edge is translated into a spring.
The direction of an edge is irrelevant. If there are elements a, b ∈ A with edges
a→ b and b→ a, only one of the edges is accounted for. An example for such
a translation can be seen in Figure 4.4.

As can be seen in Figure 4.5, this means that the repulsive forces of all other
nodes are acting on a single node but only nodes which are connected by an
edge act by an attracting force.

23



4 Graph Drawing Algorithm

d

a

c

f

g

b

e

-

-

-

-

-

-

-

translation to particle-spring-system

Figure 4.4: Translation of a graph into a particle-spring-system.
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Figure 4.5: Forces on one node in the system.
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4.1 Graph Drawing by Force-Directed Placement

Problems

In an actual application there are two main problems with this algorithm which
arise from the amount of displacement of a node that is allowed in one step of
the simulation.

No limitation to displacement. If the amount of displacement per step is not
limited at all the algorithm never settles at a stable point. This basically
means that the algorithm is not able to do what it is supposed to do.
Figure 4.6a shows that the results are not much better than just randomly
placing the nodes.

Only a very small displacement is allowed. If the amount of displacement is
restricted to a very low amount the system becomes stable, but the time to
reach that point is very long since the system can only change by a small
amount in each step. There is also the problem that certain intersecting
edges cannot be resolved, because one node would have to move through
an area of strong repulsive forces. If the displacement is not limited the
node often just bypasses that area in one step. In Figure 4.6b nodes 2
and 5 have this problem. To resolve the intersection between 9 → 2 and
6 → 5 nodes 5 and 2 would have to change places. But in the process
of doing so they would have to come closer together which is of course
prevented by the repelling force between 2 and 5.
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Figure 4.6: How different amounts of allowed displacement in one step of the
simulation influence the result.

Unfortunately there is not one amount of displacement that would solve the
issues. The displacement has to be limited very much for a stable system to arise
but it has to be unlimited for disentangling the intersection of edges. Force-
directed placement resolves this contradiction by using a method modeled on
simulated annealing.
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4.1.2 Simulated Annealing

Simulated Annealing is a heuristic which combines hill climbing with a random
element [3, Chapter 5.1]. A global parameter called temperature influences the
probability that an actually worse state than the current one is chosen next in
the search. The temperature is lowered by cooling over the length of the search.
So simulated annealing gradually moves from random walk to hill climbing.

In force-directed placement the global temperature influences the amount
of displacement allowed in each step and is lowered with each iteration by a
cooling-function. This leads to disentangling of intersections at the beginning
and a stable system at the end.

The analogy is quite striking. At high temperatures the particles move more
or less randomly and by lowering the temperature the particles begin to crys-
tallize in an orderly fashion.

It has to be said though that in our opinion the use of the term simulated
annealing is a bit of a misnomer. Although the analogies used in classical sim-
ulated annealing actually fit force-directed placement very well (even better
than in the traditional use) the core of classic simulated annealing is very dif-
ferent from the process used here since force-directed placement does not really
perform a search.

Simulated Annealing in the ART

In the ART the temperature should never reach too low a value because the
graph becomes unresponsive if it does. So it was decided to start the tempera-
ture at 300 and lower it to a minimum value of 3. Equation 4.3 shows the used
formula, Equation 4.4 shows how it is applied. Figure 4.7 shows the resulting
temperature curve.

cool(x) = max

(
4

5
x, 3

)
(4.3)

temperaturenew = cool(temperaturecurrent) (4.4)

Admittedly the formula used for cooling was developed by trial and error and
a better one could probably be developed with a systematic approach. Genetic
Programming could very well be a good method to optimize this function.

4.1.3 Optimization

If the graphs get larger the main performance bottleneck becomes the calcula-
tion of the repulsive force because it has to be calculated between all pairs of
nodes.

Since nodes that are far apart only apply very small forces on each other
they can in practice be neglected without changing the result very much. So
for every node instead of calculating the repulsive force to every other node in
the graph it suffices to only consider nodes up to a maximal distance.

The difference between the algorithm without and with this optimization can
be seen in Figure 4.15 in the benchmark section.
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Figure 4.7: Temperature curve resulting from implemented cooling function.

4.1.4 Alterations to the Original Algorithm

Avoidance of Intersections

It can of course happen that even after the system has settled on a stable
point some edges remain intersected, be it because the algorithm did not work
properly or the graph is not planar.3

A practical way to optimize the algorithm in this regard is to run the al-
gorithm again if intersections are detected below a certain temperature. The
temperature chosen should represent a point where disentangling of intersected
edges becomes very unlikely.

If such a situation is detected, the nodes get new random positions, the
system is set to the highest temperature and a counter is decremented. After
a certain amount of retries it can be assumed that the graph cannot be drawn
without intersections.

To determine the optimal amount of retries an experiment was done. The
algorithm ran on randomly generated graphs with 10 nodes4 on average. The
limit of retries was set to 40 which would usually be far too high. It was
then determined how many retries were actually needed to acquire a visual
representation of the graph without intersecting edges. If the algorithm had
to be restarted 40 times it was assumed that the graph could not be drawn
without intersections (at least not with the used algorithm).

Figure 4.8 illustrates what percentage of graphs that could be drawn without
intersections would still contain intersections after a certain amount of retries. It

3Which means, the graph cannot be visualized without intersecting edges in 2 dimensions.
4This is the amount of nodes the ART generates for a random graph and seems to be a good

size and complexity for graphs the tool will most likely be used for. There are usually a
few more edges than nodes.
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was decided that 98% visualized graphs without intersection was an acceptable
compromise and the amount of retries was set to 6.
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Figure 4.8: Percentage of graphs still containing intersections after a certain
amount of retries (10 nodes).

Figure 4.9 shows the same for graphs with 20 nodes. In that case 20 retries
would be necessary to acquire 98% non intersecting graphs. This is still feasible
but it is clear that for bigger graphs the algorithm itself would have to be
improved upon.
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Figure 4.9: Percentage of graphs still containing intersections after a certain
amount of retries (20 nodes).
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4.2 Shortcomings of the Algorithm

Centering the Graph

It is easy to extend the algorithm in a way, so the graph always tends to stay
centered. To achieve this, for every node the distance to the center is determined
and a centering force fc is calculated. The mean value of all displacements that
would result from that force is calculated and applied to every node. This leads
to a movement of the whole graph to the center without actually disturbing the
graph itself.

4.2 Shortcomings of the Algorithm

The algorithm seems to have problems with a certain kind of subgraphs. Figure
4.10 shows such a graph.
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Figure 4.10: Example for a graph the algorithm has difficulty with.

The problem seems to be that the node in the middle is very unstable in that
position because of all the repelling forces from the surrounding nodes. So if
the node is not very well centered or the nodes that make up the triangle are
moved too much, the node is ejected from the middle and the graph moves into a
configuration seen in Figure 4.10b which is very stable, but has an intersection.

It is not clear how this behavior of the algorithm could be alleviated and it
seems to be the biggest flaw of this graph drawing approach.

4.3 Implementation

In the implementation of the Abstract Rewrite Tool every node in the graph is
able to carry a “payload” which in this case only contains four integer values.
Two represent the current x- and y-position of the node, the other two stand
for the amount of x- and y-displacement in the current step of the simulation.

The additional values for displacement are necessary because one cannot
directly change the position of nodes during one iteration. This would lead to
the mixing of new and old positions in one step of the simulation. One possible
solution would be to create a copy of the graph but since the two integers are
a minuscule part of the whole structure by which the graph is represented this
would be a waste of memory and processing time.

So it was chosen to not actually change the position during one iteration but
merely save the amount of change in two displacement values (x- and y-axis)
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and change the position of all nodes once the old positions are no longer needed.
This also makes it possible to sum all the displacements from the different forces
for each node and limit the amount of total displacement at the end.

4.3.1 Important Formulas and Algorithms

Calculating the Distance

The distance D between two nodes (n1 and n2) consisting of an x- and y-
component (xn1 , yn1 , etc.) can be very easily calculated via Euclidean distance.

D =
√

(xn1 − xn2)2 + (yn1 − yn2)2

Calculating the Angle Between Two Nodes

Given two nodes n1 and n2 the angle between those nodes is defined as follows.
The node n1 is assumed to lie at the origin of a two dimensional coordinate
system. The angle between the x-axis and the line going through the origin
and n2 is the angle we want to determine, see Figure 4.11.

x

y

n1

n2

α

Figure 4.11: The angle between two nodes.

Using basic trigonometry, the angle α is calculated as follows:

x = xn1 − xn2 (4.5)

y = yn1 − yn2 (4.6)

α = sign(y) ∗ arccos

(
x√

x2 + y2

)
(4.7)

Calculating the Components of a Displacement

Given the nodes n1, n2 and a distance D the node n1 should be displaced by
the amount of D along the axis created by n1 and n2, see Figure 4.12. So if the
distance is positive, n1 should be moved towards n2, if the distance is negative
it should be moved away from n2.
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So what the formulas should give us is an x- and y-value by which n1 has to
be moved. To calculate the angle α between n1 and n2, see Equation 4.7.
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Figure 4.12: Displacement of a node.

The x- and y-values are calculated as follows:

x = D ∗ cos(α) (4.8)

y = D ∗ sin(α) (4.9)

Checking if Two Lines Intersect Each Other

To avoid intersections, the algorithm first has to be able to detect them. The
method used here is based on [7, Chapter 24].

The function ccw calculates if a line given by the points p1 and p2 has to be
rotated clockwise or counterclockwise around p1 to point in the direction of p3,
see Figure 4.13. The function ccw returns +1 if p3 lies counterclockwise and −1
if it lies clockwise. There are also the cases when p1, p2 and p3 are colinear.5

In that case the results are defined as follows: If p3 is between p1 and p2 ccw
will return 0, if p1 is between p2 and p3 ccw will return −1 and if p2 is between
p1 and p3 ccw will return +1. An implementation of the function ccw in Scala
can be seen in Listing 4.1.

Given two points p1 and p2 on a two dimensional plane, the line connecting
those points will be denoted by p1p2.

The function ccw can now be used to determine if a line p1p2 intersects with
a line p3p4. If two endpoints of p1p2 and p3p4 are actually the same point it is
assumed that the lines do not intersect.

If the points p3 and p4 lie on different sides from p1p2 (so one point has
the orientation clockwise and the other one counterclockwise) and p1, p2 lie
on different sides from p3p4 both lines intersect. Otherwise they do not. An
implementation of that algorithm in Scala can be seen in Listing 4.2 .

5Which means that p1, p2 and p3 are on one straight line.
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4 Graph Drawing Algorithm

def ccw(p1: Point, p2: Point, p3: Point): Int = {

val dx1 = p2.x - p1.x

val dy1 = p2.y - p1.y

val dx2 = p3.x - p1.x

val dy2 = p3.y - p1.y

if (dx1 * dy2 > dy1 * dx2) return -1

if (dx1 * dy2 < dy1 * dx2) return 1

if ((dx1 * dx2 < 0) || (dy1 * dy2 < 0)) return -1

if ((dx1 * dx1 + dy1 * dy1) < (dx2 * dx2 + dy2 * dy2)) return 1

return 0

}

Listing 4.1: Implementation of ccw in Scala.

p1

p2

p3

clockwise: ccw = −1

p1

p2

p3

counterclockwise: ccw = 1

Figure 4.13: Rotation as it is being defined by the function ccw.

4.3.2 Simulation over the Lifetime of a Graph

The lifetime of a graph spans from creation or loading of the graph until another
graph is loaded or the program is terminated. In that time different stages in
the simulation can be distinguished.

Directly after loading or randomly creating a graph the temperature of the
system is very high. This leads to very big changes in every iteration which looks
chaotic when visualized. So the simulation runs for 100 iterations before the
graph is presented to the user for the first time. At this point the temperature
of the system will already have reached the lowest possible point which leads
to small changes and a very fluid real time behavior of the graph.

After that we reach the real time state. Here the simulation is run for six

def intersects(p1:Point, p2:Point, p3:Point, p4:Point) = {

if (p1 == p3 || p1 == p4 || p2 == p3 || p2 == p4) false

else

((ccw(p1, p2, p3) * ccw(p1, p2, p4)) <= 0) &&

((ccw(p3, p4, p1) * ccw(p3, p4, p2)) <= 0)

}

Listing 4.2: Function to check for intersections of two lines in Scala.
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iterations for every frame that is shown. The six iterations were chosen by trial
and error. It is a good compromise between a high demand for processing power
and a quickly reacting graph. If the simulation is only advanced one iteration
every frame the graph feels very sluggish. If the number of iterations is too
high, it is often difficult to see how the graph changes when edited.

It should also be noted that the number of iterations per frame should be
an even number. The simulation can sometimes enter a bistable state where
the graph will change between two slightly different visualizations with every
iteration. If the number of iterations per frame is odd the graph that will be
shown on screen will also switch between those two states which leads to a
graph that vibrates with a very high frequency. If an even number of iterations
is used, the state that is actually displayed will always be the same.

If the graph is not manipulated with the mouse or edited in some other way
the simulation will reach a quasi-stable state within seconds and running the
simulation further becomes meaningless. So the simulation will be stopped and
only started again for a few seconds once the graph is manipulated in some
fashion.

Figure 4.14 shows how a graph transits from an unordered representation to
its final form over the course of a simulation.

One Iteration in the Simulation

To summarize, one iteration of the simulation proceeds as follows:

1. Calculate the distance between all pairs of nodes.

2. Calculate the repulsive forces.

3. Displace the nodes according to the calculated forces.

4. If two nodes are connected by an edge:

a) Calculate the attracting forces

b) Displace the nodes according to the calculated forces.

5. Calculate the centering force.

6. Displace the nodes according to the calculated force.

7. Limit the displacement of all nodes according to the current temperature
of the system.

8. Change the position of all nodes according to the overall displacement.

4.4 Performance

To test the performance of the algorithm benchmark tests were done. The time
it takes for 100 iterations in the simulation was measured for graphs of sizes 1
to 40. The influence of the optimization limiting the calculation of repulsing
forces discussed in Section 4.1.3 was also tested. The results can be seen in
Figure 4.15.
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Figure 4.14: Shows how a graph changes its visual appearance over the course
of a simulation run.
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Figure 4.15: Time required for 100 iterations of the simulation depending on
the size and complexity of the graph.
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5 Usage of the Abstract Rewrite Tool

5.1 Overview

The goal of the Abstract Rewrite Tool was to create a program that on the one
hand allowed easy analysis of abstract rewrite systems and on the other hand
could be used to test one’s own knowledge about such systems in a game-like
setting.

5.1.1 Used Tools

Scala

Scala1 is an object oriented and functional programming language which com-
piles to Java Byte Code and can therefore run on a Java Virtual Machine. This
also leads to full interoperability between Java-libraries and Scala. For further
information about Scala, [6] and [5] can be recommended.

Processing

Processing2 is a very low level graphics API originally created for designers and
artists. It is on one hand a programming language very close to Java but also
a framework usable from Java (and therefore Scala). It has the advantages of
platform independence and high enough performance for real time applications.

5.2 Installation

The tool can be directly used as a Java-applet in the web browser3 or down-
loaded from the tools website.4 The downloaded version can be started via

java -jar art.jar

5.3 Usage

The ART offers two modes: The edit mode and the game mode. To change
between the modes press the g-key on the keyboard.

1http://www.scala-lang.org/
2http://www.processing.org/
3http://www.pi23.net/art2
4http://www.pi23.net/art2/art.jar
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5.3 Usage

5.3.1 Edit Mode

In edit mode it is possible to create new and edit existing graphs. To allow
an analysis of the graph the properties of all nodes will be shown in a table in
the upper-right corner. If the graph is edited the properties will be updated
automatically. Additionally nodes which are normal forms have orange text to
allow easier analysis of the graph. A screenshot of the ART in edit mode can
be seen in Figure 5.1.

Figure 5.1: Abstract Rewrite Tool in edit mode.

A green checkmark means that the corresponding property holds, a red cross
indicates that the property does not hold. A click with the left mouse-button
on one of the arks will highlight the selected cell in the table and (for most
properties) display an example in the graph why that property does or does
not hold. This highlighting will also be automatically updated if the graph is
modified. An example for a selection can be seen in Figure 5.2 and the resulting
highlighting of the graph in Figure 5.3.

Figure 5.2: Properties in edit mode with strong normalization for node c
selected.

Unfortunately it is not always possible to give a meaningful visualization of
a property. A description of what is going to be highlighted follows:
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5 Usage of the Abstract Rewrite Tool

Figure 5.3: Graph in edit mode with highlighting that visualizes why element
c is not strongly normalizing.

Strong normalization. If an element is strongly normalizing no meaningful vi-
sualization is possible. Otherwise a cycle and a path leading to that cycle
will be highlighted.

Weak normalization. If an element is weakly normalizing a path to one normal
form will be highlighted. Otherwise all paths to all nodes in the transitive
closure will be highlighted. It can be checked that none of the reachable
nodes are a normal form.

Church-Rosser property. If the Church-Rosser property holds no meaningful
visualization is possible. Otherwise two paths to two nodes that are not
joinable will be highlighted.

Weak Church-Rosser property. If the weak Church-Rosser property holds for
an element no meaningful visualization is possible. Otherwise two paths
to two nodes that are not joinable will be highlighted.

Unique normal forms. In both cases all paths to all nodes in the transitive
closure will be highlighted. It can be checked how many normal forms are
reachable.

Manipulating the Graph

There are three possibilities to start a new graph. A graph can either be loaded
from a file by pressing the l -key on the keyboard, it can be randomly generated
by pressing the n-key on the keyboard or an empty graph can be generated for
manual creation by pressing the c-key on the keyboard.

It is possible to grab a node and move it around by clicking on it with the left
mouse-button and dragging it around. The rest of the graph will dynamically
react to the movement.

The editing of a graph can be done by using the mouse and keyboard. The
right button on the mouse is the “edit-key”. It is possible to “cut” edges or
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nodes by clicking on a free space with the right mouse-button and dragging a
line which will cut edges and delete nodes it intersects with after releasing the
button. A pair of little scissors at the starting point of the line will indicate
that you are about to delete nodes or edges, see Figure 5.4.

Figure 5.4: A line that can be drawn to delete edges and nodes.

To add an edge to the graph right click on a node and drag the mouse to
the destination of the edge and release it there. While dragging the line it will
actually be displayed as an arrow which indicates that you are about to create
a new edge, see Figure 5.5. To create an edge that has the same start- and
end-node drag the line far enough away from the node so you can see the arrow
and then return to the node and release the mouse-button. If you accidentally
started creating an edge just release the mouse-button over an empty area and
the command will be omitted.

Figure 5.5: A line that can be drawn to add edges.

To create an edge you can also use the so called parse prompt. You can
open the parse prompt by pressing the enter -key on the keyboard. This will
open a prompt where you will be able to directly enter a command that will
be interpreted and parsed as if it were one line of an ARS-file (Section 3.1), see
Figure 5.6. 5

Figure 5.6: A parse prompt with the command a->b typed in.

So to create an edge from node a to node b you would enter a->b and press
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return. To speed up the typing the -> can be replaced by a colon (:) which
would lead to a:b. It is also possible to create multiple edges at once as long as
the origin is the same for all of them. To add an edge from node a to nodes b,
c and d the command a:b,c,d would suffice. Additionally all nodes which are
used in the command and do not exist until this moment will automatically be
created.

This also gives us a way to manually create singleton nodes. To create a node
enter the parse prompt, type in only the name of the node and press return.
Keep in mind that names for nodes must not have more then two symbols
otherwise you will get a parse error. To speed up the creation of new nodes
you can also use the left mouse-button instead of the return-key to accept the
parse prompt.

It is not possible to delete edges with the parse prompt but it is possible to
edit a graph completely in a textual form. Pressing the p-key on the keyboard
will open a parse dialog, see Figure 5.7. Here you will find a textual description
of the graph as it would be saved to a file and the graph can be directly altered
here. After pressing the OK-button the graph will be revised according to the
changes made.

Figure 5.7: A parse dialog containing a textual description of the graph seen in
Figure 5.1 and 5.3.

The LATEX source code of the graph including all properties can be obtained
by pressing the x -key on the keyboard. This will open a dialog showing the
code.

Edit Mode Cheat-Sheet

Left mouse-button Move nodes.

Right mouse-button Add/delete edges and delete nodes (start dragging at a
node to add a new edge).

G Switch to game mode.
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ENTER Open parse prompt. You can enter a parsable line (for example
a:b,c,d to create a node a with connections to b,c and d) or enter an
identifier to just create a new node. You can accept with enter or the left
mouse button.

R Restart automatic alignment of graph.

C Delete the current graph.

N Create new random graph.

L Load file.

S Save file.

P Open parse dialog to copy and paste an ARS or edit the description directly.

F Show frames per second.

X Display the source code for a LATEX document of the graph.

5.3.2 Game Mode

In game mode you can test your own understanding of abstract rewrite systems.
The goal is to decide whether a property holds for a node or not. You should
answer this for all properties of all nodes in as short a time as possible and
with as few mistakes as you can. If you make a mistake the tool will also give
you an explanation why your answer was wrong and it will highlight additional
information in the graph itself where it is possible or useful to do so. For
highlighting the same examples are used as in edit mode. You can see the
number of mistakes and the time you needed until now in the upper portion of
the window. A screenshot of the ART in game mode can be seen in Figure 5.8.

Figure 5.8: Abstract Rewrite Tool in game mode.
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If the game is started the upper-right corner holds a table with one node
per line and one property per column where all fields are marked with a blue
question mark. This means that no answers were given up to this moment.
Click with the left mouse-button into one of the fields if you think that this
property holds for the corresponding element and click with the right mouse-
button if you think the property does not hold. If you answered correctly the
field will get a green background and if you gave the wrong answer it will get
a red background. Whether you answered correctly or not the right solution
will be filled in in the form of a green checkmark if the property holds or a
red cross if the property does not hold. Figure 5.9 shows the properties table
after answering all properties for all elements. Some of the answers were correct
some were not.

Figure 5.9: Completely answered propertyfield in game mode with some correct
and some wrong answers.

As was already mentioned in the case of a wrong answer an explanatory
message will be shown and (when possible) additional information will be high-
lighted in the graph. An example for this can be seen in Figure 5.10.

Game Mode Cheat-Sheet

Left mouse-button Move nodes and click to mark a property as true.

Right mouse-button Click to mark a property as false.

G Enter edit mode.

R Restart automatic alignment of graph.

N Create new random graph.

L Load file.

P Open parse dialog to copy and paste an ARS.
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Figure 5.10: Abstract Rewrite Tool in game mode where a wrong answer was
given by the user. In this case the user thought that element a was
strong normalizing.
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6 Conclusion

Summary

Chapter 2 gave an introduction to abstract rewrite systems, their properties
and how these properties relate to each other. In Chapter 3 we showed how
these properties can be determined algorithmically and discussed some ways in
which these algorithms can be optimized. We also presented a method for auto-
matic graph drawing in Chapter 4, possible optimizations and how this method
behaves in this context. In Chapter 5 we presented the Abstract Rewrite Tool
which was implemented for this project.

We think that the project succeeded in creating a tool that helps teaching
abstract rewrite systems to students. It gives them more feedback while learning
how to determine properties of such systems and through the LATEX-output
teachers are able to quickly generate examples in an easy way.

Future Work

We do not think that much further work has to be done regarding the Abstract
Rewrite Tool itself. One exception would be the evaluation of the possibility of
considering infinite abstract rewrite systems in the ART.

On the other hand an extension of the tool’s core into a full framework for
displaying, editing and manipulating graphs could be valuable. Especially the
rigorous utilization of Scala’s qualities would most likely result in a framework
which would allow the fast and easy creation of graph-based programs without
overwhelming the user with a huge system like JUNG.
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