
A Satisfiability Encoding of Dependency Pair
Techniques for Maximal Completion∗

Haruhiko Sato1 and Sarah Winkler2

1 Graduate School of Information Science and Technology, Hokkaido University,
Sapporo, Japan

2 Institute of Computer Science, University of Innsbruck, Innsbruck, Austria

Abstract
We present a general approach to encode termination in the dependency pair framework as a
satisfiability problem, and include encodings of dependency graph and reduction pair processors.
We use our encodings to increase the power of the completion tool Maxcomp.

1 Introduction

Maximal completion [4] is a simple yet efficient Knuth-Bendix completion approach which
relies on MaxSAT solving. It can thus only compute convergent term rewrite systems (TRSs)
whose termination can be expressed by satisfiability constraints.

Encoding termination techniques for TRSs via satisfiability problems has become com-
mon practice. However, to the best of our knowledge all previous encodings restrict to
a single termination technique such as a specific reduction order or interpretations into a
particular domain. Hence the maximal completion tool Maxcomp was so far restricted to
LPO and KBO, and could not handle input problems such as CGE2 [6], which describes two
commuting group endomorphisms as given by the following set of equations E :

e · x ≈ x f(x · y) ≈ f(x) · f(y) x · (y · z) ≈ (x · y) · z
i(x) · x ≈ e g(x · y) ≈ g(x) · g(y) f(x) · g(y) ≈ g(y) · f(x)

In this paper we present a uniform layout for an SMT encoding of compound termination
strategies that combine different techniques from the dependency pair framework. We give
encodings of dependency pairs, a rule removal processor, and two versions of dependency
graph approximations. We implemented our encodings on top of Maxcomp. Our experimen-
tal results show that this allows Maxcomp to complete problems like CGE2, and boosts its
power beyond simple termination.

2 Preliminaries

We assume familiarity with term rewriting [1]. Knuth-Bendix completion aims to transform
an equational system (ES) E into a TRS R which is convergent for E , i.e., terminating,
confluent and equivalent to E . We write CP(R) for the set of critical pairs of a TRS R, and
↓R for →∗R · ∗R←. Maximal completion is a simple completion approach based on MaxSAT
solving. For an input ES E , it tries to compute ϕ(E) where ϕ is defined as

ϕ(C) =
{
R if E ∪ CP(R) ⊆ ↓R for some R ∈ R(C)
ϕ(C ∪ S(C)) otherwise

R(C) consists of terminating TRSs R such that R ⊆ C ∪ C−1, and S(C) ⊆
⋃
R∈R(C) CP(R).

∗ This research was supported by the Austrian Science Fund project I963.

I Theorem 1 ([4]). The TRS ϕ(E) is convergent for E if it is defined.

In the maximal completion tool Maxcomp, R(C) is computed by maximizing the number of
satisfied clauses in

∨
s≈t∈C [s > t] ∨ [t > s], subject to the side constraints implied by the

SAT/SMT encoding [· > ·] of some reduction order >.
In this paper we use the dependency pair (DP) framework to show termination of

TRSs [3]. A DP problem is a pair of two TRSs (P,R), it is finite if it does not admit an
infinite chain. A DP processor Proc is a function which maps a DP problem to either a set of
DP problems or “no”. It is sound if a DP problem d is finite whenever Proc(d) = {d1, . . . , dn}
and all of di are finite.

For an ES C, we define the set of dependency pair candidates DPC(C) as all rules `# → u#

such that ` ≈ r ∈ C, `→ r is a rewrite rule, and r D u but ` 6B u.

3 Encodings

We first illustrate the idea of our encodings by means of an example.

I Example 2. Suppose we want to orient a maximal number of equations from the ES
E given in the introduction, where termination is to be shown by computing dependency
pairs, applying a reduction pair processor based on a polynomial interpretation and finally
a reduction pair processor based on LPO with argument filterings.

Let P = DPC(E ∪E−1). For all equations s ≈ t in C = E ∪E−1∪P we use strict variables
Sis→t as well as weak variables W i

s→t for all 0 ≤ i ≤ 3. Moreover, boolean variables Xdef
f

encode whether f is a defined symbol. We maximize the number of satisfied clauses in the
disjunction

∨
s≈t∈E S

0
s→t ∨ S0

t→s subject to the following constraints:∧
s≈t∈E∪E−1

S0
s→t → (W 1

s→t ∧Xdef
root(s) ∧

∧
`→r∈DPC(s→t)

Xdef
root(r) → S1

`→r) (a)

3∧
i=2

∧
`→r∈P

(Si−1
`→r → [` >i r]) ∧ (¬[` >i r]→ Si`→r) (b)

3∧
i=2

∧
s≈t∈E∪E−1

W i−1
s→t → (W i

s→t ∧ [s >i t]) (c)

∧
`→r∈P

¬S3
`→r (d)

Clauses (a) trigger DPs and ‘move’ rules to the weak component, (b) expresses that if a
DP is not oriented it remains to be considered, (c) requires rules to be weakly oriented, and
(d) demands that finally no DP remains unoriented. Here [` >i r] ([` >i r]) refers to strict
(weak) orientation constraints imposed by polynomial interpretations for i = 2 and LPO
with argument filterings for i = 3.

The following paragraphs transfer standard notions of the DP framework to our satisfi-
ability setting. A DP problem encoding is a tuple D = (S,W, φ) consisting of two sets of
boolean variables S = {S`→r | ` → r ∈ P} and W = {W`→r | ` → r ∈ R} for TRSs P and
R, and a formula φ. An assignment α is finite for a DP problem encoding D = (S,W, φ) if
α(φ) = > and the DP problem (PSα ,RWα) given by the TRSs

PSα = {`→ r | S`→r ∈ S, α(S`→r) = >} RWα = {`→ r |W`→r ∈ W, α(W`→r) = >}

is finite. A DP processor encoding Proc maps a DP problem encoding D = (S,W, φ) to
a finite set of DP problem encodings Proc(D) = {D1, . . . ,Dn}. A DP processor encoding
Proc is sound if for any D such that Proc(D) = {D1, . . . ,Dn} and any assignment α that is
finite for all Di, it also holds that α is finite for D.

For an ES C its set of initial variables is IC = {I`→r | ` ≈ r ∈ C}.

I Definition 3. For an ES C with initial variables IC the initial DP problem encoding is
given by DC = (S,W, φ) where S = {S`→r | ` → r ∈ DPC(C)}, W = {W`→r | ` ≈ r ∈ C}
and

φ =
∧

`≈r∈C

I`→r →

W`→r ∧Xdef
root(`) ∧

∧
s→t∈DPC(`→r)

Xdef
root(t) → Ss→t


I Lemma 4. Let C be an ES. Suppose there is a tree whose nodes are labelled with DP
problem encodings satisfying the following conditions:

The root is labelled with the initial DP problem encoding DC.
For every non-leaf node labelled D with n children labelled D1, . . . ,Dn there is a sound
processor encoding Proc such that Proc(D) = {D1, . . . ,Dn}.

Let the leaves be labelled {(Si,Wi, φi) | 1 ≤ i ≤ k}. If the formula

φ =
k∧
i=1

φi ∧
∧

s→t∈Si

¬Ss→t

is satisfied by an assignment α then the TRS R = {`→ r | α(I`→r) = >} is terminating.

Proof. By induction on the tree structure, α is finite for all DP problem encodings occurring
as labels. Termination of R follows from finiteness of α for the root label DC . J

I Definition 5 (Reduction pair processor). Let (>,>) be a reduction pair and π an argument
filtering, with satisfiability encodings [· >π ·] and [· >π ·]

A DP problem encoding (S,W, φ) is mapped to {(S ′,W ′, φ ∧ TS ∧ TW)} where S ′ =
{S′`→r | S`→r ∈ S}, W ′ = {W ′`→r |W`→r ∈ W}, and

TS =
∧

S`→r∈S
S`→r → [` >π r] ∧ (¬[` >π r]→ S′`→r)

TW =
∧

W`→r∈W
W`→r →W ′`→r ∧ [` >π r]

Concrete encodings [· >π ·] and [· >π ·] for LPO/RPO, KBO as well as reduction
orders given by polynomial and matrix interpretations—also in combination with argument
filterings and usable rules—are well-studied, see for instance [5, 9, 2, 8].

Note that Definition 5 can easily be modified to admit rule removal by setting

TW =
∧

W`→r∈W
W`→r → [` >π r] ∧ (¬[` >π r]→W ′`→r)

I Definition 6 (Dependency graph processor). A DP problem encoding (S,W, φ) is mapped
to the set {(S ′,W ′, ψ)} such that S ′ = {S′`→r | S`→r ∈ S}, W ′ = {W ′`→r | S`→r ∈
S} ∪ {W ′`→r |W`→r ∈ W}, and ψ = φ ∧ TS ∧ TW where

TS =
∧

Sp1 ,Sp2∈S
Sp1 ∧ Sp2 ∧ [p1

edge−−→ p2] ∧ ¬S′p1
∧ ¬S′p2

→ Xw
p1
> Xw

p2

TW =
(∧
S`→r∈S

S`→r →W ′`→r

)
∧

(∧
W`→r∈W

W`→r →W ′`→r

)

Here TS encodes cycle analysis of the graph in the sense that a cycle p1 → p2 → · · · →
pn → p1 issues the unsatisfiable constraint Xw

p1
> Xw

p2
> · · · > Xw

pn
> Xw

p1
. For the formula

[s → t
edge−−→ u → v] encoding the presence of an edge from s → t to u → v one can simply

use > if root(t) = root(u) and ⊥ otherwise. (We also experimented with an encoding in
terms of the unifiability between REN(CAP(t)) and u, but due to reasons of space do not
present it here.)

The above encoding does not allow to use different orderings in SCCs, in contrast to
what is commonly done in termination provers. However, it can be modified to consider
SCCs by mapping a problem encoding to k independent problem encodings.

I Definition 7 (Dependency graph processor with k SCCs). A DP problem encoding D =
(S,W, φ) is mapped to {Di}1≤i≤k = {(Si,Wi, ψi)}1≤i≤k where Si = {Si,`→r | S`→r ∈ S},
Wi = {Wi,`→r | S`→r ∈ S} ∪ {Wi,`→r |W`→r ∈ W}, ψi = φ ∧ Tscc(k) ∧ TS(i) ∧ TW (i), and

Tscc(k) =
∧
Sp∈S

1 ≤ Xscc
p ≤ k ∧

∧
Sp1 ,Sp2∈S

Sp1 ∧ Sp2 ∧ [p1
edge−−→ p2]→ Xedge

p1,p2
∧Xscc

p1
≥ Xscc

p2

TS(i) =
∧

Sp1 ,Sp2∈S
Xedge
p1,p2

∧Xscc
p1

= i ∧Xscc
p2

= i ∧ ¬Si,p1 ∧ ¬Si,p2 → Xw
p1
> Xw

p2

TW (i) =
∧

Wp∈W
Wp →Wi,p ∧

∧
Sp∈S

Sp ∧Xscc
p = i ∧

 ∨
Sp′∈S\{Sp}

Xscc
p = Xscc

p′

→Wi,p

Here Xedge
p1,p2

is a boolean variable encoding the presence of both DPs p1 and p2 as well as
an edge from p1 to p2, and Xscc

p is an integer variable assigning an SCC number to a DP p.
Hence Tscc(k) encodes the separation of the graph into at most k SCCs, and TS(i), TW (i)
encode conditions to orient the ith SCC.

Soundness of all the above encodings can be shown by relating them to their processor
counterparts [3], but we omit the proofs here due to lack of space.

4 Experiments

We implemented our DP framework encoding in Maxcomp as described in Section 3. Besides
enhancing the previous LPO and KBO implementations with argument filterings, we also
added a (restricted version of) linear polynomial interpretations as reduction pair processors.
Both versions of the DG processors were included as well.

Table 1 summarizes our experimental results1 for the test bed comprising 115 equational
systems from the distribution of mkbTT [7]. Each ES was given a time limit of 180 seconds,
timeouts are marked∞. Row (1) corresponds to the original Maxcomp using LPO. In setting
(2) we use a strategy combining dependency pairs with reduction pair processors applying
linear polynomials and LPO. Setting (3) enhances setting (2) with a simple DG processor
encoding according to Definition 6, and setting (4) uses Definition 7 with 2 SCCs instead.
A simple heuristic is applied by the automatic mode (5): one iteration is run with plain
LPO and setting (2) in parallel, but afterwards only one strategy (which can orient more of
the initial equations) is kept. The column # lists the number of successful completions, the
next column gives the average time for a successful completion in seconds.

1 Details available from http://cl-informatik.uibk.ac.at/software/maxcompdp

http://cl-informatik.uibk.ac.at/software/maxcompdp

method # avg. time CGE2 proofreduction equiv_proofs
(1) Maxcomp 85 3.8 ∞ ∞ ∞
(2) DPs, poly, LPO 83 14.7 6.4 ∞ 1.6
(3) DG, poly, LPO 40 2.8 ∞ ∞ ∞
(4) DG/2SCCs, poly, LPO 25 2.5 ∞ ∞ ∞
(5) auto 92 10.2 5.6 135.1 1.5

Table 1 Experimental Results.

With the relatively lightweight DP strategy (2) we successfully complete the problems
mentioned in Table 1, which cannot be completed using plain LPO or KBO. However,
some other systems are lost, compared to Maxcomp using LPO. Typically, these problems
require many iterations and/or give rise to many equations. Thus in total (2) completes not
quite as many systems as (1), and the average time is tripled. Settings (3) and (4) require
considerably more encoding effort and hence succeed on comparatively few systems. For
instance, only proving termination of the convergent (unreduced) TRS for equiv_proofs (74
rules) produced in a completion run with setting (2) takes 1.4 seconds for strategy (2) (12K
variables, 45K clauses) but 176 seconds with setting (3) (290K variables, 1.2M clauses).
Overall the automatic mode turned out to be most powerful since it can often be efficient
by applying LPO, but also switch to a more sophisticated strategy in case of unorientable
equations. There are even some problems like proofreduction where (5) succeeds but (2) does
not—apparently it can be preferable to apply LPO in the beginning before switching to the
DP strategy.

References
1 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

Cambridge, 1998.
2 J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination

of term rewriting. JAR, 40(2-3):195–220, 2008.
3 J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Combin-

ing techniques for automated termination proofs. In LPAR, volume 3452 of LNCS, pages
301–331, 2005.

4 D. Klein and N. Hirokawa. Maximal completion. In RTA, volume 10 of LIPIcs, pages
71–80, 2011.

5 P. Schneider-Kamp, R. Thiemann, E. Annov, M. Codish, and J. Giesl. Proving termination
using recursive path orders and SAT solving. In FroCoS, volume 4720 of LNCS (LNAI),
pages 267–282, 2007.

6 A. Stump and B. Löchner. Knuth-Bendix completion of theories of commuting group
endomorphisms. IPL, 98(5):195–198, 2006.

7 S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara. Multi-completion with termination
tools. JAR, 50(3):317–354, 2013.

8 H. Zankl, N. Hirokawa, and A. Middeldorp. Constraints for argument filterings. In SOF-
SEM, volume 4362 of LNCS, pages 579–590, 2007.

9 H. Zankl, N. Hirokawa, and A. Middeldorp. KBO orientability. JAR, 43(2):173–201, 2009.

	Introduction
	Preliminaries
	Encodings
	Experiments

