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Abstract. The equational reasoning tool MædMax implements maxi-
mal ordered completion. This new approach extends the maxSMT-based
method for standard completion developed by Klein and Hirokawa (2011)
to ordered completion and equational theorem proving. MædMax incor-
porates powerful ground completeness checks and supports certification
of its proofs by an Isabelle-based certifier. It also provides an order gen-
eration mode which can be used to synthesize term orderings for other
tools. Experiments show the potential of our approach.

1 Introduction

Equational reasoning has been one of the main research areas of theorem prov-
ing endeavors ever since Knuth and Bendix proposed completion [8]. To remedy
the fact that completion may fail if unorientable equations are encountered,
ordered completion was developed [3]. The ideas of this method have since
been pervasive in automated deduction whenever equations are involved. Com-
pletion and paramodulation procedures are typically based on a given-clause-
algorithm [9,14], which implies that facts are processed one at a time. The
reduction order—a notoriously critical parameter—is typically fixed once and
for all.

Maximal completion follows a very different approach. The idea is to main-
tain a single pool of equations. One then tries to orient as many equations as
possible, by solving a maxSMT problem. If a terminating rewrite system R
obtained in this way joins all its critical pairs as well as the input equalities, it
is complete. Otherwise the critical pairs of R are added to E and the procedure
is reiterated, as sketched in Fig. 1(a). In this way the proof search is guided by
a maxSMT solver and steered towards systems with desirable properties. Maxi-
mal completion gave rise to the simple yet efficient and powerful completion tool
Maxcomp [7]. It was later shown that the tool’s search process can be signifi-
cantly improved by using more complex objective functions, instead of merely
maximizing the number of oriented equations [11].

The tool MædMax is an ordered completion and equational theorem proving
tool based on a similar approach. As input it takes a set of equalities E0 and a

S. Winkler—Supported by FWF project T789.

c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 472–480, 2018.
https://doi.org/10.1007/978-3-319-94205-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94205-6_31&domain=pdf


MædMax: A Maximal Ordered Completion Tool 473
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(a) standard completion

find
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system ground complete for E0?

E := E ∪ CP(R ∪ E)
G := G ∪ CP(R ∪ E ,G)

R

no

(E ,G)

YES/NO

yes

SMT solver

(b) theorem proving

Fig. 1. Maximal completion.

goal equality, and tries to decide whether the goal follows from E0. To this end, it
attempts to derive the goal from E0 or generate an equivalent ground-complete
system. It is known that such a system can in particular be used to disprove the
goal [1].

Figure 1(b) visualizes our approach (for the common case of a goal without
variables). We maintain a set of equalities E and a set of goals G, which is
considered a disjunction. By orienting equations in E we find a terminating
rewrite system R. If a goal in G can be joined using R, or the system is ground
complete then the goal can be decided. Otherwise, critical pairs are added to
both E and G and the procedure is repeated. Thus in contrast to the given clause
algorithm many equations are processed at once, and the proof search is steered
towards systems that have desirable properties.

Our experiments show that MædMax is particularly suited to prove (ground)
completeness and satisfiability, due to sophisticated joinability criteria. If a proof
is found then MædMax can output an equational proof that is checkable by the
Isabelle-based verifier CeTA, thus offering a high degree of reliability. The tool
also provides an order generation mode, where the reduction order deemed most
suitable according to the optimized criteria is displayed. Finally, we illustrate
practical relevance by means of examples in recent applications to data integra-
tion [12].

The remainder of this paper is organized as follows. In Sect. 2 we recall some
relevant concepts and notations. Ordered maximal completion is presented in
Sect. 3. Implementation details are highlighted in Sect. 4. In Sect. 5 we report on
experimental results and conclude.

2 Preliminaries

In the sequel standard notation from term rewriting is used [2]. We consider the
set of terms T (F ,V) over a signature F and a set of variables V, while T (F)
denotes the set of all ground terms. An equational system (ES) E is a set of
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equations � ≈ r over T (F ,V), and a term rewrite system (TRS) R is a set of
equations denoted as � → r, where � �∈ V and Var(r) ⊆ Var(�). For an ES E we
write E± to denote E ∪ {t ≈ s | s ≈ t ∈ E}. A TRS R is terminating if there are
no infinite rewrite sequences t0 →R t1 →R t2 →R . . ., and (ground) confluent if
s ∗

R← · →∗
R t implies s →∗

R · ∗
R← t for all (ground) terms s and t. A TRS which

is terminating and (ground) confluent is (ground) complete.
One common method to establish termination of a TRS R is to find a reduc-

tion order > which is compatible with R. A reduction order > is ground total if
s > t, t > s, or s = t holds for all ground terms s and t. It is known that LPO
and KBO are reduction orders enjoying this property whenever they are based
on a total precedence, and polynomial interpretations can be extended to such
an order. For a reduction order > and an ES E , the TRS E> consists of all rules
sσ → tσ such that s ≈ t ∈ E± and sσ > tσ [3]. A TRS R is moreover ground
complete for an ES E0 if R is ground complete and the relations ↔∗

R and ↔∗
E0

coincide when restricted to ground terms. Given a terminating TRS R and a
term t, we write t↓R to denote some normal form of t. For an ES E , we write E↓R
for the set of all equations s↓R ≈ t↓R such that s ≈ t ∈ E and s↓R �= t↓R. An
equation s ≈ t is ground joinable in R if sσ ↓R tσ for all grounding substitutions
σ, where ↓R abbreviates →∗

R · ∗
R←.

We use the following notion of extended critical pairs [3]: Given a reduction
order > and �1 ≈ r1 and �2 ≈ r2 in E±, the equation �2σ[r1σ]p ≈ r2σ is an
extended critical pair if p is a function symbol position in �2, the terms �2|p and
�1 are unifiable with most general unifier σ, and neither r1σ > �1σ nor r2σ > �2σ
hold. The set of extended critical pairs of an ES E with respect to > is denoted
by CP>(E).

3 Maximal Ordered Completion

We now formalize the approach of maximal ordered completion and theorem
proving sketched in Fig. 1(b).

Let R be a function mapping an ES E to a set of terminating TRSs such that
for all R ∈ R(E) we have (1) R ⊆ E± and (2) there is a ground total reduction
order > extending →R. Moreover, let S be a function from ESs to ESs such that
S(E) ⊆ ↔∗

E for every ES E . We consider define maximal ordered completion
without goals. Our procedure is defined via the following relation ϕ which maps
an ES E to a tuple (R, E ′, >) consisting of a TRS R, an ES E ′, and a reduction
order >.

Definition 1. Given a set of input equalities E0 and an ES E, let

ϕ(E) =

⎧
⎪⎨

⎪⎩

(R, E↓R, >) if R ∪ (E↓R)> is ground complete for E0

for some R ∈ R(E), and
ϕ(E ∪ S(E)) otherwise.

The idea is to recursively apply Definition 1 to a set of initial equations E0. Note
that in general ϕ may be neither defined nor unique. In MædMax the set S(E)
is chosen such that S(E) ⊆

⋃
R∈R(E) CP>(R ∪ E↓R)↓R.
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Example 1. Consider the following ES E0 axiomatizing a Boolean ring, where
multiplication is denoted by concatenation.

(1) (x + y) + z ≈ x + (y + z) (2) x + y ≈ y + x (3) 0 + x ≈ x

(4) x(y + z) ≈ xy + xz (5) (xy)z ≈ x(yz) (6) xy ≈ yx

(7) (x + y)z ≈ xz + yz (8) xx ≈ x (9) x + x ≈ 0

(10) 1x ≈ x

Let R1 be the TRS {(1), (3), (4), (5), (7), (8), (9), (10)} obtained by orienting dis-
tributivity from right to left and all other equations (except for commutativity)
from left to right, and R(E0) the singleton set containing R1. This choice orients
a maximal number of equations. Now the set S(E0) may consist of the following
extended critical pairs of rules among R1 and the unorientable commutativity
equations:

(11) x + (y + z) ≈ y + (x + z) (12) x(yz) ≈ y(xz) (13) x + 0 ≈ x

(14) y + (x + y) ≈ x (15) x(yx) ≈ xy (16) x1 ≈ x

(17) y + (y + x) ≈ x (18) x(xy) ≈ xy (19) 0x ≈ 0

Note that R1-joinable critical pairs such as x + (x + 0) ≈ 0 or x0 ≈ y0 are
not included. We have ϕ(E0) = ϕ(E1) for E1 = E0 ∪ S(E0). Now R(E1) may
contain R2 = {(1), (3), (4), (5), (7), . . . , (10), (13), . . . , (19)}. This TRS is LPO-
terminating, so there is a ground-total reduction order > that contains →R2 .
We have E1↓R2 = {(2), (6), (11), (12)}, and it can be shown that for E = E1↓R2

the system R2 ∪ E> is ground complete. Despite its simplicity, neither WM [1]
nor E [14] or Vampire [9] can show satisfiability of this example (considering E0

as a set of axioms in first-order logic with equality, in the case of the latter).

We next extend our approach to theorem proving, akin to Fig. 1(b). Let SG

be a binary function on ESs such that SG(G, E) ⊆ ↔∗
E∪G \ ↔∗

E for all ESs E and
G. In our implementation, SG(G, E) contains extended critical pairs between an
equation in G and an equation in E . The following relation ψ maps a pair of ESs
E and G to YES or NO.

Definition 2. Given a set of input equalities E0, an initial ground goal s0 ≈ t0
and ESs E and G, let

ψ(E ,G) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

YES if s ↓R∪E> t for some s ≈ t ∈ G and R ∈ R(E),
NO if R ∪ E↓R> is ground complete for E0

but s0 �↓R∪E> t0, for some R ∈ R(E), and
ψ(E ′,G′) for G′ = SG(G,R ∪ E) and E ′ = S(E).

For a set of input equations E0 and an initial goal s0 ≈ t0, the procedure is
started with the initial call ψ(E0, {s0 ≈ t0}). Note that the parameter G of ψ
denotes a disjunction of goals, not a conjunction. Due to the declarative nature
of the completion and theorem proving procedures described by Definitions 1
and 2 the following correctness result is straightforward.
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Theorem 1. Let E0 be an ES and s0 ≈ t0 be a ground goal.

1. If ϕ(E0) = (R, E , >) then R ∪ E> is ground complete for E0.
2. If ψ(E0, {s0 ≈ t0}) is defined then ψ(E0, {s0 ≈ t0}) = YES if and only if

s0 ↔∗
E0

t0. ��

4 Implementation

MædMax is available as a command-line tool and via a web interface.1 It is
implemented in OCaml and accepts input problems in the TPTP [17] as well
as the trs format.2 We describe how the three main phases of our approach
are implemented (see Definitions 1 and 2): (1) finding the terminating TRSs
R(E), (2) success checks, and (3) selection of new equations and goals, i.e.,
computation of S(E) and SG(G, E). Also some further particular features of the
tool get highlighted. Many settings can be controlled via a command line option,
we refer to the website for details. In the default auto mode the settings are
determined heuristically.

Finding Rewrite Systems. In phase (1), MædMax computes the set of TRSs R(E)
for a given ES E by solving an optimization problem whose objective function
can be controlled via a strategy. Assuming we want to find a TRS R ∈ R(E)
the search may involve the following criteria, as well as their (possibly weighted)
sums:

(a) maximize the oriented equations in E (i.e., the size of R),
(b) maximize the equations in E that are reducible by R,
(c) minimize critical pairs among rules in R, or
(d) maximize reducible critical pairs among rules in R.

Maxcomp relied on criterion (a), and later a combination of (a), (b), and (c)
was found most suitable for standard completion [11]. Our tool uses by default
criterion (b), which was most effective in experiments, but switches to (a) in
cases where the proof search is considered stuck.

In practice the optimization problem is solved by encoding the optimization
constraints in SMT and solving a maxSMT problem using Yices [5]. In order
to orient equations, MædMax uses (SMT encodings of) LPO, KBO, and linear
polynomial interpretations, as well as a dynamic choice among these at runtime
depending on which satisfies the criteria best.

Success Checks. In phase (2), MædMax succeeds if (a) a goal can be joined or
(b) a ground complete system was found. In the latter case, a ground goal is
decided by checking syntactic equality of the two term’s normal forms. For non-
ground goals basic and normalizing narrowing is supported. MædMax establishes

1 http://cl-informatik.uibk.ac.at/software/maedmax/.
2 https://www.lri.fr/∼marche/tpdb/format.html.

http://cl-informatik.uibk.ac.at/software/maedmax/
https://www.lri.fr/~marche/tpdb/format.html
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ground confluence by verifying ground joinability of extended critical pairs. How-
ever, depending on the signature this may be nontrivial: while the property is
decidable for some orders when enriching the signature with infinitely many con-
stants, it is undecidable for a finite given signature [4]. Our tool supports the
criteria of [10,18] to that end, and both kinds of signatures.

Selection. In the selection phase (3), MædMax picks new equations and goals,
given the current set of equations E and a TRS R ∈ R(E). To that end, it
computes the set S(E) containing n new equations and SG(G, E) containing m
new goals, where by default n = 12 and m = 2. In the auto mode the number
n gets adjusted depending on the current state to avoid dealing with too many
equations. The selection heuristic prefers small equations and old, but not yet
reducible equations.

Order Generation Mode. MædMax can also be run for a couple of iterations and
output the term ordering that is deemed best according to the criteria mentioned
above (maximal number of oriented equations, etc.).

Certification. MædMax can output proofs in an XML format (CPF) that are
checkable by the Isabelle-based certifier CeTA. For the case where a goal is proven
(answer YES), certification follows the approach of [16]: The XML certificate
gives a stepwise derivation of the goal from the input equations [16] which is
checked by CeTA. Due to recent work [6] also some NO answers are checkable,
though ground joinability support in CeTA is limited since the criterion from [18]
is not supported.

Optimizations. Fingerprint indexing [13] is used to speed up both rewriting
and overlap computation. In order to deal with associative and commutative
symbols, the approach of [1] is incorporated. In the auto mode the tool also
triggers restarts: if a current state is considered stuck, the procedure is restarted
but where the input problem is extended by a number of small lemmas found so
far.

5 Evaluation

All details of the following experiments can be obtained from the website. The
tests were run single threaded on an Intel R© Core

TM
i7-5930K CPU at 3.50 GHz

with 12 cores, with varying timeouts as indicated below.
Table 1 compares MædMax with Waldmeister (WM) [1], E [14], and Vampire

[9] on different problem sets. The first two lines refer to satisfiable/unsatisfiable
problems in TPTP’s unit equality division [17]. The third row refers to the 23
problems for which a ground complete system is given in [10] (which are hence
all satisfiable, in the TPTP terminology). The fourth row refers to 731 problems
generated by the conditional confluence tool ConCon to check infeasibility of
critical pairs [15, Sect. 7.5], which are partially satisfiable and partially unsatisfi-
able. The last row refers to 139 satisfiable problems for standard completion [11].
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Table 1. Experimental results.

MædMax WM E Vampire

TPTP UEQ SAT (600 s) 14 9 12 11

TPTP UEQ UNSAT (600 s) 621 832 692 724

Examples in [10] (60 s) 7 4 4 3

ConCon examples (60 s) 704 657 705 704

KB examples (60 s) 91 45 84 48

For TPTP problems the timeout was set to 600 s; for the latter two data sets
60s were chosen since larger timeouts did not induce any changes. Table 1 shows
that MædMax outperforms other tools on satisfiable examples.3 On unsatisfiable
examples MædMax does not prevail, but all CPF proofs of unsatisfiability pro-
duced by MædMax have been certified by CeTA, they can be found on-line. For
14 problems the proof output for CeTA cannot be accomplished within a timeout
of 1200 s, though.

On average, MædMax spends most of its running time on finding the TRSs
R(E) (20%), critical pair computation (33%), and overlap computation (33%).
Only about 1% of the time is actually spent in the SMT solver.

We tested the order generation mode of MædMax with E since it accepts
precedence and weight parameters for LPO and KBO as command line options.
To that end MædMax was run for 10 s, and the devised reduction order was
passed to E. In this way, E solved 605 unsatisfiable and 10 satisfiable TPTP
UEQ problems. Though the number of solved examples is lowered wrt. Table 1
the average time is reduced, and different problems could be solved.

We conclude with a practical application example. The tool AQL4 performs
functorial data integration by means of a category-theoretic approach [12], taking
advantage of (ground) completion. The following example problem was commu-
nicated by the authors.

Example 2. We consider database tables yIsAL and yIsAW relating amphibians
to land and water animals, respectively. They are described by 400 ground equa-
tions over symbols yIsAL, yIsALL, yIsAW, yIsAWW and 449 constants of the form
ai,wi, li representing data entities. We give six example equations to convey an
impression:

yIsAW(a1) ≈ w29 yIsAW(a78) ≈ w16 yIsAW(a61) ≈ w30

yIsAL(a37) ≈ l80 yIsAL(a84) ≈ l6 yIsAL(a29) ≈ l47

In addition, the equation yIsALL(yIsAL(x)) ≈ yIsAWW(yIsAW(x)) describes a
mapping to a second database schema. A ground complete presentation of the
3 The Maxcomp version presented in [11] solves 91 KB examples within 60 s, too, but

98 problems in 600 s. For the other tools the numbers hardly change with a larger
timeout. Maxcomp is not applicable to the other problem sets though.

4 http://categoricaldata.net/aql.html.

http://categoricaldata.net/aql.html
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entire system thus constitutes a representation of the data, translated to the sec-
ond schema. MædMax discovers a complete presentation of 889 rules in less then
20 s, while AQL’s internal completion prover fails. MædMax’ automatic mode
switches to linear polynomials for such systems with many symbols, which turned
out to be faster than LPO or KBO in this situation.

For Example 2 even a complete system can be found. In general ground com-
pleteness is achieved by MædMax for those problems encountered by AQL, as
required. Further details can be found on the website.

6 Conclusion

We presented the tool MædMax implementing maximal ordered completion, a
novel approach to ordered completion and equational theorem proving. Our
experiments show that this approach outperforms other tools on satisfiable prob-
lems. For unsatisfiable problems MædMax can produce output verifiable by the
trusted proof checker CeTA, thus offering a very high degree of reliability. We
believe that MædMax is particularly suited to problems with large signatures
like Example 2, due to its ability to search for a reduction order which induces
a small number of critical pairs and hence fewer steps to completion.

Acknowledgements. The authors thank Ryan Wisnesky for sharing AQL problems,
and the anonymous referees for their helpful comments.
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