
Submitted to the International Conference on Rewriting Techniques and Applications
http://rewriting.org/rta/

OPTIMIZING MKBTT (SYSTEM DESCRIPTION) ?

SARAH WINKLER 1 AND HARUHIKO SATO 2 AND
AART MIDDELDORP 1 AND MASAHITO KURIHARA 2

1 Institute of Computer Science
University of Innsbruck, Austria

2 Graduate School of Information Science and Technology
Hokkaido University, Japan

Abstract. We describe performance enhancements that have been added to mkbTT, a
modern completion tool combining multi-completion with the use of termination tools.

1. Introduction

The Knuth-Bendix completion tool mkbTT combines a multi-completion approach as
introduced by Kurihara and Kondo [Kur99] with the use of automatic termination tools
proposed by Wehrman, Stump and Westbrook [Weh06]. In this paper we present several
performance enhancements which improved the first version described in [Sat08].

(1) Checking for and joining isomorphic processes results in considerable speedups for
some input systems.

(2) Critical pair criteria were carried over to the context of multi-completion to reduce
the number of nodes.

(3) Several indexing techniques were implemented to allow for a higher inference rate,
namely path indexing, discrimination trees and code trees.

(4) Different selection strategies to choose the next process and node were compared.
The potential of these optimizations, which are described in the next four sections, is
witnessed by the first automatic completion of the CGE4 system (an axiomatization of group
theory with four commuting endomorphisms) obtained with the new version of mkbTT. The
optimizations can be conveniently configured through the web interface, which is described
in Section 6. The experimental results reported in Section 7 show their usefulness.

We start by recalling some basic definitions. A Knuth-Bendix completion (KB) proce-
dure takes a set of equations together with a reduction order as input and aims to produce
a terminating and confluent rewrite system with the same equational theory. We call a KB

Key words and phrases: Knuth-Bendix completion, termination prover, automated deduction.
?This research is supported by FWF (Austrian Science Fund) project P18763. The first author is sup-

ported by a DOC-fFORTE fellowship of the Austrian Academy of Sciences.

c© S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara
Confidential — submitted to RTA

2 S. WINKLER, H. SATO, A. MIDDELDORP, AND M. KURIHARA

run fair if all critical pairs among persistent rewrite rules are eventually considered. In
Knuth-Bendix completion with termination tools (KBtt), a reduction order is no longer re-
quired. Instead, the inference system of KB is extended to work on tuples (E, R, C) of a set
of equations E and rewrite systems R and C, which we refer to as KBtt states. The inference
system mkbTT simulates multiple KBtt runs. Each run is identified by a bit sequence called
a process. The inference rules of mkbTT operate on objects called nodes. A node has the
form 〈s : t, R0, R1, E,C0, C1〉 where s, t are terms and the remaining components (called
labels) are sets of processes. In the sequel we assume familiarity with [Sat08, Sat09].

2. Isomorphisms on Processes

The number of parallel processes simulated by mkbTT is critical for overall performance.
However, some systems exhibit process pairs which are very similar and actually equally
likely to succeed. This is illustrated in the following example.

Example 2.1. When running mkbTT on CGE2 [Stu06], a process p with state

Ep =


(x ∗ y) ∗ z ≈ x ∗ (y ∗ z)

f(e) ≈ e
g(e) ≈ e

g(x) ∗ f(y) ≈ f(y) ∗ g(x)

 Rp = Cp =


e ∗ x → x

g(x) ∗ x → e
f(x ∗ y) → f(x) ∗ f(y)
g(x ∗ y) → g(x) ∗ g(y)


has to orient the equation g(x) ∗ f(y) ≈ f(y) ∗ g(x). As both orientations are possible the
process will be split, but the states (Ep0, Rp0, Cp0) and (Ep1, Rp1, Cp1) of the resulting child
processes are the same up to interchanging f and g. Hence the deductions corresponding to
these processes will be symmetric if the choice function is reasonably fair.

The following definition formally captures such similarities in general.

Definition 2.2. A mapping θ : T (F ,V) → T (F ,V) induces an isomorphism between two
rewrite systems R and R′ if R′ = {θ(l) → θ(r) | l → r ∈ R} and for all terms s and t,
s →R t if and only if θ(s) →R′ θ(t). Similarly, θ induces an isomorphism between two sets
of equations E and E′ if E′ = {θ(u) ≈ θ(v) | u ≈ v ∈ E} and for all terms s and t, s ≈E t
if and only if θ(s) ≈E′ θ(t).

Two rewrite systems R and R′ are isomorphic if there exists an isomorphism θ between
them, which is expressed by writing R ∼=θ R′. Two KBtt states (E, R, C) and (E′, R′, C ′)
are isomorphic if there is an isomorphism θ such that E ∼=θ E′, R ∼=θ R′, and C ∼=θ C ′.
Two mkbTT processes p and q are isomorphic in a node set N if their projected states
(E(N, p), R(N, p), C(N, p)) and (E(N, q), R(N, q), C(N, q)) are isomorphic.

Isomorphic processes are equally likely to succeed, which is easy to prove as the rewrite
relations coincide.

Lemma 2.3. Assume N is a node set with isomorphic processes p and q. If there exists
a fair mkbTT completion run N `∗ N ′ such that E(N ′, p) = ∅ then there is another fair
deduction N `∗ N ′′ such that E(N ′′, q) = ∅.

Due to Lemma 2.3, completeness is not compromised if one of two isomorphic pro-
cesses is removed. mkbTT exploits such symmetries by checking for two concrete shapes of
isomorphisms.

OPTIMIZING MKBTT 3

– Renamings swap function symbols as in Example 2.1 where p0 and p1 are isomorphic
processes under the mapping θ that exchanges f and g.

– Argument permutations associate with every function symbol f of arity n a permuta-
tion πf ∈ Sn. Then the mapping on terms defined by θ(x) = x and θ(f(t1, . . . , tn) =
f(θ(tπf (1)), . . . , θ(tπf (n))) may also induce an isomorphism. For example, during a
completion run of SK3.02 [Ste90] a process p with state

Ep =
{
(x+ y)+ z ≈ x+(y + z)

}
Rp = Cp =

{
f(f(x)) → x

f(x + y) → f(x)+ f(y)

}
has to orient the associativity axiom. Again both orientations are possible, but the
two child processes emerging from a process split are isomorphic under an argument
permutation satisfying π+ = (1 2).

mkbTT can check for both kinds of isomorphisms, either only in orient inferences to
avoid unnecessary splittings or by comparing the states of all process pairs repeatedly.

3. Indexing Techniques

For rewrite inferences mkbTT needs to filter out nodes from the current node set that
can be used to rewrite a given node. In the case of deduce inferences one needs to find nodes
that overlap with the current node. Especially rewrite inferences are frequently executed.
Performing these operations efficiently is crucial for overall performance.

In automated reasoning this problem is referred to as the indexing problem: Given a
large set L of terms (the index), a binary relation on terms R (the retrieval condition) and
a term t (the query term), find all s ∈ L such that (s, t) ∈ R. For this purpose, a number
of sophisticated term indexing techniques have been developed [Sek01].

In the case of mkbTT, for rewrite1 the retrieval of variants, for rewrite2 finding encom-
passments, and for deduce the search of unifiable terms is required. Since encompassment
retrieval can be implemented as multi-term retrieval of subsumed terms, indexing structures
need to support variance, subsumption and unifiability as retrieval conditions. Variant and
encompassment retrieval is required particularly often and consumes about 25% of the total
computation time if performed naively.

mkbTT currently supports path indexing [McC92, Gra96] to retrieve unifiable terms.
For variant and generalization retrieval, also discrimination trees [McC92, Gra96] and code
trees [Vor95] are implemented.

In line with earlier observations in automated reasoning, the use of indexing techniques
in mkbTT increases performance considerably.

4. Critical Pair Criteria

Maintenance and treatment of equational consequences derived in a deduction is a
critical factor in many automated reasoning tools. Since it keeps track of multiple processes
this is an even more serious issue for mkbTT. For standard completion several critical pair
criteria were proposed as a means to filter out equational consequences that can be ignored
without losing completeness.

In the setting of mkbTT, also the computation of critical pair criteria can be shared
among multiple processes. If a node with datum s : t is deduced from an overlap o for a

4 S. WINKLER, H. SATO, A. MIDDELDORP, AND M. KURIHARA

process set E then CPC(o,E, N) returns all processes for which s ≈ t is not superfluous.
Thus the deduce rule is modified as follows.

Definition 4.1. The inference rule

deduce
N

N ∪ {〈s : t, ∅, ∅, E, ∅, ∅〉}
is applicable if there exist nodes 〈l : r,R, . . . 〉, 〈l′ : r′, R′, . . . 〉 ∈ N such that s ≈ t is a
critical pair originating from an overlap o involving the rules l1 → r1 and l2 → r2, and
E = CPC(o,R ∩ R′, N) 6= ∅.

Given a critical pair s ≈ t originating from an overlap (l1 → r1, p, l2 → r2)σ, all
implemented criteria have in common that the term l1σ = l1σ[l2σ] is checked for being
reducible in a different way than by l1 → r1 and l2 → r2. Consequently, all criteria need
to filter the current node set N for nodes that allow to rewrite l1σ in an appropriate way
(depending on the actual criterion). The execution of a CPC function can thus be shared
among multiple processes. Moreover, CPC functions can take advantage from term indexing
techniques as they require to find encompassments for a given term.

The criteria implemented in mkbTT are multi-completion variants of the criteria devel-
oped for standard completion: the primality criterion PCP [Kap88], the blocked criterion
BCP [Bac88], and the connectedness criterion CCP [Küc85]. The projection of an mkbTT

deduction using a critical pair criterion to a process p yields a KBtt deduction which is
fair with respect to the criterion. Being specializations of the more general compositeness
criterion [Bac94], the implemented criteria are correct. This means that a nonfailing de-
duction which is fair with respect to a critical pair criterion is also fair in the more general
sense. Hence, according to the definition of fairness in mkbTT [Sat09, Section 4], deductions
using critical pair criteria are also fair, so correctness is preserved. Experimental results
evaluating the usefulness of the critical pair criteria are given in Section 7.

5. Selection Strategies

At the beginning of mkbTT’s main control loop, a choice function selects a node to
process next by evaluating a cost heuristic. The measure applied in this selection has
significant impact on performance. To allow for a variety of strategies, we defined a language
that is general enough to cover selection strategies that proved to be useful, but also allows
to capture some concepts used in selection strategies of other automated reasoning tools.
A selection strategy is thus specified by the following grammar:

strategy ::= ? | (node p,strategy) | float(strategy:strategy)
node p ::= data(termpair p) | el(processset p) | -node p | node p + node p | *

processset p ::= min(process p) | sum(process p) | #
process p ::= process p + process p | e(eqs p) | r(trs p) | c(trs p)

eqs p ::= sum(termpair p) | #
trs p ::= sum(termpair p) | cp(eqs p) | #

termpair p ::= smax | ssum
The following paragraphs shortly comment on the elements of selection strategies.

• The simplest strategy ? chooses a node randomly. Otherwise, a strategy can be a
tuple (np,s) consisting of a node property np and another strategy s. By using
this rule multiple times, a node property tuple of the form (np1, . . . (npk,?) . . .)

OPTIMIZING MKBTT 5

is obtained. A selection strategy is implemented by mapping each node to the
corresponding cost tuple of integers and choosing the (lexicographic) minimum. To
mix strategies, a strategy can also be of the shape r(s1:s2). Here r is assumed
to be a rational value in [0, 1], with the intention that in every selection step the
strategy s1 is applied with probability r, and s2 is used in the remaining cases.

• Node properties capture features of nodes with integers. A node property of a node
n = 〈s : t, . . . , E, . . .〉 can be its creation time (denoted by *), a property of the
node’s datum s : t, or a process set property pp of its equation labels E, which is
written as el(pp). Moreover, node properties can be added or inverted.

• A process set property may be the number of processes it contains (denoted by #)
or the sum or the minimum over a property of the processes it contains.

• A process property pp of a process p may be an equation set property of its equa-
tion projection E(N, p) or a TRS property of either its rule projection R(N, p) or
its constraint projection C(N, p), which is expressed by writing e(pp), r(pp) and
c(pp), respectively. In addition, process properties can be added.

• An equation set property of a set of equations E can be its cardinality (#), or the
sum over a term pair property of all its elements. A TRS property of a rewrite
system R can additionally be a property of its critical pairs CP(R).

• Finally, a term pair property of terms s and t can be the sum |s|+ |t| or maximum
max{|s|, |t|} of their sizes.

Many automated reasoning tools [Vor01] employ a size-age ratio when selecting a fact to
be processed next. For example, if this ratio is 2 : 3 then out of 5 selections 2 will pick
the oldest and 3 the smallest node, i.e., the node where the sum of its term sizes |s|+ |t| is
minimal. In mkbTT a parameter r ∈ [0, 1] controls the ratio of weight-determined selections,
i.e., an age-weight ratio of 2 : 3 would correspond to r = 0.6. This is described with the
following strategy:

ssize/age(r) = r((data(ssum),?):(*,?))

In the first version of mkbTT [Sat08] we first chose a process p for which |E(N, p)|+|R(N, p)|
was minimal and then a node for this process by considering the term size and timestamp,
the latter to ensure fairness of the derivation. By again using a size-age ratio in the second
step, this is captured by the strategy

smkbtt1(r) = (el(min(e(#)+r(#))),ssize/age(r))

The selection approach used in Slothrop [Weh06] corresponds to choosing a process for
which |E(N, p)| + |CP(R(N, p))| + |C(N, p)| is minimal, which is expressed as follows:

sslothrop(r) = (el(min(e(#)+r(cp(#))+c(#))),ssize/age(r))

We recently experimented with an approach which first restricts attention to those processes
where the number of symbols in E(N, p) and C(N, p) is minimal, then selects nodes with
minimal data and finally goes for a node which has the greatest number of processes in its
equation label:

ssum = (el(min(e(sum(ssum))+c(sum(ssum)))),(data(ssum),(-el(#),?))))

The strategy where ssum is replaced by smax is referred to as smax. To use other heuristics
than those just described, the strategy can also be specified via a command line option.

6 S. WINKLER, H. SATO, A. MIDDELDORP, AND M. KURIHARA

6. Web Interface

In addition to a command line interface, mkbTT is now also available via a web interface
which allows to configure various options.

• The user can set both a global timeout and a timeout for each termination check.
• Concerning termination checks, users can either apply TTT2 [Kor09] or incorporate

an external tool. If TTT2 is used internally, different predefined termination strategies
can be selected. This includes basic reduction orderings as well as ttt2micro and
ttt2fast, two powerful and fast strategies. Alternatively, a user-defined strategy
may be supplied in the strategy language of TTT2. Another option allows to check
termination externally with AProVE [Gie06] or MuTerm [Ala07].

• For the retrieval of encompassments and variants, one of the implemented indexing
techniques can be selected (path indexing, discrimination trees, code trees or naive
search in the node set).

• To filter deduced equations, one of the three implemented critical pair criteria PCP,
BCP or CCP can be selected, as well as certain combinations.

• Users can choose if isomorphism checks employing symbol renamings or term per-
mutations are to be used, and whether these checks are performed repeatedly or
only when processes are split.

The screenshot in Figure 1 gives an impression of the web interface, which is accessible at
http://colo6-c703.uibk.ac.at/mkbtt/interface/

7. Experimental Results

All of the following experiments were performed on a single core of a server equipped
with eight dual-core AMD Opteron R© processors 885 running at a clock rate of 2.6GHz
and 64GB of main memory. As a test set we used 101 problems collected from various
papers. These include theories underlying unit equality problems in TPTP 3.6.0 [Sut09],
all examples coming with the Slothrop [Weh06] distribution, all systems in [Ste90, Section 3],
instances of parametric systems given in [Bün94, Chr89], and systems describing commuting
group endomorphisms [Stu06]. The whole testbench as well as the full experimental data
can be obtained from the website.

In its fastest configuration it took the previous version [Sat08] of mkbTT 175 seconds
to complete CGE2, and more than 3000 seconds to complete CGE3. The implemented
optimizations, in particular isomorphisms and different selection strategies, allowed for
significant speedups: Using smax as selection strategy, ttt2micro for termination checks
and code trees for indexing operations, completing CGE2 and CGE3 requires 8.4 and 184
seconds, respectively. Using periodical checks for renaming isomorphisms further reduces
these numbers to 4.7 and 33 seconds. The implemented optimizations even allow mkbTT to
complete CGE4, which was neither achieved with the previous version nor with any other
approach we know of. With the same settings as described above, a complete system is
obtained in 622 seconds.

The current version of mkbTT can also produce a canonical presentation for the proof
reduction system presented in [Weh05]. Using ttt2micro as termination strategy and
ssum to control node selections, a complete system is obtained in 115 seconds. According
to [Weh05] Waldmeister [Löc02] produces a ground-complete system for this theory. Since

OPTIMIZING MKBTT 7

Figure 1: Web interface of mkbTT.

the resulting system is not terminating with one of the reduction orders implemented in
Waldmeister, it is not clear whether it can produce a complete system for this theory.

The following paragraphs present experimental results for each of the optimizations
presented in the previous sections. In all of the following examples, mkbTT performs termi-
nation checks by interfacing TTT2 internally, using ttt2micro as termination strategy. The
global timeout and the timeout for each termination check were set to 600 and 10 seconds,
respectively. If not stated otherwise, we used smax to control node selections, code trees for
indexing operations and neither critical pair criteria nor isomorphisms.

8 S. WINKLER, H. SATO, A. MIDDELDORP, AND M. KURIHARA

none rename rename+ permutations permutations+
(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)
188 25 188 25 186 21 188 25 188 25

Table 1: Isomorphisms.

naive path indexing discrimination trees code trees
(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

19.9 387 91 18.9 345 18 16.5 150 5 15.8 106 5

Table 2: Indexing techniques.

Isomorphisms. The results obtained with mkbTT using isomorphism checks are given in
Table 1. The columns list (1) the average time in seconds and (2) the average number of
processes. As witnessed by the CGE examples, renaming isomorphisms can greatly improve
performance on systems with symmetries. Also when tested on the whole database, repeat-
edly checking for renamings (rename+) pays off slightly. Apparently the advantage gained
on systems with isomorphic processes outweighs the overhead required for the remaining
input problems. Argument permutations, on the other hand, have little effect. For exam-
ple, when completing the systems LS94 G0 and GRP012-4th coming from group theory,
the number of processes drops from 8 to 4 and 4 to 2 using argument permutations. That
also affects the time required for their completion. But since these examples are small and
easily completable in any case, the overall performance is not improved.

Indexing Techniques. Table 2 presents results obtained with mkbTT using different indexing
techniques for rewriting. The columns list (1) the average time to complete a system, (2)
the time required for encompassment, and (3) the time for variant retrieval. Retrieving
unifiable terms for the computation of overlaps requires only about 1% of the computation
time (using naive search in node sets). While path indexing hardly adds anything, the use
of discrimination trees allows to decrease this ratio to 0.3%.

Critical Pair Criteria. Table 3 summarizes the outcome of mkbTT applying the critical pair
criteria mentioned in Section 4. For the column “all”, the criteria PCP, BCP and CCP
were combined such that every equation deemed superfluous by some criterion got filtered
out. The columns list (1) the time required to complete a system, and (2) the number of
critical pairs that were recognized as redundant, both for the successful process and for all
processes. In the last two rows, the number of successful completions and the total time for
all problems in the test series are given. The prefix BGK94 designates examples originating
from [Bün94]. Problem Chr89-A2 is taken from [Chr89], CGE3 stems from [Stu06], WS06-1
describes the proof reduction system presented in [Weh05], and GRP463-1 is the theory
associated with the respective problem in the unit equality division of TPTP [Sut09].

The use of PCP, BCP and the combination of all criteria increments the number of
successes by one. Timewise, there are some input problems which exhibit a speedup with
critical pair criteria, such as BGK-D16 or GRP463-1. For other problems such as Chr89-A2,
many critical pairs were filtered out but few of them were actually of use for the successful
process. Comparing the implemented criteria, PCP proved to be both the fastest and the
most powerful option. BCP recognizes slightly fewer redundancies, but is still feasible.

OPTIMIZING MKBTT 9

none PCP BCP CCP all
(1) (1) (2) (1) (2) (1) (2) (1) (2)

BGK94-D8 ∞ 550.9 28/220 550.2 28/212 ∞ 549.7 28/224
BGK94-D16 105.9 101.1 19/119 104.3 19/112 106.6 8/41 104.7 20/125
Chr89-A2 126.8 133.7 70/904 134.5 51/771 168.7 25/199 137.5 75/923
CGE3 198.7 197.7 16/23 198.3 16/20 197.5 8/11 200.4 18/29
GRP463-1 8.6 5.5 24/237 7.1 24/223 9.5 9/43 6.5 27/257
WS06-1 138.6 139.7 0/0 140.3 0/0 139.3 0/0 138.3 0/0

...
...

...
...

...
...

successes 70 71 71 70 71
total time 18867 18814 18815 18935 18822

Table 3: Critical pair criteria.

ssum smax smkbtt1 smkbtt1max sslothrop
(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

Chr89-A2 77.9 153 149.6 150 ∞ ∞ ∞
SK90-3.04 74.6 133 1.6 39 37.6 105 2.3 42 2.9 33
SK90-3.27 59.1 68 70.0 46 56.8 58 178.5 86 ∞
BGK94-D8 303.7 217 90.4 134 ∞ 71.1 105 591.9 160
BGK94-D10 39.8 126 31.7 102 ∞ 198.4 171 ∞
BGK94-M14 1.48 34 ∞ ∞ ∞ ∞
TPTP/GRP454-1 87.4 168 2.0 38 14.5 75 ∞ 8.8 40
TPTP/GRP484-1 252.2 324 ∞ ∞ ∞ ∞
CGE2 138.2 157 9.0 44 7.6 56 9.9 46 15.8 46
CGE3 ∞ 189.6 56 ∞ 121.3 58 343.9 66

...
...

...
...

...
...

successes 74 71 66 68 69
average time 22.2 12.8 23.5 15.8 38.9

Table 4: Selection strategies.

For CCP, the computational overhead clearly outweighs the advantage of the (rather few)
superfluous critical pairs. Also using the combination of all criteria is hardly worth the
effort, despite the fact that the largest number of critical pairs is filtered out. Overall,
critical pair criteria allow for rather small improvements.

Selection Strategies. Table 4 illustrates the effect of different selection strategies. The strate-
gies ssum, smax, sslothrop and smkbtt1 are described in Section 5, where the latter two use a
size-age ratio of 0.65. The strategy smkbtt1max differs from smkbtt1 in that ssum is replaced
by smax. The columns list (1) the time required to complete a system and (2) the number
of selected nodes, i.e., the number of iterations of the main control loop. In the last two
rows the number of successful completions and the average time for these are given. The
prefix SK90 designates examples originating from [Ste90].

For many problems, the results depend greatly on the selection strategy used. Some
problems like CGE3 perform better when the node size measure smax is used. Using smax

10 S. WINKLER, H. SATO, A. MIDDELDORP, AND M. KURIHARA

also improves the average time to complete a problem, although overall ssum could complete
the most input problems. There are also some problems like SK90-3.04 where sslothrop
needs the fewest node selections. However, this strategy tends to take more time as the
critical pair computation in its node measure is costly to compute. Altogether, 78 examples
could be completed with some strategy.

References

[Ala07] B. Alarcón, R. Gutiérrez, J. Iborra, and S. Lucas. Proving termination of context-sensitive rewriting
with MU-TERM. In Proc. 6th PROLE, ENTCS, vol. 188, pp. 105–115. 2007.

[Bac88] L. Bachmair and N. Dershowitz. Critical pair criteria for completion. Journal of Symbolic Compu-
tation, 6(1):1–18, 1988.

[Bac94] L. Bachmair and N. Dershowitz. Equational inference, canonical proofs, and proof orderings. Jour-
nal of the ACM, 41(2):236–276, 1994.

[Bün94] R. Bündgen, M. Göbel, and W. Küchlin. A fine-grained parallel completion procedure. In Proc.
7th ISSAC, pp. 269–277. 1994.

[Chr89] J. Christian. Fast Knuth-Bendix completion. In Proc. 3rd RTA, LNCS, vol. 355, pp. 551–555. 1989.
[Gie06] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs in the

dependency pair framework. In Proc. 3rd IJCAR, LNAI, vol. 4130, pp. 281–286. 2006.
[Gra96] P. Graf. Term Indexing, LNAI, vol. 1053. Springer-Verlag, 1996.
[Kap88] D. Kapur, D.R. Musser, and P. Narendran. Only prime superpositions need be considered in the

Knuth-Bendix completion procedure. Journal of Symbolic Computation, 6(1):19–36, 1988.
[Kor09] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean termination tool 2. In Proc. 20th

RTA, LNCS, vol. 5595, pp. 295–304. 2009.
[Küc85] W. Küchlin. A confluence criterion based on the generalised Newman lemma. In Proc. 2nd EURO-

CAL, LNCS, vol. 204, pp. 390–399. 1985.
[Kur99] M. Kurihara and H. Kondo. Completion for multiple reduction orderings. Journal of Automated

Reasoning, 23(1):25–42, 1999.
[Löc02] B. Löchner and T. Hillenbrand. A phytography of Waldmeister. AI Communications, 15(2-

3):127–133, 2002.
[McC92] W. McCune. Experiments with discrimination-tree indexing and path indexing for term retrieval.

Journal of Automated Reasoning, 9(2):147–167, 1992.
[Sat08] H. Sato, S. Winkler, M. Kurihara, and A. Middeldorp. Multi-completion with termination tools

(system description). In Proc. 4th IJCAR, LNAI, vol. 5195, pp. 306–312. 2008.
[Sat09] H. Sato, S. Winkler, M. Kurihara, and A. Middeldorp. Constraint-based multi-completion proce-

dures for term rewriting systems. IEICE Transactions on Information and Systems, E92-D(2):220–
234, 2009.

[Sek01] R. Sekar, I. V. Ramakrishnan, and A. Voronkov. Term indexing. In Handbook of Automated Rea-
soning, pp. 1853–1964. Elsevier Science Publishers, 2001.

[Ste90] J. Steinbach and U. Kühler. Check your ordering – termination proofs and open problems. Tech.
Rep. SR-90-25, Universität Kaiserslautern, 1990.

[Stu06] A. Stump and B. Löchner. Knuth-Bendix completion of theories of commuting group endomor-
phisms. Information Processing Letters, 98(5):195–198, 2006.

[Sut09] G. Sutcliffe. The TPTP problem library and associated infrastructure. Journal of Automated Rea-
soning, 43(4):337–362, 2009.

[Vor95] A. Voronkov. The anatomy of Vampire. Journal of Automated Reasoning, 15(2):237–265, 1995.
[Vor01] A. Voronkov. Algorithms, datastructures, and other issues in efficient automated deduction. In

Proc. 1st IJCAR, LNCS, vol. 2083, pp. 13–28. 2001.
[Weh05] I. Wehrman and A. Stump. Mining propositional simplification proofs for small validating clauses.

In Proc. 3rd PDPAR, ENTCS, vol. 144, pp. 79–91. 2005.
[Weh06] I. Wehrman, A. Stump, and E.M. Westbrook. Slothrop: Knuth-Bendix completion with a modern

termination checker. In Proc. 17th RTA, LNCS, vol. 4098, pp. 287–296. 2006.

