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Abstract

Kirby and Paris (1982) proved in a celebrated paper that a theorem of Goodstein (1944) can-
not be established in Peano arithmetic. We present an encoding of Goodstein’s theorem as a
termination problem of a finite rewrite system. Using a novel implementation of algebras based
on ordinal interpretations, we are able to automatically prove termination of this system, re-
sulting in the first automatic termination proof for a system whose derivational complexity is
not multiple recursive. Our method can also cope with the encoding by Touzet (1998) of the
battle of Hercules and Hydra as well as a (corrected) encoding by Beklemishev (2006) of the
Worm battle, two further systems which have been out of reach for automatic tools, until now.
Based on our ideas of implementing ordinal algebras we also present a new approach for the
automation of elementary interpretations for termination analysis.
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1. Introduction

Since the beginning of the millennium there has been much progress regarding auto-
mated termination tools for rewrite systems. 1 Despite the many different techniques that
have been developed, it seems that (terminating) TRSs which admit very long deriva-
tions are out of reach even for the most powerful tools. This is not surprising since many
base methods induce rather small upper bounds on the derivational complexity, which
is a function that bounds the length of the longest possible derivation (rewrite sequence)
by the size of its starting term. Hofbauer and Lautemann (1989) have shown that poly-
nomial interpretations are limited to double exponential derivational complexity. They
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further showed that the derivational complexity of a rewrite system compatible with the
Knuth-Bendix order (KBO) cannot be bounded by a primitive recursive function. Later,
Lepper (2001) established the Ackermann function as an upper bound for KBO, whereas
Weiermann (1995) proved a multiple recursive upper bound for the lexicographic path
order (LPO). More recently, Moser and Schnabl (2011); Schnabl (2012) have studied
upper bounds on the complexity when using these base methods in the dependency pair
framework. Although dependency pairs significantly increase termination proving power,
from the viewpoint of derivational complexity the limit is still multiple recursive. This
has led to the conjecture (Schnabl, 2012, Conjecture 6.99) that for any system whose
termination can be proved automatically by modern tools the length of its derivations
can be bounded by a multiple recursive function (in the size of the starting terms).

Ordinals have been used in termination arguments for many decades (e.g., Turing
(1949); Gentzen (1936)). In fact ordinals are essential to prove termination of the battle
of Hercules and Hydra (also due to Kirby and Paris (1982)), or the sequences associated
with Goodstein’s theorem since these derivations cannot be bounded by a multiple recur-
sive function (Cichon (1983)). Although TRS encodings of the Hydra battle are known
for many years (e.g., by Touzet (1998)), they could so far not be handled by automatic
termination tools, witnessing Schnabl’s conjecture. Indeed a successful implementation
of ordinals for automatic termination proofs is still lacking. Very recently, Urban and
Miné (2014) presented an approach to conclude termination of imperative programs by
inferring ordinal-valued ranking functions. Here ordinals are essential to handle nondeter-
minism, though only ordinals below ωω

ω

are involved and hence the ranking functions are
still multiple recursive. The theorem prover Vampire uses ordinal numbers (see (Kovács
et al., 2011, Section 7)) in its implementation of KBO but only for weights of predicate
symbols. Since these symbols occur only at the root of atomic expressions no ordinal
arithmetic is needed but only comparison of ordinals.

In this article we first encode the computation of Goodstein sequences (see Theo-
rem 9) as a rewrite system G such that termination of G implies Goodstein’s theorem.
Since these sequences cannot be bounded by a multiple recursive function, this also holds
for the derivational complexity of G. After presenting this motivating example, we discuss
automation of a termination criterion based on ordinal interpretations which is capable
of proving G terminating, thereby overcoming the limitations alleged by the above con-
jecture. Our implementation can also cope with Touzet’s encoding (Touzet, 1998) of
the battle of Hercules and Hydra, as well as a (corrected) encoding of the Worm battle
(Beklemishev, 2006).

Automation of ordinal interpretations is challenging since ordinal arithmetic does, e.g.,
not satisfy commutativity. Hence in contrast to polynomial interpretations terms do not
evaluate to expressions of a canonical shape. We tackle this deficiency by introducing
approximations which yield expressions of a special shape. Approximations (albeit less
involved) have already been used for polynomial interpretations with negative (Hirokawa
and Middeldorp, 2004; Fuhs et al., 2007) or irrational (Zankl and Middeldorp, 2010)
coefficients. In preliminary work Zankl et al. (2012); Winkler et al. (2012) already used
ordinal domains to increase automatic termination proving power. However, in Zankl
et al. (2012) the focus is on string rewriting and the interpretation functions have a very
limited shape to avoid ordinal arithmetic. As a consequence the method is limited to
systems with at most multiple exponential derivational complexity. Similarly, Winkler
et al. (2012) use ordinal domains for generalized KBO, again for string rewriting only.
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In the respective implementation, function symbol weights are moreover below ωω. We
anticipate that our treatment of arithmetic for ordinals up to ε0 could improve some of
the results from Kovács et al. (2011); Winkler et al. (2012); Urban and Miné (2014).

Lescanne (1995) proposed elementary functions for proving (AC-)termination but his
implementation is limited to checking the orientation of rules for given interpretations.
Lucas (2009) considers so-called linear elementary interpretations (LEIs) of the shape
A(x) + B(x)C(x) where A(x), B(x), and C(x) are linear polynomials. Furthermore, he
proposes an approach based on rewriting, constraint logic programming (CLP), and con-
straint satisfaction problems (CSPs) to also find suitable interpretation functions. He
leaves an actual implementation of his method as future work and mentions the need
for heuristics to achieve an efficient implementation. In this article we propose a dif-
ferent shape of interpretation functions because LEIs are neither closed under (scalar)
multiplication, addition, nor composition. Furthermore, the motivating example in Lu-
cas (2009) (which is a simplified version of the leading example in Lescanne (1995)),
uses a non-linear (elementary) interpretation for multiplication. We show that also an
implementation of algebras with elementary interpretations can take advantage from an
approximation-based approach. These findings are related to Problem #28 in the RTA
List of Open Problems, 2 which asks to “develop effective methods to decide whether
a system decreases with respect to some exponential interpretation”. Our contribution
is restricted to a subclass of elementary interpretations but also admits the search for
suitable interpretations.

This article is organized as follows. In the next section we recall ordinal arithmetic and
weakly monotone algebras for termination proofs. In Section 3 we present our encoding of
Goodstein’s theorem and prove its correctness. Section 4 discusses how ordinal algebras
can be automated and applies the approach to several rewrite systems (some of them
encoding the Hydra battle), where also the limitations of our method become apparent.
Likewise, Section 5 adapts the approach to elementary interpretations. Experimental
results are the topic of Section 6. We conclude in Section 7.

This article is an updated and extended version of Winkler et al. (2013). In particular,
the extension to elementary interpretations (Section 5) and the experimental evaluation
(Section 6) are new. Furthermore, in Section 4 the approximation +µ has been refined
(to succeed on the Worm battle) while tiny flaws in the approximations +ν and ⊕ν have
been corrected (cf. Definition 22).

2. Preliminaries

We recall some preliminaries about ordinal numbers. Ordinals are transitive sets well-
ordered with respect to ∈. Hence α < β if and only if α ∈ β. By identifying ∅, {∅},
{∅, {∅}}, . . . with 0, 1, 2, . . . , the natural numbers are embedded in the ordinals. If
α is an ordinal then the ordinal α ∪ {α} is its successor, denoted by α + 1. An ordinal
β constitutes a successor ordinal if there is some α such that β = α + 1, otherwise β
is called a limit ordinal. For instance 1, 2, 3, . . . are successor ordinals, whereas 0 and
the smallest infinite ordinal ω are limit ordinals. The latter is equivalent to the set of
all natural numbers. The following ordinal arithmetic operations constitute extensions of
the respective operations on natural numbers (see Just and Weese (1996) for details).

2 http://www.win.tue.nl/rtaloop/
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Definition 1. For ordinals α and β their sum α + β is defined by recursion over β as
(a) α+ 0 = α, (b) α+ β = (α+ γ) + 1 if β = γ + 1, and (c) α+ β =

⋃
γ<β α+ γ if β is

a non-zero limit ordinal.

Addition satisfies associativity α+ (β+γ) = (α+β) +γ but is not commutative, e.g.,
1 + ω = ω 6= ω + 1.

Definition 2. For ordinals α and β their product α · β is defined by recursion over β
as (a) α · 0 = 0, (b) α · β = α · γ + α if β = γ + 1, and (c) α · β =

⋃
γ<β α · γ if β is a

non-zero limit ordinal.

Since 2 · ω = ω 6= ω · 2 multiplication is not commutative, and as (ω + 1) · 2 =
(ω + 1) + (ω + 1) = ω + ω + 1 = ω · 2 + 1 also not right-distributive, but associativity
α · (β · γ) = (α ·β) · γ and left-distributivity α · (β+ γ) = (α ·β) + (α · γ) hold. We mostly
write αa for α · a whenever α is an ordinal and a a finite ordinal, i.e., a < ω.

Definition 3. For ordinals α and β, recursion over β allows to define exponentiation αβ

as follows: (a) α0 = 1, (b) αβ = αγ · α if β = γ + 1, and (c) αβ =
⋃
γ<β α

γ if β is a
non-zero limit ordinal.

Examples of infinite ordinals include ω1 = ω, ω 3 = ω + ω + ω, ω2 = ω · ω, ωω+1,
and ωω

ω

. The ordinal ε0 is the smallest ordinal α which satisfies αω = α. Let O denote
the class of ordinal numbers smaller than ε0, N the ordinal numbers smaller than ω (the
natural numbers), > the standard order on ordinals, and > its reflexive closure.

Recall that every ordinal α < ε0 can be represented in Cantor normal form (CNF),
i.e.,

α = ωα1a1 + · · ·+ ωαnan (1)

such that α1 > · · · > αn are in CNF as well and a1, . . . , an ∈ N>0. The ordinal 0 is
represented as the empty sum.

Definition 4. Let α = ωα1a1 + · · · + ωαnan and β = ωβ1b1 + · · · + ωβmbm be ordinals
in CNF, and {γ1, . . . , γk} = {α1, . . . , αn} ∪ {β1, . . . , βm} such that γ1 > · · · > γk. The
natural sum of α and β is defined as α ⊕ β = ωγ1(a′1 + b′1) + · · · + ωγk(a′k + b′k) where
a′i = aj (b′i = bj) if γi = αj (γi = βj) for some j, and a′i = 0 (b′i = 0) otherwise.

In contrast to standard addition, natural addition on ordinals enjoys all properties
known from addition on natural numbers, e.g., 2⊕ω = ω⊕2 = ω+2. For ordinal algebras
as considered later in this article we rely critically on the fact that addition, natural
addition, multiplication, and exponentiation are weakly monotone in both arguments.

We assume familiarity with term rewriting and termination in particular (Baader and
Nipkow, 1998; TeReSe, 2003).

The derivation height of a term t with respect to a well-founded and finitely branching
rewrite relation →R is defined as dhR(t) = max {m | ∃u t →m

R u}. The derivational
complexity of R computes the maximal derivation height of all terms up to size n and is
defined as dcR(n) = max {dhR(t) | |t| 6 n}.

A relative TRS R/S is a pair of TRSs R and S with the induced rewrite relation
→R/S =→∗S · →R · →∗S .
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We consider well-founded algebras A with interpretation functions fA. An interpre-
tation function fA is simple if fA(a1, . . . , an) > ai for all 1 6 i 6 n. It is mono-
tone if a > b implies fA(. . . , ai−1, a, ai+1, . . .) > fA(. . . , ai−1, b, ai+1, . . .) and weakly
monotone if a > b implies fA(. . . , ai−1, a, ai+1, . . .) > fA(. . . , ai−1, b, ai+1, . . .). An al-
gebra is simple/monotone/weakly monotone if all its interpretation functions are sim-
ple/monotone/weakly monotone. An assignment α maps variables to values in the carrier
of A. By [α]A(t) we denote the interpretation of the term t based on the assignment α.
A TRS R is compatible with an algebra A if [α]A(`) > [α]A(r) for every `→ r ∈ R and
assignment α (also written R ⊆ >A). Algebras may yield termination proofs.

Theorem 5. A TRS is terminating if and only if it is compatible with a well-founded
monotone algebra. 2

Theorem 6 (Touzet (1998); Zantema (2001)). A TRS is terminating if it is compatible
with a well-founded weakly monotone simple algebra. 2

3. The Goodstein Sequence

In this section we present a TRS for the Goodstein sequence, whose definition requires
the following key notion. Given n > 1, a natural number α is in hereditary base n
representation, which we indicate by writing (α)n, if

(α)n = n(αk)n · ak + n(αk−1)n · ak−1 + · · ·+ n(α0)n · a0 (2)

such that (αk)n > · · · > (α0)n are in hereditary base n representation and 0 < ai < n
for all 0 6 i 6 k. For m > n we denote by (α)

m
n the result of replacing n by m in (α)n,

so (α)
m
n = m(αk)

m
n · ak +m(αk−1)

m
n · ak−1 + · · ·+m(α1)

m
n · a1 + a0 is in hereditary base m

representation.
For instance, (1)2 = 20 · 1, where we drop the coefficient 1 and simply write (1)2 = 20.

Moreover, (2)2 = 21 = 22
0

and (5)2 = 22 + 1 = 22
20

+ 20, whereas (5)
3
2 = 33

30

+ 30 = 28.

Definition 7. The Goodstein sequence gα with starting value α is defined by gα(0) = α

and gα(i+ 1) = (gα(i))
i+3
i+2 − 1 for all i > 0.

Example 8. For α = 2 the Goodstein sequence yields

g2(0) = 2

g2(1) = (2)
3
2 − 1 = (21)

3
2 − 1 = 31 − 1 = 2

g2(2) = (2)
4
3 − 1 = 2− 1 = 1

g2(3) = (1)
5
4 − 1 = 1− 1 = 0

while for α = 5 we obtain

g5(0) = 5

g5(1) = (5)
3
2 − 1 = (22 + 20)

3
2 − 1 = 33 + 30 − 1 = 27

g5(2) = (27)
4
3 − 1 = (33)

4
3 − 1 = 44 − 1 = 255

g5(3) = (255)
5
4 − 1 = (43 · 3 + 42 · 3 + 4 · 3 + 3)

5
4 − 1 = 53 · 3 + 52 · 3 + 5 · 3 + 2 = 467
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Theorem 9 (Goodstein (1944)). For all α there exists a k such that gα(k) = 0. 2

By G(α) we denote the smallest number k with this property. Totality of this function
is not provable in Peano arithmetic, as shown by Kirby and Paris (1982). Cichon (1983)
presented a very short proof using results concerning recursion theoretic hierarchies of
functions. In particular, he showed that the growth rate of G cannot be bounded by any
Hα such that α < ε0. 3

Definition 10. For all n > 1 we define a mapping [·]n to represent natural numbers in
(hereditary) base n as ground terms over {c, 0}, where c is a binary function symbol and
0 a constant. Let (α)n be a natural number in hereditary base n representation as in (2).
The term c(x, c(x, · · · c(x, y) · · · )) containing k > 0 occurrences of c is denoted ck(x, y).
In particular, c0(x, y) = y. Then [·]n is recursively defined such that [0]n = 0 and

[α]n = ca0([α0]n , . . . c
ak−1([αk−1]n , c

ak([αk]n , 0)) . . . )

Intuitively, given base n, the term c([α]n , [β]n) represents the number nα + β, and
terms contributing to the base n representation of a number are combined in increasing
order. This is in contrast to (2), where terms are sorted in a decreasing way.

Example 11. For (1)2 = 20 we have [1]2 = c(0, 0), for (2)2 = 22
0

we have [2]2 =

c(c(0, 0), 0), for (7)2 = 22
20

+ 22
0

+ 20 we have [7]2 = c(0, c(c(0, 0), c(c(c(0, 0), 0)))), and

for (7)3 = 33
0 · 2 + 30 we have [7]3 = c(0, c(c(0, 0), c(c(0, 0), 0))). Note that different

numbers over different bases might be represented by the same term, for instance (2)2 =
(3)3 = c(c(0, 0), 0).

The following TRS G works on inputs of the form [·]n to model gα. Its definition is
inspired by Touzet’s encoding of the Hydra battle (Touzet, 1998) (see Example 30).

Definition 12. Consider the following TRS G over a signature consisting of unary func-
tion symbols •, 8, ◦ and binary function symbols f, h, in addition to 0 and c:

8 ◦x→ ◦ 8x (A1)

• 8x→ 8 • •x (A2)

◦x→ • 8x (A3)

c(0, x)→ ◦x (B1)

• c(c(x, y), z)→ • f(c(x, y), z) (B2)

• f(0, x)→ ◦x (C1)

• f(c(x, y), z)→ h(• f(x, y), • • f(f(x, y), z)) (C2)

• h(x, y)→ h(•x, • • c(x, y)) (D1)

h(x, y)→ ◦ y (D2)

• f(x, y)→ f(•x, y) (E1)

• c(x, y)→ c(•x, • y) (E2)

•x→ x (E3)

◦x→ x (E4)

3 Here H is the Hardy function: H0(n) = n + 1, Hα+1(n) = Hα(n + 1), and Hλ(n) = Hλn (n) for a
limit ordinal λ which is the supremum of an ordinal sequence (λn)n∈N.
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The basic idea of the encoding is to perform a step in the Goodstein sequence as
follows. The current base n and sequence element α are encoded as • 8n [α]n. Using rule
(A2), the symbol • is repeatedly duplicated while moving over the 8’s, until a term of

the form 8
n

•2n [α]n is reached. The copies of • can move to places (using rules (E1) and

(E2)) in [α]n where changes are required to turn [α]n into [β]n+1 for β = (α)
n+1
n − 1.

This is achieved using rules (B1) – (D2) and the symbols f and h for auxiliary purposes,
and produces at least one ◦ symbol which can then travel back up the 8’s using (A1).

Finally, the base is increased by (A3), which yields a term • 8n+1
[β]n+1. Whenever there

are too many • or ◦ symbols, they are removed with rules (E3) and (E4).
This idea is made precise in the following theorem, according to which G simulates for

any starting value the computation of the Goodstein sequence. In particular, termination
of G (Theorem 15) enforces for any α ∈ N the existence of a k with • 82 [α]2 →∗G • 8k [0]k,
and thus implies Theorem 9.

Theorem 13. Let α, n ∈ N such that α > 0 and n > 1. Then • 8n [α]n →
+
G • 8n+1

[β]n+1

where β = (α)
n+1
n − 1.

The proof of this result requires some auxiliary facts about G.

Lemma 14.
(a) •n h(s, t)→+

G ◦ cn(•n s, •2n t) for all terms s and t.
(b) Let α, β ∈ N and n ∈ N such that n > 1, β + nα is positive, s = [α]n and t = [β]n.

Then •n f(s, t)→+
G ◦u where u = [β + nα − 1]n.

Proof.
(a) By induction on n. If n = 0 then h(s, t) →G ◦ t in a single step using (D2). If n > 0

then

•n+1 h(s, t) →G •n h(• s, • • c(s, t)) (D1)

→+
G ◦ c

n(•n+1 s, •2(n+1) c(s, t)) (?)

→+
G ◦ c

n(•n+1 s, c(•2(n+1) s, •2(n+1) t)) (E2)

→+
G ◦ c

n(•n+1 s, c(•n+1 s, •2(n+1) t)) (E3)

= ◦ cn+1(•n+1 s, •2(n+1) t)

where (?) applies the induction hypothesis.
(b) By induction on α. If α = 0 then [α]n = 0 and •n f(0, t) →G •n−1 ◦ t →∗G ◦ t using

rules (C1) and (E3). Since β + n0 − 1 = β and t = [β]n the claim holds. If α > 0 then
[α]n = c(s′, t′) and s′ = [γ]n and t′ = [δ]n for some γ, δ ∈ N, so α = δ + nγ . We have

•n f(c(s′, t′), t) →G •n−1 h(•f(s′, t′), • • f(f(s′, t′), t)) (C2)

→+
G ◦ c

n−1(•n f(s′, t′), •2n f(f(s′, t′), t)) (a)

→∗G ◦ cn−1(•n f(s′, t′), •n f(•n f(s′, t′), t)) (E1)

→+
G ◦ c

n−1(◦w, •n f(◦w, t)) (?)

→+
G ◦ c

n−1(w, •n f(w, t)) (E4)

→+
G ◦ c

n−1(w, ◦w′) (??)

→G ◦ cn−1(w,w′) (E4)
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where in (?) we apply the induction hypothesis since γ < α and so we obtain a term
w = [δ + nγ − 1]n. Since δ + nγ − 1 < α, we can apply the induction hypothesis again
in (??), which yields a term w′ such that w′ =

[
β + nδ+n

γ−1 − 1
]
n
. Let ν = δ+nγ−1.

For the term v = cn−1(w,w′) we thus have

v = [β + nν · (n− 1) + nν − 1]n =
[
β + nν+1 − 1

]
n

= [β + nα − 1]n 2

Proof of Theorem 13. Since α > 0, we have [α]n = c(s, t) for some terms s and t. We
apply case analysis on s. If s = 0 then t = [α− 1]n and we have

• 8n c(0, t)→G 8n c(0, t) (E3)

→G 8n ◦ t (B1)

→+
G ◦ 8n t (A1)

→G • 8n+1
t (A3)

Otherwise, s = c(u, v) so let c(u, v) = [γ]n and t = [δ]n for some γ, δ ∈ N. There is the
following rewrite sequence:

• 8n c(c(u, v), t)→+
G 8n •2

n

c(c(u, v), t) (A2)

→∗G 8n •n+1 c(c(u, v), t) (E3)

→∗G 8n •n+1 f(c(u, v), t) (B2)

→+
G 8n ◦w (?)

→+
G ◦ 8n w (A1)

→G • 8n+1
w (A3)

where (?) applies Lemma 14(b), according to which w = [δ + (n+ 1)γ − 1]n+1. 2

Theorem 15. The TRS G is terminating.

Proof. We show termination of G by employing Theorem 6. Consider the following
algebra A over the well-founded domain O× N× N:

0A = (0, 0, 0) 8A(x,m, n) = (x, 2m+ 2, n)

cA((x,m, n), (y, k, l)) = (ωx ⊕ y + 1, 0, 0) ◦A(x,m, n) = (x, 2m+ 3, n)

fA((x,m, n), (y, k, l)) = (ωx ⊕ y, 0, 0) •A(x,m, n) = (x,m, n+m+ 1)

hA((x,m, n), (y, k, l)) = (y + ωx+1, 0, 0)

Note that A is simple and weakly monotone, and it strictly orients all rules of G:

(x, 4m+ 8, n) > (x, 4m+ 7, n) (A1)

(x, 2m+ 2, 2m+ n+ 3) > (x, 2m+ 2, 2m+ n+ 2) (A2)

(x, 2m+ 3, n) > (x, 2m+ 2, n+ 2m+ 3) (A3)

(x+ 2, 0, 0) > (x, 2m+ 3, n) (B1)

(ωω
x⊕y+1 ⊕ z + 1, 0, 1) > (ωω

x⊕y+1 ⊕ z, 0, 1) (B2)

(x+ 1, 0, 1) > (x, 2m+ 3, n) (C1)

(ωω
x⊕y+1 ⊕ z, 0, 1) > (z + ωω

x⊕y+1, 0, 0) (C2)

(y + ωx+1, 0, 1) > (y + ωx+1, 0, 0) (D1)
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(y + ωx+1, 0, 0) > (y, 2k + 3, l) (D2)

(ωx ⊕ y, 0, 1) > (ωx ⊕ y, 0, 0) (E1)

(ωx ⊕ y + 1, 0, 1) > (ωx ⊕ y + 1, 0, 0) (E2)

(x,m, n+m+ 1) > (x,m, n) (E3)

(x, 2m+ 3, n) > (x,m, n) (E4)

Hence G is terminating. Note that rule (C2) has a weak decrease in its first component

since ordinal addition might consume its left argument but natural addition does not,

i.e., α⊕ β = β ⊕ α > β + α for all ordinals α and β in CNF. 2

The proof of Theorem 15 (again inspired by the termination proof in Touzet (1998))

lexicographically combines ordinal with linear polynomial interpretations. However, we

remark that weak monotonicity of the lexicographic product does not follow from weak

monotonicity of the single interpretations (cf. Example 26). Still, the search for suitable

interpretation functions can be automated (see Section 4.2.2).

4. Automation of Ordinal Algebras

In order to automate the search for suitable ordinal interpretations, we restrict our-

selves to interpretation functions of a certain shape (see Definition 16). In Section 4.1

we show how for a given algebra with interpretation functions of this shape one can

encode whether the interpretation of one term is larger than that of another term. In

contrast to other termination criteria, ordinal arithmetic (non-commutative, expressions

may be consumed) significantly complicates the encoding. Section 4.2 elaborates on im-

plementation issues needed for a successful automation, where we also explain how to

find suitable coefficients for the interpretation functions. Section 4.3 considers different

encodings of Hydra battles where also the limitations of the approach are discussed.

In the sequel we consider ordinal expressions of the following shape. By x we abbreviate

x1, . . . , xn.

Definition 16. A restricted ordinal expression (ROE ) over variables x is either 0 or 4∑
16i6n

xifi + ωf
′(x)fω ⊕

⊕
16i6n

xif̂i ⊕ f0 (3)

where f0, f1, . . . , fn, f̂1, . . . , f̂n, fω are natural numbers and f ′(x) is an ROE over x. The

depth of an ROE is the height of the tower of ω’s. An ROE algebra is an algebra O where

for every n-ary function symbol f the interpretation function fO is an ROE over x.

4 To enhance readability we drop parentheses in expressions of the form x+ y⊕ z, which are to be read
as (x + y) ⊕ z rather than x + (y ⊕ z). Note that these expressions are in general not equivalent, e.g.,

(1 + 0)⊕ ω = ω + 1 but 1 + (0⊕ ω) = ω.
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4.1. Encodings

Let f(x) and g(x) be ROEs of the form

f(x) =
∑

16i6n

xifi + ωf
′(x)fω ⊕

⊕
16i6n

xif̂i ⊕ f0

g(x) =
∑

16i6n

xigi + ωg
′(x)gω ⊕

⊕
16i6n

xiĝi ⊕ g0
(4)

We assume that these expressions depend on the same variables x (otherwise the respec-
tive coefficients can be set to 0), and that variables appear in the same order. We first
encode some auxiliary properties of ROEs.

4.1.1. Useful Abbreviations
Let zero(f(x)) be true if and only if f(x) = 0 or all of f0, fi, f̂i and fω are 0. Let

ci = max(fi, gi) for all i ∈ {0, . . . , n, ω}. An upper bound omax(f, g)(x) is then given by
omax(f, 0)(x) = omax(0, f)(x) = f(x) and

omax(f, g)(x) =
∑

16i6n

xici + ωomax(f ′,g′)(x)cω ⊕
⊕

16i6n

xi max(f̂i, ĝi)⊕ c0

otherwise. For instance, if f(x) = x1 + ωx2+1 ⊕ x3 and g(x) = ωx12 ⊕ x2 + 1 then
omax(f, g)(x) = x1+ωx1+x2+12⊕x2⊕x3+1. Clearly, [α](f(x)) 6 [α](omax(f, g)(x)) and
[α](g(x)) 6 [α](omax(f, g)(x)) for all assignments α. Whether a variable xi contributes
to the value of f(x) can be recursively encoded as follows:

coni(f(x)) =

{
⊥ if f(x) = 0

fi > 0 ∨ f̂i > 0 ∨ (coni(f
′(x)) ∧ fω > 0) otherwise

If f(x) and g(x) are defined as above then coni(f(x)) = conj(g(x)) = > for all 1 6 i 6 3
and 1 6 j 6 2, but con3(g(x)) = ⊥.

4.1.2. Comparisons
Consider ROEs f(x) and g(x) as in (4). We want to derive sufficient (checkable)

conditions such that [α](f(x)) > [α](g(x)) for all assignments α. The following example
shows that whether one ROE is larger than another one significantly depends on the
assignment.

Example 17. Consider x1+x2 and x2+x1. Let α be an assignment such that α(x1) = ω
and α(x2) = 1. Then [α](x1 + x2) = ω + 1 > ω = 1 + ω = [α](x2 + x1). Conversely we
have [β](x1 + x2) = 1 + ω = ω < ω + 1 = [β](x2 + x1) when β(x1) = 1 and β(x2) = ω.

We use the following underapproximation to check whether [α](f(x)) > [α](g(x)) for
all assignments α, which is a tradeoff between accuracy and efficiency.

Definition 18. Let f(x) and g(x) be ROEs as in (4).

[f(x) > g(x)] = [f(x) >0 g(x)] ∧
∧

16i6n

[f(x) >i g(x)]

[f(x) >0 g(x)] = ([f ′(x) >0 g
′(x)] ∧ fω > 0) ∨

([f ′(x) >0 g
′(x)] ∧ fω > gω ∧ f0 > g0) ∨

(gω = 0 ∧ f0 > g0)
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[f(x) >i g(x)] = ¬coni(g(x)) ∨ (a)

([f ′(x) >i g
′(x)] ∧ fω > gω ∧ gi = 0 ∧ ĝi = 0) ∨ (b)

(coni(ω
f ′(x)fω) ∧ ¬coni(ω

g′(x)gω)) ∨ (c)

(coni(ω
f ′(x)fω) ∧ [f ′(x) >i g

′(x)] ∧ fω > gω) ∨ (d)

(coni(ω
f ′(x)fω) ∧ [f ′(x) >i g

′(x)] ∧ fω = gω ∧ f̂i > ĝi) ∨ (e)

(¬coni(ω
g′(x)gω) ∧ f̂i > ĝi ∧ fi + f̂i > gi + ĝi) ∨ (f)

((zero(g′(x)) ∨ gω = 0) ∧ fi + f̂i > gi + ĝi) (g)

[f(x) > g(x)] = [f(x) > g(x)] ∧ [f(x) >0 g(x)]

[f(x) >0 g(x)] = ([f ′(x) >0 g
′(x)] ∧ fω > 0) ∨

([f ′(x) >0 g
′(x)] ∧ fω > gω ∧ f0 > g0) ∨

(gω = 0 ∧ f0 > g0)

Here [f(x) >0 g(x)] ([f(x) >0 g(x)]) encodes that the constant part in f(x) is greater
(or equal) than the constant part in g(x), whereas [f(x) >i g(x)] encodes that the
coefficients of the variable xi in f(x) are greater than or equal to the respective coefficients
in g(x). The last disjunct in the definition of [f(x) >0 g(x)] was added to the earlier
version of our encoding (Winkler et al., 2013); it is essential to handle the last rule
of the TRS W ′3 in Example 31. Our comparisons are (much) more involved than the
absolute positiveness approach (Hong and Jakuš, 1998) for polynomials because of ordinal
arithmetic. We illustrate the different cases in the encoding of >i in the following example.

Example 19. Case (a) yields [ωx1+x2 >1 ω
x2 ] while (b) admits [ωx123 >1 ω

x13]. From
(c) validity of [ωx12 >1 x13] is obtained while [ωx12 >1 ωx11 ⊕ x15] is due to (d).
Case (e) obviously allows [ωx12 ⊕ x12 >1 ωx12 ⊕ x11] but also [ωx1 >1 x110 + ωx1 ].
Case (f) implies [x12 + ωx2 ⊕ x13 >1 x13 + ωx2 ⊕ x12]. Finally, (g) ensures [x14 + ωx2 ⊕
x11 >1 x12 ⊕ x13]. It is not hard to check that for all these example ROEs satisfying
[f(x1, x2) >1 g(x1, x2)] we indeed have [α](f(x1, x2)) > [α](g(x1, x2)) for any assignment
α (though additional constraints are required to ensure this). In the example for case (f),

the test f̂1 > ĝ1 is required if ωα(x2) consumes the preceding α(x1)2 (and hence α(x1)3)

for some assignment α. Otherwise the test f1 + f̂1 > g1 + ĝ1 is required. For case (g), if
for some α the term ωα(x2) consumes α(x1)4 then it also dominates α(x1)2. Otherwise

we need the test f1 + f̂1 > g1 + ĝ1.

Clearly, the encoding of > is only an approximation. E.g., [ωx1+1 >1 ωx12] is not
valid, despite the fact that ωα(x1)+1 > ωα(x1)2 for any α. While it is straightforward to
extend Definition 18(b) accordingly for this particular case, we do not strive for a precise
encoding, which seems out of reach for practical applications.

The encodings of comparisons are sound.

Lemma 20. Let f(x) and g(x) be ROEs as in (4).
(a) If [f(x) > g(x)] then [α](f(x)) > [α](g(x)) for all assignments α.
(b) If [f(x) > g(x)] then [α](f(x)) > [α](g(x)) for all assignments α.
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Proof. Each of the disjunctions (a)–(g) in Definition 18 is a sound criterion for the

comparison [α](f(x)) >i [α](g(x)) for all 1 6 i 6 n. 2

4.1.3. Composition

In contrast to e.g. polynomial interpretations, ROEs are not closed under scalar mul-

tiplication and standard/natural addition (cf. Example 21), and thus also not under

composition. Hence we cannot compute an ROE corresponding to the interpretation of

a term t with respect to an ROE algebra O. Instead, we define ROEs µ(t) and ν(t)

to under- and overapproximate tO. To this end we present in Definition 22 bounds for

the results of ordinal arithmetic operations (based on the algorithms given in Manolios

and Vroon (2005) for ordinals in CNF) and demonstrate them in Example 23 before

Lemma 24 shows their soundness.

Example 21.

(a) Consider the ROEs x+ 1 and 2. If α(x) < ω then [α]((x+ 1) · 2) = [α](x2 + 2) but

[α]((x+ 1) · 2) = [α](x2 + 1) otherwise.

(b) Consider the ROEs ω2 and ω3. There is no ROE for ω2 ⊕ ω3.

(c) Consider the ROEs x⊕ 1 and y. If α(y) < ω then [α]((x⊕ 1) + y) = [α](x+ y + 1)

but [α]((x⊕ 1) + y) = [α](x+ y) otherwise.

Definition 22. Let f(x) and g(x) be ROEs as in (4).

(a) For a ∈ N, let (f ·µ a)(x) = (f ·ν a)(x) = 0 if a = 0 or f(x) = 0, and otherwise

(f ·µ a)(x) =
∑

16i6n

xifi + ωf
′(x)(fω · a)⊕

⊕
16i6n

xi(f̂i · a)⊕ (f0 · a)

(f ·ν a)(x) =
∑

16i6n

xi(fi · a) + ωf
′(x)(fω · a)⊕

⊕
16i6n

xi(f̂i · a)⊕ (f0 · a)

(b) Let (f ⊕µ g)(x) = (f ⊕ν g)(x) = g(x) if f(x) = 0 and similarly (f ⊕µ g)(x) =

(f ⊕ν g)(x) = f(x) if g(x) = 0. Otherwise, let si and ti abbreviate coni(ω
f ′(x)fω) ?

0 : 1 and coni(ω
g′(x)gω) ? 0 : 1, where b ? t : e encodes “if b then t else e”. Let

(h(x), hω) =


(f ′(x), fω + 1) if [ωf

′(x)fω > ωg
′(x)gω]

(g′(x), gω + 1) if [ωg
′(x)gω > ωf

′(x)fω]

(omax(f ′, g′)(x), fω + gω) otherwise

and (k(x), kω) = [ωf
′(x)fω > ωg

′(x)gω] ? (f ′(x), fω) : (g′(x), gω). Then

(f ⊕µ g)(x) =
∑

16i6n

xi max(fisi, giti) + ωk(x)kω ⊕
⊕

16i6n

xi(f̂i + ĝi)⊕ (f0 + g0)

(f ⊕ν g)(x) = nat(g(x)) ?
∑

16i6n

xifi + ωf
′(x)fω ⊕

⊕
16i6n

xi(f̂i + ĝi)⊕ (f0 + g0) :

nat(f(x)) ?
∑

16i6n

xigi + ωg
′(x)gω ⊕

⊕
16i6n

xi(f̂i + ĝi)⊕ (f0 + g0) :

ωh(x)hω ⊕
⊕

16i6n

xi(f̂i + ĝi + giti + fisi)⊕ (f0 + g0)
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Here nat(f(x)) abbreviates f1 = 0 ∧ · · · ∧ fn = 0 ∧ fω = 0, and similarly for g(x).
This definition of (f ⊕ν g)(x) allows for a more precise encoding compared to the
version in Winkler et al. (2013). In particular, a tighter upper bound is obtained
for the cases where f(x) or g(x) are just linear polynomials (i.e., where nat(f(x))
or nat(g(x)) is true).

(c) Let (f +µ g)(x) = (f +ν g)(x) = g(x) if f(x) = 0 and (f +µ g)(x) = (f +ν g)(x) =
f(x) if g(x) = 0. Otherwise, we define lower and upper bounds for f(x) + g(x) by
distinguishing different cases using if-then-else expressions:

(f +µ g)(x) = [ωf
′(x)fω > ωg

′(x)gω] ? f(x) :

( ∑
16i6n

(gi = 0 ? xifi : 0) + g(x)

)
(f +ν g)(x) = [ωg

′(x)gω > ωf
′(x)fω] ? φ1 :(

[ωf
′(x)fω > ωg

′(x)gω] ? φ2 : (f ⊕ν g)(x)
)

where

φ1 =
∑

16i6n

xi(fisiti + f̂itiu+ giti) + ωg
′(x)gω ⊕

⊕
16i6n

xi(f̂iti(1− u) + ĝi)⊕ c0

φ2 =
∑

16i6n

xifisi + ωf
′(x)(fω + 1)⊕

⊕
16i6n

xi(f̂iti + giti + ĝi)⊕ c0

with c0 = ([g′(x) > 0] ∧ gω > 0) ? g0 : f0 + g0 and u is 1 if all fisiti are zero and

at most one of f̂iti is greater zero and 0 otherwise.
(d) Definitions (a)–(c) can be used to inductively set lower and upper bounds for

the composition f(g)(x) = f(g1(x), . . . , gn(x)). We write
∑µ

16i6n hi to abbrevi-
ate h1 +µ · · ·+µ hn, and use similar shorthands for ⊕ and ν. We set

f(g)µ(x) =

µ∑
16i6n

gi(x) ·µ fi +µ ω
f ′(g)µ(x)fω ⊕µ

µ⊕
16i6n

gi(x) ·µ f̂i ⊕µ f0

f(g)ν(x) =

ν∑
16i6n

gi(x) ·ν fi +ν ω
f ′(g)ν(x)fω ⊕ν

ν⊕
16i6n

gi(x) ·ν f̂i ⊕ν f0

(e) Let t be a term, and O be an ROE algebra. By induction on the term structure we
define ROEs µO(t) and νO(t) such that

µO(t) =

{
t if t ∈ V
fO(µO(t1), . . . , µO(tn))µ otherwise

νO(t) =

{
t if t ∈ V
fO(νO(t1), . . . , νO(tn))ν otherwise

The following example illustrates these definitions of upper and lower bounds for ROE
arithmetic.

Example 23.
(a) Consider the ROE f(x) = x1 + x2. Then (f ·µ 2)(x) = x1 + x2 and (f ·ν 2)(x) =

x12 + x22. We clearly have x1 + x2 6 (x1 + x2)2 6 x12 + x22 for all values of x1
and x2. Note that (x1 + x2)2 6= x12 + x22 since · does not right-distribute over +,
as shown after Definition 2.
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(b) Consider the ROEs f(x) = ωx1+x2+1 ⊕ x3 + 1 and g(x) = x2 + ωx12 ⊕ x3. As

ωx1+x2+1 > ωx12 we have (k(x), kω) = (x1 + x2 + 1, 1) and (h(x), hω) = (x1 + x2 +

1, 2). Thus (f ⊕µ g)(x) = x2 + ωx1+x2+1 ⊕ x32 + 1 and (f ⊕ν g)(x) = ωx1+x2+12⊕
x2 ⊕ x32 + 1. It is not difficult to see that

x2 + ωx1+x2+1 ⊕ x32 + 1 6 f(x)⊕ g(x) 6 ωx1+x2+12⊕ x2 ⊕ x32 + 1

for all values of x1, x2, and x3.

(c) Consider the ROEs f(x) = x3 + ωx2 ⊕ x1 and g(x) = ωx1+x2+1 + 1. As ωx2 6>
ωx1+x2+1 we have (f+µg)(x) = x3+g(x) = x3+ωx1+x2+1+1. Since x1+x2+1 > x2
the first case for +ν applies, where u = 0 as f3s3t3 = 1. We thus have (f+ν g)(x) =

ωx1+x2+1 ⊕ x3 + 1. Note that the term ⊕ x1 in f(x) disappears as x1 contributes

to the exponent of g(x). We have

x3 + ωx1+x2+1 + 1 6 (x3 + ωx2 ⊕ x1) + (ωx1+x2+1 + 1) 6 ωx1+x2+1 ⊕ x3 + 1

for all values of x1, x2, and x3.

(d) For the ROEs f(x) = x2 + ωx1+1, g1(x) = ωx1 ⊕ x2, and g2(x) = ωω
x1⊕x2 ⊕ x3 we

obtain

f(g)µ(x) = (ωω
x1⊕x2 ⊕ x3) +µ ω

ωx1⊕x2+1 = ωω
x1⊕x2+1

f(g)ν(x) = (ωω
x1⊕x2 ⊕ x3) +ν ω

ωx1⊕x2+1 = x3 + ωω
x1⊕x2+1

(e) Consider the terms ` = • f(c(x1, x2), x3) and r = h(• f(x1, x2), • • f(f(x1, x2), x3))

from rule (C2) of G. Let O be the ordinal part of the ROE algebra defined in the

proof of Theorem 15 such that hO(x1, x2) = x2 +ωx1+1, cO(x1, x2) = ωx1 ⊕x2 + 1,

•O(x1) = x1, and fO(x1, x2) = ωx1⊕x2. We have µO(`) = νO(`) = ωω
x1⊕x2+1⊕x3.

It is easy to see that for r′ = f(f(x1, x2), x3) we get µO(r′) = νO(r′) = ωω
x1⊕x2 ⊕ x3.

From the computation in (d) we thus obtain νO(r) = x3 + ωω
x1⊕x2+1. Note that

[µO(`) > νO(r)] holds: We obviously have [µO(`) >0 νO(r)], [µO(`) >1 νO(r)],

and [µO(`) >2 νO(r)] as the two expressions are equal in the relevant parts, and

[µO(`) >3 νO(r)].

Note that in (Winkler et al., 2013, Definition 17) we approximated (x + ω00) ⊕ν ωx
by x+ ωx (but [α](x⊕ ωx) > [α](x+ ωx) for α(x) = 1), and (x⊕ y) +ν ω by x+ y + ω

(whereas [α]((x ⊕ y) + ω) > [α](x + y + ω) for α(x) = ω and α(y) = ω2). Definition 22

corrects these flaws and sets (x+ω00)⊕ν ωx = ωx⊕ x and (x⊕ y) +ν ω = ω⊕ x⊕ y. We

now show that Definition 22 yields valid over- and underapproximations.

Lemma 24. Let O be an ROE algebra and t be a term. Then [α](µO(t)) 6 [α]O(t) 6
[α](νO(t)) for all assignments α.

Proof. We argue that all approximations in Definition 22 constitute valid lower and

upper bounds. Let α be an arbitrary assignment.

(a) It is easy to see that [α](f(x)·a) 6 [α](f ·ν a)(x). For any β in CNF as in (1) and a ∈
N>0 we have βa = ωβ1a1a+ωβ2a2 + · · ·+ωβnan (Manolios and Vroon, 2005). Since

for any 1 6 i 6 n we have ωβ1a1a+· · ·+ωβnan > ωβ1a1+· · ·+ωβiaia+· · ·+ωβnan,

(f ·µ a)(x) constitutes a safe (though modest) lower bound for f(x)a.
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(b) We have

f(x)⊕ g(x) =

 ∑
16i6n

xifi + ωf
′(x)fω

⊕
 ∑

16i6n

xigi + ωg
′(x)gω

 (5)

⊕
⊕

16i6n

xi(f̂i + ĝi)⊕ (f0 + g0)

Note that the term xifi disappears in f(x) ⊕ g(x) if xi contributes to ωf
′(x) and

fω > 0, and the term xigi disappears in f(x)⊕ g(x) if xi contributes to ωg
′(x) and

gω > 0. Hence we may multiply all occurrences of fi by si, and occurrences of gi by
ti. We then have [α](f⊕µg)(x) 6 [α](f(x)⊕g(x)) as (f⊕µg)(x) underapproximates ∑

16i6n

xifi + ωf
′(x)fω

⊕
 ∑

16i6n

xigi + ωg
′(x)gω


by a coefficient-wise maximum of the respective components in f(x) and g(x).
Concerning the upper bound, the first two cases are obvious from Equation (5).
Otherwise, it is easy to see that ωf

′(x)fω ⊕ ωg
′(x)gω 6 ωh(x)hω. As the sum of xifi

and xigi can be overapproximated by the natural sum of all terms (fisi + giti)xi
we have [α](f(x)⊕ g(x)) 6 [α](f ⊕ν g)(x).

(c) We clearly have [α](f +µ g)(x) 6 [α](f(x) + g(x)). Concerning the upper bound,

assume for a first case [ωg
′(x)gω > ωf

′(x)fω], so ωf
′(x)fω+ωg

′(x)gω = ωg
′(x)gω. Note

that the term xif̂i disappears in f(x) + g(x) if xi is contained in ωg
′(x)gω, i.e., if

xi occurs with a positive coefficient somewhere in g′(x) and gω > 0. The term gixi
disappears as well if xi is contained in ωg

′(x)gω, and fixi disappears if xi occurs
in ωf

′(x)fω, or if xi occurs in ωg
′(x)gω. Hence all occurrences of f̂i and gi may be

multiplied by ti, and occurrences of fi may be multiplied by siti. Clearly all terms
xifisiti and xigiti may be put in the standard addition part of (f+ν g)(x), and xiĝi
occurs in the natural addition part. As far as the terms xif̂iti are concerned, adding
them to the natural addition part is obviously sound; but note that we may also put
xif̂iti into the standard addition part if xif̂i is the only part of f(x) that survives,
which is captured by the condition u = 1. Now suppose [ωf

′(x)fω > ωg
′(x)gω], so

ωf
′(x)fω + ωg

′(x)gω 6 ωf
′(x)(fω + 1). The term f̂ixi disappears in f(x) + g(x) if

xi is contained in ωg
′(x)gω, the term gixi disappears as well if xi is contained in

ωg
′(x)gω. Hence for any variable xi the sum of xif̂i, xigi, and xiĝi can be over-

approximated by xi(f̂iti + giti + ĝi) such that [α](f(x) + g(x)) 6 [α](f +ν g)(x).
Finally, f(x) + g(x) 6 f(x)⊕ g(x) 6 (f ⊕ν g)(x) holds in any case.

(d) By (a)–(c) and weak monotonicity of the ordinal operations ·, +, and ⊕.

(e) By induction on the term structure of t, using (d). 2

4.1.4. Main Theorem
Any ROE is weakly monotone and well-defined by definition. It is easy to encode a

criterion for an ROE f(x) to be simple:

simple(f(x)) =
∧

16i6n

coni(f(x))
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Finally we obtain the main result of this section.

Theorem 25. Let R be a TRS over a signature F and O an ROE algebra on F . If∧
`→r∈R

[µO(`) > νO(r)] ∧
∧
f∈F

simple(fO(x))

holds then R is terminating.

Proof. We already observed that any ROE is weakly monotone and well-defined. By the
assumption, every fO is simple. Hence the result follows by Theorem 6 in combination
with Lemmata 20 and 24. 2

4.2. Implementation

In this section we discuss crucial issues for a successful implementation. Section 4.2.1
explains the search for suitable interpretations. Section 4.2.2 shows how to ensure that the
lexicographic combination of partial proofs preserves weak monotonicity. Section 4.2.3
deals with the problem of a compatible variable order and Section 4.2.4 is dedicated to
efficiency considerations.

4.2.1. Search for Interpretations
In automatic termination proofs suitable interpretation functions must be constructed.

While easy heuristics can be employed for the depth of an ROE (see Section 4.2.4), the
main challenge is to establish suitable coefficients. To this end we consider parametric
ROEs which are of the shape (4) with the exception that now f0, f1, . . . , fn, f̂1, . . . , f̂n, fω
are unknowns over the naturals. The encodings from the previous section then allow to
reduce the search for suitable coefficients to finding models in existentially quantified
non-linear integer arithmetic for which suitable SMT solvers exist (see e.g. Zankl and
Middeldorp (2010)).

4.2.2. Lexicographic Combination of Interpretations
The termination proof of the TRS G (Theorem 15) performs a lexicographic combi-

nation of algebras into a simple and weakly monotone algebra. The proof can be seen
as the lexicographic product of (1) an ordinal algebra and (2) a linear (polynomial) in-
terpretation and (3) a matrix interpretation of dimension 2 (Endrullis et al., 2008). 5

Regarding automation one can either encode the search for the lexicographic combina-
tion or search for (partial) proofs and combine them lexicographically. We adopted the
latter, although the lexicographic combination of weakly monotone algebras need not be
weakly monotone, as shown by the following example.

Example 26. Consider the nonterminating TRS R = {f(a) → f(b), b → a}. For the
weakly monotone simple interpretation fO(x) = x+ ω, bO = 1, aO = 0 we have [f(a)]O =
ω > ω = [f(b)]O and [b]O = 1 > 0 = [a]O. If we removed the second rule, then the weakly
monotone simple interpretation fN (x) = x+ 1, aN = 1, bN = 0 shows termination of the
remaining rule f(a)→ f(b). Note that the lexicographic combination is no longer weakly
monotone, i.e., [b]O×N = (1, 0) >lex (0, 1) = [a]O×N but [f(b)]O×N = (ω, 1) 6>lex (ω, 2) =
[f(a)]O×N .

5 Item (3) can also be seen as a lexicographic combination of two linear (polynomial) interpretations.
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However, weak monotonicity of a lexicographic interpretation can be partially recov-
ered: If both fO(x) and fA(x) are weakly monotone this also holds for the lexicographic
combination (fO(x), fA(x)) provided that an argument xi is ignored in fA(x) whenever
fO(x) is not strictly—but still weakly—monotone with respect to xi. This fact was al-
ready exploited in the termination proof by Touzet (see Example 30) and is also used in
the proof of Theorem 15.

Example 27. For the interpretations gO(x) = x + ω and gN (x) = 1 the lexicographic
combination gO×N ((x, k)) = (x+ω, 1) is weakly monotone. Similarly, for hO(x, y) = y+x
and hN (x, y) = x+ 1 also hO×N ((x, k), (y,m)) = (y+x, k+ 1) is weakly monotone (note
that hO×N is strictly monotone in its first argument).

Hence we have to encode monotonicity of an ROE f(x) in its i-th argument. We set

moni(f(x)) =
(
fi > 0 ∧ (

∧
i<j6n

fj = 0) ∧ fω = 0
)
∨ f̂i > 0 ∨ (fω > 0 ∧moni(f

′(x)))

mon(f(x)) =
∧

16i6n

moni(f(x))

Then it follows that ¬mon(f(x)) (¬moni(f(x))) holds whenever f(x) is not strictly mono-
tone (in its i-th argument). In the implementation we consider relative rewriting and
add a rule f ′(π(x1, . . . , xn)) → f(x1, . . . , xn) in the relative part whenever mon(f(x))
is not satisfied. Here f ′ is a fresh function symbol and π(x1, . . . , xn) returns the vari-
ables xi1 , . . . , xim for 1 6 i1 6 · · · 6 im 6 n in which f(x) is strictly monotone, i.e.,
monij (f(x)) is satisfied. In presence of a rule f ′(π(x1, . . . , xn)) → f(x1, . . . , xn), com-
patible interpretation functions fA cannot depend on variables xj /∈ π(x1, . . . , xn). The
idea is demonstrated by the following examples.

Example 28 (Example 26 revisited). Consider the TRS R from Example 26. After
applying the first interpretation we obtain the relative TRS {f(a) → f(b)}/{f ′ → f(x)}.
Although this system is terminating there is no compatible interpretation since f may
not depend on its arguments due to the second rule.

Example 29 (Example 27 revisited). If hO(x1, x2) = x2+x1 then mon1(hO(x1, x2)) = >
and mon2(hO(x1, x2)) = ⊥. Hence π(x1, x2) = x1 and subsequent interpretations have to
orient h′(x1) → h(x1, x2) weakly and cannot depend on h’s second argument while e.g.,
hA(x1, x2) = x1 + 1 is possible.

However, adding rules f ′(π(x1, . . . , xn))→ f(x1, . . . , xn) is likely to disable the orien-
tation of rules whose left-hand sides are rooted by f (to satisfy [α]A(f ′(π(x1, . . . , xn))) >
[α]A(f(x1, . . . , xn)) the interpretation of f may not depend on arguments xi which do not
occur in π(x1, . . . , xn)) and consequently the termination proof might not be successful.
To avoid this situation in the implementation we add constraints demanding to orient
such rules only if the interpretation of f is not strictly monotone. Then rules rooted with
f must be oriented before a rule f ′(π(x1, . . . , xn))→ f(x1, . . . , xn) is added.

Another necessary requirement is that the (lexicographic) algebra is simple. Again
we avoid an explicit lexicographic encoding. Rather, in a preprocessing step for every
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f ∈ F we add the embedding rules f(x1, . . . , xn) → xi (for 1 6 i 6 n) into the rela-
tive component of the TRS. This then ensures [α]A(f(x1, . . . , xn)) > [α]A(xi) for each
1 6 i 6 n.

All in all, for a TRS R over a signature F we execute the following procedure:

S := {f(x1, . . . , xn)→ xi | f ∈ F has arity n and 1 6 i 6 n}
while R 6= ∅ do

find an algebra A satisfying R∪ S ⊆ >A and (R∪ S) ∩>A 6= ∅
NmonA(R) := {f ′(π(x1, . . . , xn))→ f(x1, . . . , xn) | f ∈ F has arity n, 1 6 i 6 n, and

xi /∈ π(x1, . . . , xn) if fA is not strictly monotone in i-th argument}
R := R \>A and S := (S \>A) ∪ NmonA(R)

report terminating

Instead of proving termination of R we try to establish termination of R relative to S.
This pre-processing step ensures that the algebras constructed in the body of the while
loop are simple. We use SMT to find appropriate ROEs and matrix interpretations (of dif-
ferent dimensions), respectively. If no suitable algebra is found, the while loop is aborted
and the procedure fails. Adding NmonA(R) to the relative part ensures that the lexico-
graphic combination of the employed algebras is weakly monotone.

4.2.3. Compatible Variable Orders

When interpreting or comparing terms we might get ROEs not having the same vari-
able order. E.g., the rule s(g(x, y))→ g(y, x) results in the constraint x+ y + 1 > y + x,
if gO(x, y) = x + y and sO(x) = x + 1. The assignment α(x) = 1 and α(y) = ω yields
1+ω+1 = ω+1 6> ω+1 but according to Definition 18 the constraint [x+y+1 > y+x] is
valid. The same effect also happens in arithmetic operations, e.g., the overapproximation
of + in Lemma 24(d). Taking fO(x, y) = gO(x, y) = x+y with α(x) = 1 and α(y) = ω, the
term f(g(x, y), g(y, x)) evaluates to (1 +ω) + (ω+ 1) = ω2 + 1 but the overapproximation
based on the variable order [x, y] yields 2+ω2 = ω2. Clearly ω2+1 66 ω2. Hence we have
to ensure our global assumption that two ROEs have compatible variable orders (in the
standard addition part) when comparing, composing, or adding them. Let

∑
16i6n xifi

and
∑

16i6n yigi be ordinal expressions over the same variables (so y is a permutation
of x). Let i < j. Two variables xi and xj are not compatible if there exist i′ and j′ with
1 6 i′ < j′ 6 n such that xi = yj′ , xj = yi′ and fi, fj , gi′ , gj′ are positive. In such a case
we constrain one of the coefficients to be zero, i.e., fi = 0 ∨ fj = 0 ∨ gi′ = 0 ∨ gj′ = 0.
For example consider e1 = x11 + x21, e2 = x21 + x11, and e3 = x21 + x10. Then e1 and
e2 do not have compatible variable orders while e1 and e3 do.

4.2.4. Efficiency

While the implementation fixes some initial depth d for the interpretation of function
symbols, this depth increases when evaluating terms (when approximating compositions
f(g1(x), . . . , gn(x))). Not surprisingly, for efficiency it is necessary to bound the depth
of expressions occurring in evaluations of terms. Dropping parts of an interpretation is
sound as an underapproximation while for the overapproximation we add constraints (to
the SMT solver) that the dropped part must evaluate to zero.
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4.3. Examples and Limitations

We have implemented the search for suitable ROEs in TTT2 (Korp et al., 2009) (see
Section 6 for the global setup). For the automatic termination proof of the TRS G in
TTT2 we (lexicographically) combine ordinal algebras with matrix interpretations (En-
drullis et al., 2008). Then, TTT2 manages G within nine seconds when using depth 1 for
interpreting function symbols and limiting the depth of evaluations to 2. The CNF of
the underlying SAT problem has approximately 120,000 variables and 300,000 clauses.

In their influential paper Kirby and Paris (1982) also presented the battle of Hercules
and Hydra as a combinatorial game on trees. Generalizations of the Hydra battle are
found in many papers (Fleischer (2009) contains a nice survey) and several different
encodings of the battle into a termination problem of a specific TRS can be found in the
literature (Buchholz, 2006; Dershowitz, 1993; Dershowitz and Moser, 2007; Dershowitz
and Jouannaud, 1990; Lepper, 2004; Touzet, 1998). Not all of these TRSs faithfully model
the battle, and termination of some of them is not independent of Peano arithmetic.

Example 30. Touzet (1998) presents the following TRSH to describe the battle between
Hercules and Hydra for starting terms corresponding to ordinals α < ωω

ω

and using the
standard strategy :

◦x→ • 8x H(0, x)→ ◦x • c1(x, y)→ c1(x,H(x, y))

• 8x→ 8 • •x •H(H(0, y), z)→ c1(y, z) • c2(x, y, z)→ c2(x,H(x, y), z)

8 ◦x→ ◦ 8x •H(H(H(0, x), y), z)→ c2(x, y, z) c1(y, z)→ ◦ z
•x→ x c2(x, y, z)→ ◦H(y, z)

So far all termination tools failed on this example whose derivational complexity cannot
be bounded by a multiple recursive function. Its termination can be shown by the fol-
lowing simple and weakly monotone interpretation A over the domain O×N×N, where
f(x, y) = y + ωx+1 (Touzet, 1998):

0A = (0, 0, 0) 8A(x,m, n) = (x, 2m+ 2, n)

HA((x,m, n), (y, k, l)) = (ωx ⊕ y, 0, 0) ◦A(x,m, n) = (x, 2m+ 3, n)

c1A((x,m, n), (y, k, l)) = (f(x, y), 0, 0) •A(x,m, n) = (x,m, n+m+ 1)

c2A((x,m, n), (y, k, l), (z, i, j)) = (ωf(x,y) ⊕ z, 0, 0)

Compared to G, TTT2 requires more resources (initial depth 2, intermediate depth 3, 12
seconds, 160,000 variables, 410,000 clauses) to automatically prove termination of H.
This is surprising as the derivational complexity of G far exceeds that of the Hydra
system H, which is bounded by the Hardy function Hωωω .

Example 31. Beklemishev (2006) presents two infinite TRSs and one finite TRS de-
scribing the Worm battle (corresponding to a one-dimensional version of Buchholz’ Hydra
battle (Buchholz, 1987), first introduced by Hamano and Okada (1997)). The second in-
finite TRS W2 consists of the rules

(x · y) · z → x · (y · z) f(0)→ 0m f(0 · x)→ (0 · f(x))m

for m > 1, where tm abbreviates the term t · (· · · (t · (t · t)) · · · ) with m copies of t. The
ROE algebra 0O = 1, fO(x) = ωx, and x ·O y = 2x ⊕ y ⊕ 1 is weakly monotone and
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simple on O and orients W2:

4x⊕ 2y ⊕ z ⊕ 3 > 2x⊕ 2y ⊕ z ⊕ 2

ω > 3m− 2

ωx⊕3 > ωx(2m− 1)⊕ (7m− 4)

The finite system W ′3 to simulate the Worm sequence consists of the following rules: 6

1: (x · y) · z → x · (y · z) 2 : f(0 · x)→ b(0 · f(x))

3 : f(0)→ b(0) 4 : a(f(x))→ f(a(x))

5 : a(x · y)→ a(x) · y 6: a(b1(x))→ b1(a(x))

7 : f(b(x))→ b(f(x)) 8 : b(x) · y → b(x · y)

9 : a(f(0 · x))→ b1(f(0 · x) · (0 · f(x))) 10: a(f(0))→ b1(f(0) · 0)

11: b1(b(x))→ b(b(x)) 12: c(b(x))→ c(a(x))

13: a(b(x))→ b(a(x)) 14: a(0 · x)→ b(b(x))

Consider the algebra A on O>0 × N× N:

cA(x,m, n) = (x+ 1, 2m+ 2, 2m) 0A = (1, 0, 0)

bA(x,m, n) = (x,m+ 1, n) b1A(x,m, n) = (x, 2m,n+ 1)

aA(x,m, n) = (x,m,m+ 2n) fA(x,m, n) = (ωx,m,m+ 3)

(x,m, n) ·A (y, k, l) = (y + x,m,m+ n+ 1)

This algebra is simple (note that (x,m, n) ·A (y, k, l) > (y, k, l) since x 6= 0), weakly
monotone, and orients all rules of W ′3:

1 : (z + y + x,m, 2m+ n+ 2) > (z + y + x,m,m+ n+ 1)

2: (ωx+1, 0, 3) > (ωx + 1, 1, 1)

3: (ω, 0, 3) > (1, 1, 0)

4: (ωx,m, 3m+ 6) > (ωx,m,m+ 3)

5: (y + x,m, 3m+ 2n+ 2) > (y + x,m, 2m+ 2n+ 1)

6: (x, 2m, 2m+ 2n+ 2) > (x, 2m,m+ 2n+ 1)

7: (ωx,m+ 1,m+ 4) > (ωx,m+ 1,m+ 3)

8: (y + x,m+ 1,m+ n+ 2) > (y + x,m+ 1,m+ n+ 1)

9: (ωx+1, 0, 6) > (ωx + 1 + ωx+1, 0, 5)

10: (ω, 0, 6) > (ω, 0, 5)

11: (x, 2m+ 2, n+ 1) > (x,m+ 2, n)

12: (x+ 1, 2m+ 4, 2m+ 2) > (x+ 1, 2m+ 2, 2m)

13: (x,m+ 1,m+ 2n+ 1) > (x,m+ 1,m+ 2n)

14: (x+ 1, 0, 2) > (x,m+ 2, n)

for all x, y, z ∈ O>0 and m,n, k, l ∈ N. Thus this algebra shows termination of W ′3 by
Theorem 6.

6 Note that we added rule (14) to the TRSW3 originally presented in (Beklemishev, 2006) since personal

communication with Lev Beklemishev revealed that such an additional rule is in fact required to faithfully

model the worm sequence. We believe the derivational complexity of W3 to be actually smaller than
that of W2 and W ′

3, which is also supported by the fact that termination of W3 can be shown by TTT2
with standard techniques.
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The termination proof from the above example cannot be reproduced within TTT2,
since the interpretation function of · is simple on the carrier O>0 × N2 but not on
O × N2, which would be used by TTT2. However, TTT2 succeeds in the dependency pair
setting where it manages the crucial SCC by lexicographically combining an ROE algebra
of degree 2 with a linear interpretation. The overall time is about four seconds while the
CNF of the underlying SAT problem has approximately 87,000 variables and 205,000
clauses.

5. Automation of Elementary Algebras

Similar to ordinal algebras (Section 4), we give encodings of elementary interpretation
functions (Section 5.1) before implementation aspects are addressed in Section 5.2 and
examples (and limitations) are discussed in Section 5.3.

The shape of FBIs (see below) suffices to go beyond polynomial interpretations, which
fail on Examples 33 and 34. 7 Furthermore, a fixed base allows to use more powerful
approximations of comparisons/arithmetic.

Definition 32. A fixed-base elementary interpretation function (FBI) of depth 0 is

f(x) =
∑

16i6n

xifi + f0

and an FBI of depth d+ 1 is

f(x) =
∑

16i6n

xifi + f0 + bf
′(x)

( ∑
16i6n

xif̂i + f̂0

)
(6)

where f0, f1, . . . , fn, f̂0, f̂1, . . . , f̂n are naturals, f ′(x) is an FBI of depth d, and b > 2 is
a fixed natural number. Throughout this section we use the following abbreviations:

ḟ(x) =
∑

16i6n

xifi + f0 f̂(x) =
∑

16i6n

xif̂i + f̂0

An FBI algebra has N>1 as carrier and FBIs as interpretation functions for all function
symbols in the signature.

It is known that for polynomial interpretations the carriers N and N>µ admit the same
termination proving power for any µ ∈ N (see e.g. TeReSe (2003); Contejean et al. (2005)).
However, the situation is different for FBI’s. The function 2xy is not monotone on N but
it is on N>1. The typical transformation converts 2xy into the function 2x+1(y + 1)− 1,
but the latter does not admit an FBI representation. The following examples show the
usefulness of 2xy, so we restrict to the carrier N>1 in the sequel.

Example 33. Termination of Lescanne’s factorial example (Lescanne, 1995)

0 + x→ x 0 · x→ 0 fact(0)→ s(0)

s(x) + y → s(x+ y) s(x) · y → x · y + y fact(s(x))→ s(x) · fact(x)

x · (y + z)→ x · y + x · z

7 We remark that establishing termination of these systems becomes much easier when using dependency

pairs but then totality of the order is lost, which is essential for applications such as ordered completion.
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can be shown by an FBI algebra A of depth 2 with base b = 2 and interpretation functions

0A = 2, sA(x) = x+ 2, x+A y = 2x+ y + 1, x ·A y = 2xy, and factA(x) = 22
x

. We have

x+ 5 > x 22x > 2 22
2

> 4

2x+ y + 5 > 2x+ y + 3 2x+2y > 2x+1y + y + 1 22
x+2

> 2x+222
x

= 2x+2+2x

2x(2y + z + 1) > 2x+1y + 2xz + 1

for all x, y, z > 1.

Example 34. Termination of Lucas’ factorial example (Lucas, 2009)

x+ 0→ x 0 · x→ 0 fact(0)→ s(0)

x+ s(y)→ s(x+ y) s(x) · y → x · y + y fact(s(x))→ s(x) · fact(x)

can also be shown by an FBI algebra A of depth 2 with base b = 2 and interpretation

functions 0A = 2, sA(x) = x+ 2, x+A y = x+ 2y + 1, x ·A y = 2xy, and factA(x) = 22
x

.

We have

x+ 5 > x 22x > 2 22
2

> 4

x+ 2y + 5 > x+ 2y + 3 2x+2y > 2xy + 2y + 1 22
x+2

> 2x+222
x

= 2x+2+2x

for all x, y > 1.

In the sequel we sometimes treat an FBI f(x) of depth 0 as
∑

16i6n xifi + f0 + b00

to avoid case distinctions.

5.1. Encodings

Let f(x) and g(x) be FBIs of the form

f(x) =
∑

16i6n

xifi + f0 + bf
′(x)

( ∑
16i6n

xif̂i + f̂0

)
g(x) =

∑
16i6n

xigi + g0 + bg
′(x)

( ∑
16i6n

xiĝi + ĝ0

) (7)

5.1.1. Useful Abbreviations

First we introduce lower and upper bounds for two FBIs:

fmin(f, g)(x) =
∑

16i6n

xi min(fi, gi) + min(f0, g0)

+ bfmin(f ′,g′)(x)

( ∑
16i6n

xi min(f̂i, ĝi) + min(f̂0, ĝ0)

)
fmax(f, g)(x) =

∑
16i6n

xi max(fi, gi) + max(f0, g0)

+ bfmax(f ′,g′)(x)

( ∑
16i6n

xi max(f̂i, ĝi) + max(f̂0, ĝ0)

)
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Again we introduce the notation of contribution of a variable xi to f(x), which we

denote by coni(f(x)): 8

coni(f(x)) = fi > 0 ∨ f̂i > 0 ∨ (coni(f
′(x)) ∧ f̂(x) > 0)

5.1.2. Comparisons

The following recursive definition reduces the comparison of FBIs to the comparison

of non-linear polynomials. The latter can be compared by the absolute positiveness ap-

proach, see Hong and Jakuš (1998). For comparing polynomials we take the carrier N>1

into account such that e.g. 3y > y + 1 evaluates to true.

Definition 35. Let f(x) and g(x) be FBIs as in (7). Let

bbf
′(x)c =

(
(ḟ ′(x) + f̂ ′(x) = 0) ? 1 : b (ḟ ′(x) + f̂ ′(x))

)
Note that bf(x) > bbf(x)c. Furthermore let p(x) = ḟ ′(x) + f̂ ′(x) − ġ′(x) − ĝ′(x) and

h(x) = bbp(x)cf̂(x)− ĝ(x). We set

[f(x) > g(x)] = (ĝ(x) > 0→ [f ′(x) > g′(x)]) ∧
(

(f̂(x) > 0 ∧ [f ′(x) b > g(x)]) ∨ (a)

(ḟ(x) > ġ(x) ∧ f̂(x) > ĝ(x)) ∨ (b)

(h(x) > 0 ∧ p(x) > 0 ∧ f̂ ′(x) > ĝ′(x) ∧
ḟ(x) + bbg

′(x)cbbp(x)cf̂(x) > ġ(x) + bbg
′(x)cĝ(x))

)
(c)

[f(x) > g(x)] = (ĝ(x) > 0→ [f ′(x) > g′(x)]) ∧
(

(f̂(x) > 0 ∧ [f ′(x) b > g(x)]) ∨ (d)

(ḟ(x) > ġ(x) ∧ f̂(x) > ĝ(x) ∧
((f̂(x) > 0 ∧ [f ′(x) > g′(x)]) ∨ ḟ(x) > ġ(x) ∨ f̂(x) > ĝ(x))) ∨ (e)

(h(x) > 0 ∧ p(x) > 0 ∧ f̂ ′(x) > ĝ′(x) ∧
ḟ(x) + bbg

′(x)cbbp(x)cf̂(x) > ġ(x) + bbg
′(x)cĝ(x))

)
(f)

The difference between [f(x) > g(x)] and [f(x) > g(x)] is that in the latter we

demand at least one strict decrease. The following example shows that our encodings of

comparisons are very accurate.

Example 36. The encoding of [2x+1 > 1 + 2x] evaluates to true. The only interesting

case is (f) where p(x) = 1 and b2xcb21c = 4x > 1 + 2x = 1 + b2xc, i.e., 2x > 1, which

holds for all x ∈ N>1.

The encodings of comparisons are sound.

Lemma 37. Let f(x) and g(x) be FBIs as in (7).

(a) If [f(x) > g(x)] then [α](f(x)) > [α](g(x)) for all assignments α.

(b) If [f(x) > g(x)] then [α](f(x)) > [α](g(x)) for all assignments α.

8 Here f̂(x) > 0 tests the linear polynomial f̂(x) for positiveness.
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Proof. We only show (b) the argument for (a) is similar. Case (a) in Definition 35

approximates the situation when bf
′(x)f̂(x) > g(x) and case (b) is obvious. Finally, case

(c) follows from the argument below. Let p(x) and h(x) be as in Definition 35. For the
moment assume f ′(x) > p(x) + g′(x). Then

ḟ(x) + bf
′(x)f̂(x) > ġ(x) + bg

′(x)ĝ(x)

⇐= ḟ(x) + bp(x)+g
′(x)f̂(x) > ġ(x) + bg

′(x)ĝ(x)

⇐⇒ ḟ(x)

bg′(x)
+ bp(x)f̂(x) >

ġ(x)

bg′(x)
+ ĝ(x)

⇐⇒ ḟ(x)

bg′(x)
+ bp(x)f̂(x) + h(x) >

ġ(x)

bg′(x)
+ ĝ(x) + h(x)

⇐=
ḟ(x)

bg′(x)
+ h(x) >

ġ(x)

bg′(x)
∧ bp(x)f̂(x) > ĝ(x) + h(x)

⇐⇒ ḟ(x) + bg
′(x)h(x) > ġ(x) ∧ bp(x)f̂(x) > ĝ(x) + h(x)

⇐= h(x) > 0 ∧ ḟ(x) + bbg
′(x)ch(x) > ġ(x) ∧ bbp(x)cf̂(x) > ĝ(x) + h(x) (?)

⇐⇒ h(x) > 0 ∧ ḟ(x) + bbg
′(x)ch(x) > ġ(x) (†)

⇐⇒ h(x) > 0 ∧ ḟ(x) + bbg
′(x)cbbp(x)cf̂(x) > ġ(x) + bbg

′(x)cĝ(x)

In the step (?) the non-negativity of h(x) is used and the step (†) follows from the
definition of h(x). Finally we have to show that our assumption f ′(x) > p(x) + g′(x)
follows from the constraints. We observe

f ′(x) > p(x) + g′(x)

⇐⇒ ḟ ′(x) + bf
′′(x)f̂ ′(x) > ḟ ′(x) + f̂ ′(x)− ġ′(x)− ĝ′(x) + ġ′(x) + bg

′′(x)ĝ′(x)

⇐⇒ (bf
′′(x) − 1)f̂ ′(x) > (bg

′′(x) − 1)ĝ′(x)

⇐= (ĝ′(x) > 0→ [f ′′(x) > g′′(x)]) ∧ f̂ ′(x) > ĝ′(x)

While the above proof does not rely on p(x) > 0 this (redundant) constraint in Defini-
tion 35 might cut the search space. 2

5.1.3. Composition

Similar as for ROEs, FBIs are not closed under addition and composition.

Example 38. The sum 2x + 2y of the FBIs 2x and 2y has no FBI representation. Also,
substituting the FBI 2y+1 for x in the FBI 2xx results in 22

y+1(2y+1) = 22
y+y+1+22

y+1,
which also has no equivalent FBI representation.

We thus define under- and overapproximations for addition, multiplication, and com-
position.

Definition 39. Let f(x) and g(x) be FBIs as in (7).
(a) Multiplication of an FBI by a scalar again yields an FBI, i.e.

f(x) a =
∑

16i6n

xifia+ f0a+ bf
′(x)

( ∑
16i6n

xif̂ia+ f̂0a

)
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(b) For addition we use fmin (fmax) to estimate a lower (upper) bound for both f(x)
and g(x), and introduce approximations by FBIs as follows:

f(x) +µ g(x) =
∑

16i6n

xi(fi + gi) + (f0 + g0) + beµ(x)
( ∑

16i6n

xi(f̂i + ĝi) + (f̂0 + ĝ0)

)
f(x) +ν g(x) =

∑
16i6n

xi(fi + gi) + (f0 + g0) + beν(x)
( ∑

16i6n

xi(f̂i + ĝi) + (f̂0 + ĝ0)

)
with eµ(x) abbreviating f̂(x) = 0 ? g′(x) :

(
ĝ(x) = 0 ? f ′(x) : fmin(f ′, g′)(x)

)
and

eν(x) abbreviating f̂(x) = 0 ? g′(x) :
(
ĝ(x) = 0 ? f ′(x) : fmax(f ′, g′)(x)

)
.

(c) To approximate multiplication of an expression of the form bg
′(x) with f(x) by an

FBI, we may use

bg
′(x) ·µ f(x) = f̂(x) > 0 ? ḟ(x) + bf

′(x)+µg
′(x)f̂(x) : bg

′(x)ḟ(x)

bg
′(x) ·ν f(x) = f̂(x) > 0 ? bf

′(x)+νg
′(x)

( ∑
16i6n

xi(f̂i + fi) + (f̂0 + f0)

)
: bg

′(x)ḟ(x)

(d) Finally we can give approximations for the composition f(g)(x) = f(g1(x), . . . , gn(x)):

f(g)µ(x) =

µ∑
16i6n

gi(x)fi +µ f0 +µ b
f ′(g)µ(x) ·µ

( µ∑
16i6n

gi(x)f̂i +µ f̂0

)

f(g)ν(x) =

ν∑
16i6n

gi(x)fi +ν f0 +ν b
f ′(g)ν(x) ·ν

( ν∑
16i6n

gi(x)f̂i +ν f̂0

)
(e) Let t be a term and A an FBI algebra. By induction on the term structure we

define FBIs µA(t) and νA(t) such that

µA(t) =

{
t if t ∈ V
fA(µA(t1), . . . , µA(tn))µ otherwise

νA(t) =

{
t if t ∈ V
fA(νA(t1), . . . , νA(tn))ν otherwise

The following example illustrates Definition 35.

Example 40. We consider the cases for addition and multiplication.

(b) We have fmin(x+ 1, x) = x and fmax(x+ 1, x) = x+ 1, thus 2x+1y+µ 2x(z + 1) =
2x(y + z + 1) but 2x+1y +ν 2x(z + 1) = 2x+1(y + z + 1).

In certain pathological cases the approximations of addition are not commutative.
To be more precise, the resulting FBIs may be syntactically different but denote
the same elementary function. For instance, 2x · 0 +µ 2x+1 · 0 = 2x+1 · 0 while
2x+1 · 0 +µ 2x · 0 = 2x · 0. Still, we do not regard this a problem for our application
as the encoding of comparisons takes these cases into account.

(c) For multiplication we have 2x+1 ·µ 22
x

= 2(x+1)+µ2
x

= 2x+1+2x and 2x+1 ·ν 22
x

=
2x+1+2x , the approximation is thus precise in these cases. On the other hand, as
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(x + 1) +µ 2x = (x + 1) +ν 2x = x + 1 + 2x we have 2x+1 ·µ (z + 1 + 22
x

y) =
z + 1 + 2x+1+2xy, while 2x+1 ·ν (z + 1 + 22

x

y) = 2x+1+2x(y + z + 1).

The following example shows that in practice our approximations are very accurate,
i.e., for Examples 33 and 34 the approximations are exact.

Example 41. For Example 33 we get the following constraints

x+ 5 > x 22x > 2 22
2

> 4

2x+ y + 5 > 2x+ y + 3 2x+2y > y + 1 + 2x2y 22
x+2

> 2x+2+2x

2x(2y + z + 1) > 1 + 2x(2y + z)

while Example 34 yields

x+ 5 > x 22x > 2 22
2

> 4

x+ 2y + 5 > x+ 2y + 3 2x+2y > 2y + 1 + 2xy 22
x+2

> 2x+2+2x

We now show that Definition 39 yields valid over- and underapproximations.

Lemma 42. Let A be an FBI algebra and t be a term. Then [α](µA(t)) 6 [α]A(t) 6
[α](νA(t)) for all assignments α.

Proof. We argue that all approximations in Definition 39 constitute valid lower and
upper bounds. Let α be an arbitrary assignment.

(a) Since scalar multiplication is no approximation there is nothing to show.
(b) For +µ (the reasoning for +ν is analogous) one of the three cases applies:

f(x) + g(x) > ḟ(x) + ġ(x) +


bg
′(x)ĝ(x) if f̂(x) = 0

bf
′(x)f̂(x) if ĝ(x) = 0

bh
′(x)(f̂(x) + ĝ(x)) if [α](f ′(x)) > [α](h′(x))

and [α](g′(x)) > [α](h′(x))

(c) If f̂(x) = 0 then bg
′(x)f(x) = bg

′(x)ḟ(x) and if f̂(x) > 0 we obtain for ·µ

bg
′(x) · f(x) = bg

′(x)ḟ(x) + bf
′(x)+g′(x)f̂(x) > ḟ(x) + bf

′(x)+g′(x)f̂(x)

> ḟ(x) + bf
′(x)+µg

′(x)f̂(x) = bg
′(x) ·µ f(x)

while ·ν is justified by

bg
′(x) · f(x) = bg

′(x)ḟ(x) + bf
′(x)+g′(x)f̂(x) 6 bf

′(x)+g′(x)ḟ(x) + bf
′(x)+g′(x)f̂(x)

= bf
′(x)+g′(x)(ḟ(x) + f̂(x)) 6 bf

′(x)+νg
′(x)(ḟ(x) + f̂(x)) = bg

′(x) ·ν f(x)

(d) By (a)–(c) and weak monotonicity of addition, multiplication, and exponentiation.
(e) By induction on the term structure of t, using (d). 2

5.1.4. Main Theorem
An FBI f(x) is monotone if all variables xi contribute to it. Monotonicity of f(x) is

thus expressed by

mon(f(x)) =
∧

16i6n

coni(f(x))
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An FBI f(x) is well-defined if [f(x) > 1] holds.
Finally we obtain the main result of this section.

Theorem 43. Let R be a TRS over a signature F and A be an FBI algebra on F . If∧
`→r∈R

[µA(`) > νA(r)] ∧
∧
f∈F

(
[fA(x) > 1] ∧mon(fA(x))

)
holds then R is terminating.

Proof. By the assumption any fA is well-defined and monotone. Hence the result follows
by Theorem 5 in combination with Lemmata 37 and 42. 2

5.2. Implementation

To find suitable coefficients we consider parametric FBIs where we let the coefficients
f0, f1, . . . , fn, f̂0, f̂1, . . . , f̂n in (7) be unknowns over the naturals. Then the encodings
from the previous section reduce the problem to finding models in existentially quantified
non-linear integer arithmetic. For an efficient implementation the following heuristics
(which are applied to interpretations of a function symbol but not enforced for FBIs
occurring when evaluating terms) have been proved useful:

(d) depth: A function symbol f is interpreted by an FBI of depth max{0, dR(f) − 2}
where d∅(f) = 0 and dS(f) = 1 + max{dS\Sf (g) | `→ r ∈ Sf and g occurs in r}
otherwise. Here Sf denotes the rules in S whose left-hand sides have root f . For
Examples 33 and 34 the heuristic yields depth 2 for fact, depth 1 for ·, and depth
0 for the remaining function symbols.

(1) shape: Every variable may only appear once in each FBI, i.e., either in ḟ(x) or in

f̂(x) or in f ′(x). We enforce this by adding a side constraint.
(2) shape: Note that in the motivating examples every function symbol is interpreted

by an FBI f(x) satisfying ∧
16i6n

(fi = 0 ∨ f̂i = 0) (8)

Heuristic (2) shares the variables for the coefficients fi and f̂i. This is achieved by
using fresh boolean variables bi and interpreting a function by (here fi = cibi and

f̂i = ci(1− bi))∑
16i6n

xibici + c0b0 + bf
′(x)

( ∑
16i6n

xi(1− bi)ci + c0(1− b0)

)
Heuristic (2) does not work recursively but takes the constant part into account
(in contrast to heuristic (1)).

(3) shape: At most one of f̂i (0 6 i 6 n) is greater than zero.

(4) shape: If f̂(x) = 0 then we demand all coefficients in ḟ ′(x) and f̂ ′(x) to be zero.

(5) shape: If f̂(x) = 0 then we demand all coefficients in f ′(x) to be zero.
Note that (5) is more restrictive than (4); while the latter admits an interpretation of

the form bb
2·0 · 0, this is not allowed when applying (5).
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5.3. Examples and Limitations

It is not hard to construct TRSs where FBI termination proofs require interpretations
of arbitrary depth.

Example 44. Let Rn for n > 0 consist of the rules

x+ 0→ x x+ s(y)→ s(x+ y) exp0(x)→ x

expi+1(0)→ expi(s(0)) expi+1(s(x))→ expi(exp1(x) + exp1(x))

for all 0 6 i < n. Termination of Rn can be shown by the FBI algebra A with base
b = 2 and interpretations 0A = 1, sA(x) = x + 1, x +A y = x + 2y, and expi,A(x) =

expi2(2x+ 1) where expi2(x) denotes i-fold exponentiation with base 2, i.e., exp0
2(x) = x

and expi+1
2 (x) = 2exp

i
2(x):

x+ 2 > x x+ 2y + 2 > x+ 2y + 1 2x+ 1 > x

expi+1
2 (3) > expi2(5) expi+1

2 (2x+ 3) > expi2(22x+1 + 2 · 22x+1)

The last two inequalities can be verified by simple inductive arguments. It is easy to see
that any FBI algebra that orients Rn needs to have at least depth n.

It can be shown that already R1 admits multiple exponential complexity. As to be
expected, actually any TRS compatible with an FBI algebra is bounded by a multiple
exponential function. A more precise upper bound is given by the following lemma.

Lemma 45. For any TRS R compatible with an FBI algebra A having base b and
maximal depth d− 1, dhR(n) ∈ expdnb (O(n)).

Proof. As dhR(t) 6 [t]A, it suffices to find a k ∈ N such that any ground term t satisfies

[t]A 6 exp
d|t|
b (k d |t|). Let m− 1 be the maximal arity in F , c the maximum of 2 and all

coefficients occurring in fA for f ∈ F , and k = 1 + logb(cm). We apply induction on t.

Suppose t is a constant a. In order to show aA 6 expdb(k d) we consider a slightly
more general statement. Let α be an FBI of depth e with base b and maximum co-
efficient smaller than or equal to c, such that α depends on no variables. We verify
α 6 expe+1

b (k (e+ 1)) by induction on e, such that in particular aA 6 expdb(k d). If e = 0
then α 6 c 6 cm = exp1

b(logb(cm)) 6 exp1
b(k). Otherwise, α has depth e+ 1 and thus α

can be written as α = bα
′
c1 + c2 where c1, c2 ∈ N and α′ has depth e. By the induction

hypothesis, α′ 6 expe+1
b (k (e+ 1)), and hence

α 6 bexp
e+1
b

(k (e+1))c+ c = (bexp
e+1
b

(k (e+1)) + 1)c 6 bexp
e+1
b

(k (e+1))+1blogb(c)

6 bexp
e+1
b

(k (e+1))+k 6 bexp
e+1
b

(k (e+2)) = expe+2
b (k(e+ 2))

Suppose t = g(t1, . . . , tn) is not a constant. Let αi = [ti]A. Since |ti| 6 |t| − 1, the

induction hypothesis yields αi 6 exp
d (|t|−1)
b (k d (|t| − 1)). To verify [t]A 6 exp

d |t|
b (k d |t|)

we consider a more general statement. Let f(x) be an FBI of the shape (6), having base
b, maximum coefficient at most c and depth e. We abbreviate f(α1, . . . , αn) by α and

show α 6 exp
d (|t|−1)+e+1
b (k d (|t| − 1) + k (e+ 1)) by induction on e.
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If e = 0 then f(x) is just a linear function and thus

α 6 exp
d (|t|−1)
b (k d (|t| − 1)) cm 6 bexp

d (|t|−1)

b
(k d (|t|−1))+logb(cm)

6 bexp
d (|t|−1)

b
(k d (|t|−1)+k) = exp

d (|t|−1)+1
b (k d (|t| − 1) + k)

Now suppose f(x) has depth e + 1. Thus f ′(x) has depth e and, by the induction hy-

pothesis, f ′(α1, . . . , αn) 6 exp
d (|t|−1)+e+1
b (k d (|t| − 1) + k (e+ 1)) = β. Therefore

α =
∑

16i6n

αifi + f0 + bf
′(α)

( ∑
16i6n

αif̂i + f̂0

)
6 bβexp

d (|t|−1)
b (k d (|t| − 1)) cm+ exp

d (|t|−1)
b (k d (|t| − 1)) cm

= (bβ + 1) exp
d (|t|−1)
b (k d (|t| − 1)) cm 6 bβ+1 exp

d (|t|−1)
b (k d (|t| − 1)) cm

6 bβ+1bexp
d (|t|−1)

b
(k d (|t|−1))blogb(cm) = bβ+exp

d (|t|−1)

b
(k d (|t|−1))+k

= bexp
d (|t|−1)+e+1

b
(k d (|t|−1)+k (e+1))+exp

d (|t|−1)

b
(k d (|t|−1))+k

6 bexp
d (|t|−1)+e+1

b
(k d (|t|−1)+k (e+2)) = exp

d (|t|−1)+e+2
b (k d (|t| − 1) + k (e+ 2))

In particular, gA(α) 6 exp
d (|t|−1)+d
b (k d (|t| − 1) + k d) = exp

d |t|
b (k d |t|) as the depth of

gA is smaller than d. 2

The next example shows that the lack of multiplication poses a weakness of FBIs.

Example 46. The following TRS (from Lescanne (1995, Fig. 2)) cannot be oriented by
FBIs:

0 + x→ x s(x) + y → s(x+ y)

0 · x→ 0 s(x) · y → x · y + y x · (y + z)→ x · y + x · z
x ↑ 0→ s(0) x ↑ s(y)→ x · (x ↑ y)

x ↑ (y + z)→ (x ↑ y) · (x ↑ z) (x · y) ↑ z → (x ↑ z) · (y ↑ z) (x ↑ y) ↑ z → x ↑ (y · z)

This is because for any linear function x +A y the interpretation x ·A y has to involve
exponentiation (as in Examples 33 and 34). But then the rule x ↑ (y+z)→ (x ↑ y)·(x ↑ z)
is no longer orientable since the maximal power of b occurring in the (approximated)
interpretation of the right-hand side exceeds the maximal power for the left-hand side.
In contrast, elementary interpretations with non-fixed base succeed (cf. Lescanne (1995,
Fig. 2)).

6. Experimental Results

We implemented the algebras from Sections 4 and 5 in the termination tool TTT2 (Korp
et al., 2009). In version 1.15, which is available from the tool’s website, 9 ordinal algebras
can be used by executing ./ttt2 -s HYDRA <file> and FBI algebras by ./ttt2 -s FBI

<file>, respectively. Furthermore, the web interface has been updated accordingly.

9 http://cl-informatik.uibk.ac.at/software/ttt2/
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method YES avg. time G (Definition 12) H (Example 30) W ′
3 (Example 31)

ROE algebras 329 2.1 8.2 11.4 4.0

Table 1. Experimental Results for ROE Algebras.

method YES avg. time Example 33 Example 34 (Lescanne, 1995, Fig. 1)

poly 125 0.3 (0.2) (0.4) (0.3)

fbi 41 29.7 1443.4 731.0 13540.5

fbi[d] 170 4.7 16.1 10.0 27.8

fbi[d12345] 174 4.2 8.9 7.9 24.1

Table 2. Experimental Results for FBI Algebras.

For experiments 10 we considered the 1463 TRSs in the Standard TRS category of the
Termination Problems Data Base (TPDB 8.0.7) 11 and the examples from the paper.
The experiments have been performed using a single node of a machine equipped with
12 quad-core AMD OpteronTM processors 6174 running at a clock rate of 2.2 GHz and
330 GB of main memory. If a TRS could not be handled within 60 seconds, the execution
of TTT2 was aborted.

For the evaluation in Table 1 the following setup is used. ROE algebras (according
to the description in Section 4.2) with interpretation functions of initial depth two are
used in combination with weakly monotone matrix interpretations of dimension two.
The coefficients are represented with up to four bits. The method is applied directly
(establishing simple termination, if successful) and in the DP setting in combination
with dependency graphs, SCC analysis and the subterm criterion. The left part of Table 1
shows the performance of this ROE algebra-based strategy on TPDB while the relevant
examples from the paper are considered in the right part of the table where the numbers
indicate the execution time in seconds.

Table 2 compares the power of FBIs (of depth at most 2) with linear polynomial
interpretations when used in direct termination proofs (orient all rules by a single inter-
pretation). For numbers in parentheses TTT2 was not successful. The numbers in brackets
indicate which heuristics have been used. FBIs as well as linear interpretations use two
bits to encode coefficients and six bits for arithmetic evaluations.

Our experiments show the need for a heuristic concerning the depth of the FBIs. The
other heuristics are much less important, i.e., they either slightly decrease the execu-
tion time or increase the number of systems shown terminating. We remark that any
proper subset of the heuristics {1, 2, 3, 4, 5} has only tiny effects on the execution speed
of the examples in the right part of Table 2 while the whole set admits significant gains.
The systems where FBIs succeed but linear polynomials fail often require interpretation
functions of non-linear shape.

While FBIs are successful on the examples from the right part of Table 2, TTT2 cannot
establish termination using ROE algebras. On the other hand, FBIs cannot cope with
the examples from the right part of Table 1 due to their derivational complexity.

10Details available from http://cl-informatik.uibk.ac.at/ttt2/ordinals
11Available from http://termcomp.uibk.ac.at.
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7. Conclusion

7.1. Summary

We have encoded Goodstein’s sequence as a TRS and discussed automation of a ter-
mination criterion which can cope with this system. Furthermore our implementation is
also successful on an encoding of the battle of Hercules and Hydra, for which a (sound)
automatic termination proof has been lacking so far. While preliminary experiments on
the termination problems database TPDB did not yield proofs for previously unknown
problems, we regard the main attraction of our method that it allows to go beyond mul-
tiple recursive derivation length. As shown in the article, automation of lexicographic
combinations of termination proofs with respect to Theorem 6 is more challenging than
with respect to Theorem 5.

Needless to say, there will always be TRSs whose termination is out of reach of auto-
matic tools. Lepper (2004) presented an infinite sequence (Rk)k>1 of TRSs that simulate
Hydra battles. Each of these TRSs is simply terminating, but the derivational complex-
ity of Rk cannot be bounded by an α-recursive function such that α < ∆k, where ∆k

approaches the small Veblen ordinal ϑ(Ωω) when k tends to infinity. With ROE algebras
one can only prove termination of TRSs whose derivational complexity is ε0-recursive.

The very first encoding of the Hydra battle in Dershowitz and Jouannaud (1990) still
defeats TTT2. A (difficult) termination proof of this TRS can be found in Moser (2009).

TTT2 also fails on the Hydra encoding of Buchholz (2006), which is not simply termi-
nating although it admits a comparatively concise termination argument.

Furthermore, we have also shown how elementary interpretations can be automated
using similar means, a challenge formulated as Problem #28 in the RTA List of Open
Problems. Somehow surprisingly, FBIs require further heuristics to admit an efficient
implementation. We believe that ordinal arithmetic is easier for the underlying SMT
solver since expressions might be consumed while this is not the case for elementary
arithmetic.

7.2. Future Work

The approximation of term interpretations could partially be made more precise. As
an example, we discuss scalar multiplication for ordinals. Since the approximations must
be correct for all values of x, the overapproximation (f ·ν a)(x) is already optimal. To see
this consider (x+y)·ν2 for natural values of x and y. Inspecting the proof of Lemma 24(a),
instead of the current underapproximation (f ·µ a)(x) we could also use (when a > 0)

(f ·µ′ a)(x) =
∑

16i6n

xi(fi · ei) + ωf
′(x)(fω · a)⊕

⊕
16i6n

xi(f̂i · a)⊕ (f0 · a)

where exactly one of ei is a and all others are one. The underlying SMT solver can
then choose an appropriate summand to be multiplied with a such that subsequent
operations (addition, comparison, etc.) benefit. Refining the approximations for other
operations (addition/comparison) is more involved and it is unclear if the additional
precision prevails the increasing difficulty of the resulting SMT problems. Moreover,
currently we do not know of any other TRSs with high derivational complexity that are
within reach of our technique and could benefit from such improvements.
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It is non-trivial to decide whether, given two ROEs f(x) and g(x) with given co-
efficients, [α](f(x)) > [α](g(x)) holds for all assignments α. Though this problem is
undecidable for polynomials, note that in the case of ROEs only linear constraints are
involved. Further investigation of this issue might also lead to a better approximation of
the encoding [f(x) > g(x)].

Generalizing elementary interpretations to a non-fixed base is an obvious choice for fu-
ture work. However, we anticipate that suitable approximations will neither give further
deep insights nor significantly improve termination proving power and hence we propose
a different line of research. Since they are elementary interpretations, FBIs yield a total-
izable order on ground terms. This holds despite the fact that our implementation relies
on approximations when evaluating or comparing terms (see Example 36). Hence our
implementation cannot be used to decide ordered rewriting, for instance to decide word
problems using ground-convergent systems. However, since unfailing completion proce-
dures never rely on the fact that s >A t does not hold, FBIs can be used for ordered
completion as in Winkler and Middeldorp (2010).

It is easy to enforce AC compatibility of algebras based on elementary and ordinal
interpretation functions. For the case of FBI algebras, any AC symbol f must be inter-
preted by an FBI of the shape

(x1 + x2)f1 + f0 + bf
′(x1,x2)

(
(x1 + x2)f̂1 + f̂0

)
where f ′(x1, x2) is AC compatible as well. For instance, if + is considered an AC symbol
then AC termination of all TRSs in Examples 33, 34, and 44 can be shown with AC
compatible FBI algebras (by picking x +A y = 2x + 2y + c for a suitable constant c,
and adapting the interpretations of other symbols accordingly). An ROE algebra is AC
compatible if any AC symbol f is interpreted by an ROE

ωf
′(x1,x2)fω ⊕ x1f̂1 ⊕ x2f̂1 ⊕ f0 (9)

where f ′(x1, x2) is again AC compatible. However, note that if a TRS R can be oriented
with an ROE algebra where all interpretations match the shape (9) then a similar argu-
ment as used in (Winkler et al., 2012, Theorem 13) shows that R is also compatible with
an FBI algebra with sufficiently large base b.

Since non-linear polynomials give rise to an exponential size SMT encoding, such
interpretations are hardly used within termination tools. We anticipate that suitable
approximations could improve the performance of these implementations.

Formalizing our approximations in a theorem prover would extend the contributions
from Manolios and Vroon (2005) and enable certification of such termination proofs.
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Hong, H., Jakuš, D., 1998. Testing positiveness of polynomials. JAR 21 (1), 23–38.
Just, W., Weese, M., 1996. Discovering Modern Set Theory. I: The Basics. American

Mathematical Society.
Kirby, L., Paris, J., 1982. Accessible independence results for Peano arithmetic. Bulletin

of the London Mathematical Society 14, 285–325.
Korp, M., Sternagel, C., Zankl, H., Middeldorp, A., 2009. Tyrolean Termination Tool 2.

In: Proc. 20th RTA. Vol. 5595 of LNCS. pp. 295–304.
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