
Lambda Calculus with Patterns

Vincent van Oostrom

Department of Mathematics and Computer Science,

Vrije Universiteit, de Boelelaan 1081 A, 1081 HV Amsterdam.

email: oostrom@cs.vu.nl

Abstract

The ��-calculus is an extension of the �-calculus with a pattern matching facility.

The form of the argument of a function can be speci�ed and hence ��-calculus is

more convenient than ordinary �-calculus. We explore the basic theory of ��-calculus,

establishing results such as conuence. In doing so, we �nd some requirements for

patterns that guarantee conuence. Our work can be seen as giving some foundations

for implementations of functional programming languages.

1. Introduction

Functional programming languages can be considered as more or less sugared versions of

the lambda calculus (�). Therefore it is natural to specify the meaning of the constructs in

functional programming languages via a translation of these constructs into �, after which

one can pro�t from the extensive amount of theory that is known about �, such as CR (the

Church-Rosser or conuence property), see e.g. [HS86] or [Bar84]. In [Pey87] a translation of

a subset of Miranda

1

is given in two steps, �rst into an intermediate language, the extended

lambda calculus, and then into �. The extended lambda calculus is � extended with a pattern

matching lambda abstraction facility. (There are some other, less important, features in this

extended lambda calculus that we omit in the present work.)

Pattern matching lambda abstraction is a generalisation of ordinary abstraction. In � one

transforms a term into a function by abstracting from a variable. Application of that function

to an argument is then performed by substituting the argument for the free occurrences of

the variable in the term (the function body). We can apply this function to any �-term

because a variable `matches', i.e. can be instantiated to, any �-term. In a pattern matching

lambda abstraction the pattern abstracted from speci�es which form the argument must

have in order to match. Such a function is only applicable to instantiations of the pattern.

1

Miranda is a trademark of Research Software Limited.

1

Application is then performed by substituting the terms bound to the free variables in the

pattern into the function body.

We use this idea for typed lambda calculus to extend untyped lambda calculus with a

similar construct. The undecidability of equality in untyped lambda calculus forces us to

use `syntactic' matching instead of the `semantic' matching used in [Pey87].

As a simple example consider the natural numbers de�ned in the usual Peano style, that

is, n is represented by S

n

(0). The predecessor and successor functions are easily expressed

as

P

�

� (�S(x):x) and S

+

� (�x:S(x))

respectively. As another example, the projection functions for pairs can be expressed as

�

0

� (�[x;y]:x) and �

1

� (�[x;y]:y)

In this paper a way in which S(x), [x;y] and other `constructs' can be represented as syntactic

patterns is given.

If we allow abstraction from arbitrary �-terms we run, not surprisingly, into di�culties

because di�erent evaluation orders can lead to di�erent results. As patterns are meant to

be �xed constructs which can not be evaluated, we should allow as patterns only terms

which can not be (partially) destroyed by evaluating parts of the term they are in. We

give a restriction, the rigid pattern condition (RPC), for this to hold. We prove that the

system ��, with patterns in a set � which satis�es RPC, has the Church-Rosser property.

A consequence is that �� is a conservative extension of � in the sense that the convertibility

relation for �� restricted to �-terms coincides with the convertibility relation for �.

A set � is given satisfying some simple syntactic restrictions such that it is RPC. The way

in which constructors can be modelled in �� is shown.

Next we prove the Finite Developments Theorem for RPC-systems. We obtain an exact

upper bound on the maximal development of a term.

In this paper we will use the `naive' notation for terms, that is, with variable names.

However in Appendix C we give a simple extension of De Bruijn's notation to handle ��-

terms.

Many of the notions used and proofs given are taken from [Bar84] and adapted to our

systems. (For readers familiar with [Bar84], inspection of how the notions are extended

probably will do to verify our proofs.)

2. Preliminaries

For the standard notation used in this paper we refer the reader to Appendix A. Now we �x

the somewhat less common notations regarding trees and occurrences. The reader already

familiar with substitutions de�ned by means of occurrences can safely skip this section.

Terms can be considered as labelled trees. It is then natural to identify a node with the

unique path leading from the root towards it, where paths are speci�ed by sequences of

numbers. We �rst de�ne some operations on sequences.

2

Definition 2.1. Sequences

1. Seq(X) is the set of �nite sequences over a set X.

2. Sequences are denoted by `arrowed' letters, e.g. ~x,

~

N .

3. The length of a sequence ~x is denoted by j~xj.

4. If we want to name the individual elements of a sequence ~x of length n 2 IN, we denote

~x by hx

1

; . . . ; x

n

i. hi denotes the empty sequence.

Where possible we extend our notions for elements of a set X to sequences over X.

Definition 2.2. Operations on Sequences

Let ~x; ~y 2 Seq(X) and S; T � Seq(X).

1. If ~x = hx

1

; . . . ; x

n

i; ~y = hy

1

; . . . ; y

m

i, then ~x � ~y = hx

1

; . . . ; x

n

; y

1

; . . . ; y

m

i is the con-

catenation of ~x and ~y.

2. ~z = ~xn~y is another notation for ~x � ~z = ~y. We say ~z is the left division of ~y by ~x.

3. S � T = f~x � ~y j ~x 2 S & ~y 2 Tg.

4. SnT = f~xn~y j ~x 2 S & ~y 2 T & 9~z : ~xn~y = ~zg

Definition 2.3. Orderings on Sequences

Let � be a partial order on X, ~x; ~y 2 Seq(X), then

1. ~x is a pre�x of ~y, notation ~x E ~y, if 9~z : ~x � ~z = ~y,

2. ~x is a proper pre�x of ~y, notation ~x / ~y, if ~x E ~y, but ~y 5 ~x.

3. ~x and ~y are disjoint, notation ~x?~y, if ~x and ~y are incomparable that is, both ~x 5 ~y

and ~y 5 ~x. (This does not mean that disjoint ~x,~y may not have elements in common.

The word `disjoint' anticipates on future usage for disjoint subterms.)

4. ~x is lexicographically less than or equal to ~y, notation ~x -

l

~y, if @~z,

~

x

0

,

~

y

0

, y � x, such

that ~x = ~z � hxi �

~

x

0

and ~y = ~z � hyi �

~

y

0

,

5. ~x is lexicographically less than ~y, if ~x �

l

~y, where �

l

is the partial order generated by

-

l

.

If S is the singleton set fsg then we write s � T; snT for S � T; SnT respectively.

Trees are just `pre�x-closed sets of sequences'.

Definition 2.4. Trees

Let ; 6= T � Seq(X).

1. A set T is an X-tree if

~y 2 T & ~x / ~y) ~x 2 T

3

2. hi is the root of T .

3. The elements from T are T -nodes.

4. For ~z 2 T , �(~z) = #fx j ~z � hxi 2 Tg, is its out-degree.

5. If a node has out-degree 0, then it is a T -leaf.

6. If a node has out-degree > 0, then it is an internal T -node.

7. T is complete if for all internal T -nodes ~x and all y 2 X : ~x � hyi 2 T .

8. u,v,w,. . . denote arbitrary nodes of trees, also called occurrences. Notice that occur-

rences are not arrowed.

If X is equipped with a partial order �, then the lexicographic ordering gives a total

ordering on nodes, so a tree is then called an �-ordered tree. The set of all �-ordered X-

trees is denoted by Tree(X;�). A complete tree in Tree(f0; 1g; <)-tree is a binary tree. The

set of all binary trees is denoted by Bintree.

As terms correspond to trees, operations on terms, e.g. replacing an expression by its

result, correspond to operations on terms. Note that if u 2 T , then unT is an (ordered) tree

again.

Figure 1: Tree operations

u vu v u

Definition 2.5. Operations on Trees

Let S be an (ordered) tree, let ~u be a sequence of pairwise disjoint S-nodes and let

~

T be a

sequence of (ordered) trees (with the same length n as ~u).

1. The ~u-pruning of S (notation S[~u] or S[u

1

; . . . ; u

n

]) is the tree :

S �

n

[

i=1

u

i

� (u

i

nS)

(So, S[~u] originates from S by leaving away the subtrees located at u

1

; . . . ; u

n

, see

Figure 1.)

4

2. The replacement of ~u by

~

T in S (notation S[

~

T==~u] or S[T

1

; . . . ; T

n

==u

1

; . . . ; u

n

]) is the

tree :

S[~u] [

n

[

i=1

u

i

� T

i

(see Figure 1)

3. A special case of replacement is called substitution, namely if the ~u in S[

~

T==~u] is a

sequence of S-leaves. Then we write S[

~

T=~u] and say that S[

~

T=~u] is the substitution of

~

T for ~u in S.

4. It will be implicit in the notations S[

~

T==~x] and S[

~

T=~x], that

~

T and ~x are sequences of

the same length.

The de�nitions can easily be extended to labelled trees, i.e. trees where each node has a

label attached to it.

Definition 2.6. Labelled Trees

Let A be a ranked set, i.e. a set with associated ranking function % : A! IN.

1. An A-labelled X-tree is a pair M = (T; `), where

(a) T is an X-tree.

(b) ` : T ! A is a total function such that 8u 2 T : �(u) = %(`(u)).

2. T is the underlying tree of M , and ` is the labeling of M . We often suppress mention

of M and write T

M

and `

M

instead of M ,`.

This is de�nition is easily extended to ordered trees. The set of all A-labelled binary trees

is denoted by Lbintree(A).

Definition 2.7. Operations on Labelled Trees

Let M;

~

N be (sequences) of A-labelled trees, and let ~u be a sequence of pairwise disjoint

M -nodes (with the same length n as

~

N).

1. The replacement of ~u by

~

N in M (notation M [

~

N==~u] or M [N

1

; . . . ; N

n

==u

1

; . . . ; u

n

]) is

the A-labelled tree de�ned by :

(a) T

M [

~

N==~u]

= T

M

[T

~

N

==~u],

(b) `

M [

~

N==~u]

(w) = `

M

(w), 8w 2 T

M

[~u]

`

M [

~

N==~u]

(w) = `

N

i

(u

i

nw), 8i 2 IN;8w 2 u

i

�N

i

2. As for unlabelled trees, to denote that ~u is a set of leaves in the replacementM [

~

N==~u],

we write M [

~

N=~u] and say that M [

~

N=~u] is the substitution of

~

N for ~u in M .

3. For a 2 A, O

a

(M) = fu 2 T

M

j `

M

(u) = ag, is the set of a-occurrences of M . We

extend this notation to subsets of A. This function yields all occurrences whose label

is in the speci�ed set.

Where symbols are understood from the context we sometimes omit them in our notations.

5

3. Generalised Lambda Terms

In this section we give the formal de�nition of the generalised lambda-calculus and extend

the de�nitions of convertibility, �-congruence, substitution and contexts accordingly.

Throughout this paper we assume V = fv

0

; v

1

; v

2

; . . .g to be a countably in�nite set of

variables. Furthermore x,y,z,. . . denote arbitrary variables.

Definition 3.1. Generalised Lambda Terms

1. Generalised �-terms are words over the alphabet V [f�; :; (;)g. We use L,M ,N as

typical variables over generalised �-terms.

2. The set �� of generalised �-terms is de�ned inductively as follows :

(a) V � ��

(b) M;N 2 ��) (MN) 2 �� (application)

(c) M;N 2 ��) (�M:N) 2 �� (generalised abstraction)

Alternatively we can view generalised �-terms as labelled binary trees. The representations

of the terms (�M:N), (MN) and ((�x:x)y) are given in Figure 2.

�

�

�

�

M

@

@

@

N

@

�

�

�

M

@

@

@

N

@

�

�

�

�

�

�

�

x

@

@

@

x

@

@

@

y

Figure 2: tree representation of terms

Alternative Definition 3.2. Generalised Lambda Terms

�� = Lbintree(L), where L = V [f�;@g, with ranking function % de�ned by

1. %(b) = 0, for b 2 V ,

2. %(b) = 2, for b 2 f�;@g.

We will freely mix usage of the two, obviously equivalent, representations. To denote that

a generalised �-term M has the same representation, in either the �rst or second sense, as a

generalised �-term N , we write M � N , so � is the diagonal of the set of pairs of terms. If

M is a generalised �-term in the �rst sense, we write (T

M

; `

M

) to denote the corresponding

representation ofM in the second sense (as labelled tree). By abuse of language we sometimes

6

say that a term M has a certain property when we mean that the underlying tree of M has

that property, e.g. u 2M instead of u 2 T

M

.

These two de�nitions allow us to specify various operations on terms in both a structural

and a denotational way. In most cases we give the speci�cation in whichever is the most

convenient way.

Definition 3.3. Pattern and Body

1. M is the pattern and N is the body of the term (�M:N).

2. PO(M) = fu 2M j u = v � h0i ^ v 2 O

�

(M)g, the set of pattern occurrences of M .

BO(M) = fu 2M j u = v � h1i ^ v 2 O

�

(M)g, the set of body occurrences of M .

Sometimes we need to restrict the set of patterns.

Definition 3.4. ��-terms

1. For all � � ��, the set �� of ��-terms is de�ned inductively as follows:

(a) V � ��

(b) M;N 2 ��) (MN) 2 ��

(c) X 2 �, M 2 ��) (�X:M) 2 ��

2. With X,Y ,Z,. . . we denote arbitrary patterns in �.

If we choose � = ��, then we do not restrict ��, so ��� = ��. If we choose � = V then

we obtain obviously the ordinary set of �-terms, so we identify �V with �.

Notation

1. If

~

X � hX

1

; . . . ; X

n

i then (�

~

X:M) � (�X

1

:(�X

2

:� � � (�X

n

:M):::)).

If n = 0 then (�

~

X:M) � M .

2. If

~

N � hN

1

; . . . ; N

n

i then (M

~

N) � (:::((MN

1

)N

2

) � � �N

n

).

If n = 0 then (M

~

N) � M .

3. jM j is the length of M, that is, the number of symbols in M.

Note that (�(xy):(xy)) and (�hx; yi:(xy)) do not denote the same generalised �-term.

The former is an abstraction with an application as pattern while the latter is a repeated

abstraction from a variable.

The basic equivalence relation on ��-terms is that of convertibility. This relation will be

generated, just like in ordinary �-calculus, by axioms. In order to formulate these axioms, a

substitution operator is needed. M [

~

N=~x] denotes the result of simultaneously substituting

elements of

~

N for corresponding elements of ~x in M . As in the case of ordinary �-calculus,

some care is needed in de�ning this operation in order to avoid confusion between free and

bound variables. This care will be postponed for a moment.

7

Definition 3.5. Convertibility

The theory �� has as formulas

M = N

where M;N 2 �� and is axiomatised by the following axioms and rules :

1. Reexivity

M =M

2. Symmetry

M = N

N =M

3. Transitivity

M = N;N = L

M = L

4. Left monotonicity

M = N

(LM) = (LN)

5. Right monotonicity

M = N

(ML) = (NL)

6. Generalised rule �

M = N

(�X:M) = (�X:N)

7. Generalised �-conversion

Let ~x be the sequence of free variables of X. (to be de�ned shortly)

((�X:M)X[

~

N=~x]) =M [

~

N=~x]

Provability in �� of an equation is denoted by �� ` M = N or often just by M = N .

If M = N , then M and N are called convertible. The following example shows the use of

generalised �-conversion.

Example 3.6.

1. ((�x:x)y) � ((�x:x)x[y=x]) = x[y=x] � y.

Provability in � is a special case of provability in ��.

8

2. ((�(xy):(yx))(MN)) � ((�(xy):(yx))(xy)[hM;Ni=hx; yi]) =

(yx)[hM;Ni=hx; yi] � (NM).

A function F which exchanges the elements of an application does not exist in ordinary

lambda calculus as it would lead to the following inconsistency :

K = (IK) = (F (KI)) = (F (I(KI))) = ((KI)I) = I.

(So we should and will not allow this in our pattern-matching lambda calculus either.)

3. ((�(xx):x)(MM)) � ((�(xx):x)(xx)[M=x]) = x[M=x] � x.

We can test whether two terms are identical; another unrealistic feature.

4. ((�(�z:((zx)y)):x)(�z:((zM)N))) = x[hM;Ni=hx; yi] �M .

Projection on the �rst element of a pair.

Definition 3.7. Subterm and Variable Occurrences

1. If N 2 Sub(M) = funM j u 2 Mg then N is a subterm of M (notation N � M). If

N 2 Sub(M), but N 6�M then N is a proper subterm of M (notation N �M).

A subterm may occur several times; e.g. M � (�(xI):((xI)(xI))) has three occurrences

of the subterm I � (�y:y).

2. V(M) = f`

M

(u) j u 2 O

V

(M)g, the set of variables which occur in M .

3. FVO(M), the set of free variable occurrences of M , and FV(M), the set of free

variables of M , can be de�ned inductively as follows :

(a) FVO(x) = fhig

FV(x) = fxg,

(b) FVO((MN)) = h0i � FVO(M) [h1i � FVO(N)

FV((MN)) = FV(M) [FV(N),

(c) FVO((�X:M)) = h1i � fu 2 FVO(M) j `

M

(u) =2 FV(X)g

FV((�X:M)) = FV(M)� FV(X).

4. A variable occurrence that is not free is said to be bound.

5. M is closed if FV(M) = ;.

6. M is linear if #FV(M) = #FVO(M), i.e. no variable has multiple occurrences inM .

7. If unM � (xN) then the occurrence u

0

= u � h0i of x is active.

In the sequel, if M denotes a term, we take ~m to be the sequence of free variables of

M , unless stated otherwise. (Note that the sequence is not unique but can be made so by

assuming an ordering on V .)

Next �-congruence for �� can be de�ned as for �. See Appendix A for a formal de�nition or

Appendix C for a formalism, based on the De Bruijn notation [dB72] for �, which identi�es �-

congruent terms on a syntactic level. Because �-congruent terms exhibit identical functional

9

behaviour, we consider them to be syntactically equivalent (terms are considered modulo

�-congruence). Obviously �� should be closed under �-congruence.

Variable convention

If M

1

; . . . ;M

n

occur in a certain mathematical context (e.g. de�nition, proof), then in these

terms all bound variables are chosen to be di�erent from the free variables.

Definition 3.8. Substitution

The result of substituting elements of

~

N for the free occurrences of the corresponding vari-

ables in a sequence ~x, in M (notation M [

~

N=~x] or M [N

1

; . . . ; N

n

=x

1

; . . . ; x

n

]) is inductively

de�ned as follows.

1. x

i

[

~

N=~x] � N

i

,

y[

~

N=~x] � y, if y =2 ~x,

2. (LM)[

~

N=~x] � (L[

~

N=~x]M [

~

N=~x]),

3. (�Y:M)[

~

N=~x] � (�Y:M [

~

N=~x]).

In the third clause it is not needed to say \provided that ~y \ ~x = ; and ~y \ FV(

~

L) = ;".

By the variable convention this is the case.

One easily veri�es that this de�nition is equivalent to the following one, linking the de�-

nition above to the tree formalism described in Section 2.

Alternative Definition 3.9. Substitution

M [

~

N=~x] �M [

~

N

1

� � � � �

~

N

n

= ~u

1

� � � � � ~u

n

],

where ~u

i

= hv 2 FVO(M) j `

M

(v) � x

i

i, the sequence of free variable occurrences which

have label x

i

,

~

N

i

= hN

i

; . . . ; N

i

i and j

~

N

i

j = j~u

i

j.

The substitution lemma for � is easily extended to ��. The easy proof is given to get

acquainted with the notation.

Lemma 3.10. Substitution Lemma

If ~x \ ~y = ; and ~x \ FV(

~

L) = ; , then

M [

~

N=~x][

~

L=~y] �M [

~

L=~y][

~

N [

~

L=~y]=~x].

Proof. By induction on the structure of M .

1. M is a variable.

(a) M � x

i

, then both sides equal N

i

[

~

L=~y].

(b) M � y

i

, then both sides equal L

i

.

(c) M � z =2 ~x [~y, then both sides equal z.

10

2. M � (M

1

M

2

). Then the statement follows from the induction hypothesis.

3. M � (�Z:M

1

). By the variable convention we may assume that ~z \ (~x [~y) = ; and

~z \ (FV(

~

N) [FV(

~

L)) = ; . Then by the induction hypothesis

(�Z:M

1

)[

~

N=~x][

~

L=~y] � (�Z:M

1

[

~

N=~x][

~

L=~y]) �

(�Z:M

1

[

~

L=~y][

~

N [

~

L=~y]=~x]) � (�Z:M

1

)[

~

L=~y][

~

N [

~

L=~y]=~x]. 2

Definition 3.11. Context

1. A context C[] is an (L [f2g)-labelled binary tree M , where %(2) = 0 and 2 does

not occur in the pattern of any subterm of M . More informally it is a term with some

holes (\no-name" variables) in it.

2. If C[] is a context and M 2 ��, then C[M] denotes the result of placing M in the

holes of C[]. In this act free variables of M may become bound in C[M]. Formally

C[M] � C[][

~

M=~u],

where hu

1

; . . . ; u

n

i = O

2

(M) and

~

M = hM; . . . ;Mi.

4. The Church-Rosser Property for ��

To prove that a theory (in our case ��) is consistent it is su�cient to show that there are

terms which are not convertible. The standard way, for � related systems anyway, to prove

consistency consists of three parts. First show that the convertibility relation is a subset

of the convertibility relation =

R

induced by some binary relation R. Then show that the

reduction relation �

R

induced by R has the Church-Rosser property, that is, every two

R-convertible terms have a common R-reduct. Finally pick two distinct terms which are

R-normal forms. Then we are done because these two terms have no common R-reduct and

hence are not R-convertible and so not convertible either.

First we formalise the terminology. It is the terminology from [Bar84], extended to handle

our case.

Definition 4.1. Relations on Terms

Let R be a binary relation on ��.

1. R is compatible if 8M;N;L 2 �� and X 2 �, we have that (M;N) 2 R implies

((LM); (LN)) 2 R,

((ML); (NL)) 2 R and

((�X:M); (�X:N)) 2 R.

2. R is a reduction relation if it is compatible, reexive and transitive.

11

3. R is an equality relation if it is a symmetric reduction relation.

4. R is substitutive if 8M;N;

~

L 2 �� and all ~x one has

(M;N) 2 R) (M [

~

L=~x]; N [

~

L=~x]) 2 R

The next binary relation will turn out to satisfy the above stated properties.

Definition 4.2. The binary relation �

��

is de�ned by the rule

�

��

: ((�X:M)X[

~

N=~x])!M [

~

N=~x]

In most cases we leave out the subscript �� from �.

Definition 4.3. Reduction

Let R be a binary relation on ��. R induces the binary relations

!

R

one step R-reduction,

�

R

R-reduction, and

=

R

R-convertibility,

inductively de�ned as follows.

First, !

R

is the compatible closure of R. That is

1. (M;N) 2 R) M !

R

N ,

2. M !

R

N) (LM)!

R

(LN) ,

3. M !

R

N) (ML)!

R

(NL) ,

4. M !

R

N) (�X:M)!

R

(�X:N) .

Next, �

R

is the reexive, transitive closure of !

R

. That is

1. M !

R

N) M �

R

N ,

2. M �

R

M ,

3. M �

R

N , N �

R

L) M �

R

L .

Finally, =

R

is the equivalence relation generated by !

R

. That is

1. M �

R

N) M =

R

N ,

2. M =

R

N) N =

R

M ,

3. M =

R

N , N =

R

L) M =

R

L .

We leave out the subscript � from the relations induced by � when no confusion arises.

Some of the proofs of the following propositions are routine and therefore omitted.

Proposition 4.4. The relation !

R

is compatible, �

R

is a reduction relation and =

R

is

an equality relation.

12

Proposition 4.5. If R is substitutive, then so are !

R

, �

R

and =

R

.

Proposition 4.6. � is substitutive.

Proof. Let (M;N) 2 �. Then M � ((�Y:P)Y [

~

Q=~y]) and N � P [

~

Q=~y]. Hence

M [

~

L=~x] � ((�Y:P [

~

L=~x])Y [

~

Q[

~

L=~x]=~y]),

N [

~

L=~x] � P [

~

Q=~y][

~

L=~x] � P [

~

L=~x][

~

Q[

~

L=~x]=~y],

by the Substitution Lemma 3.10 and the Variable Convention, so (M [

~

L=~x]; N [

~

L=~x]) 2 �.

2

Proposition 4.7. Monotonicity and Substitutivity

1.

~

N �

R

~

N

0

) M [

~

N=~x]�

R

M [

~

N

0

=~x].

2. M �M

0

) M [

~

N=~x]�M

0

[

~

N=~x].

3. M �M

0

&

~

N �

~

N

0

) M [

~

N=~x]�M

0

[

~

N

0

=~x].

Proof.

1. By induction on the structure of M .

(a) If M 2 V then we can distinguish two cases :

i. M � x

i

2 ~x) x

i

[

~

N=~x] � N

i

�

R

N

0

i

� x

i

[

~

N

0

=~x]

ii. M � y =2 ~x) y[

~

N=~x] � y �

R

y � y[

~

N

0

=~x]

(b) If M � (M

1

M

2

) then

(M

1

M

2

)[

~

N=~x] � (M

1

[

~

N=~x]M

2

[

~

N=~x])�

R

(M

1

[

~

N

0

=~x]M

2

[

~

N

0

=~x]) � (M

1

M

2

)[

~

N

0

=~x]

(c) If M � (�Y:M

1

) then

(�Y:M

1

)[

~

N=~x] � (�Y:M

1

[

~

N=~x])�

R

(�Y:M

1

[

~

N

0

=~x]) � (�Y:M

1

)[

~

N

0

=~x]

2. By Proposition 4.5 and Proposition 4.6.

3. By 1 and 2. 2

With the properties above it is not di�cult to show that =

�

��

contains the convertibility

relation of ��.

Proposition 4.8. 8M;N 2 ��

�� ` M = N) M =

�

��

N

Proof. Straightforward. (Note that we also have the other direction.) 2

13

4.1. Conuence for �

��

In order to show that �

��

has the Church-Rosser property|our second obligation for proving

consistency|we have to do more work. In this subsection, we will try to adapt the proof

strategy of P. Martin-L�of and W. Tait for proving the Church-Rosser property, to our system.

It turns out that the Church-Rosser property does not hold for arbitrary �. Therefore we

require � to satisfy the rigid pattern condition. We prove that under this condition ��

indeed has the Church-Rosser property. An easy consequence is then that �� is a conservative

extension of �. We introduce a set � (properly containing V) which satis�es the rigid pattern

condition. But �rst, again, the standard terminology.

Definition 4.9. R-redexes

Let R be a binary relation on ��. Let M 2 ��.

1. M is an R-redex if (M;N) 2 R for some term N . In this case N is called an R-

contractum of M .

2. RO

R

(M) = fu 2M j unM is an R-redexg is the set of all R-redex occurrences of M .

3. A term M is called an R-normal form (R-nf) if RO

R

(M) = ;. The set of all R-nfs is

denoted by NF(R).

4. A term N is an R-nf of M (or M has the R-nf N) if N is an R-nf and M =

R

N .

We will need to be able to pinpoint `where the action takes place' in a reduction. Therefore

the following de�nition is useful.

Definition 4.10. Reduction Path

Let R be a binary relation on ��.

1. For all M;N 2 ��, we write M

u

!

R

N if (unM;unN) 2 R and N �M [(unN)=u].

2. An R-reduction (path) is a �nite or in�nite sequence

M

0

u

0

!

R

M

1

u

1

!

R

M

2

u

2

!

R

� � � .

Proposition 4.11.

The following are equivalent :

1. M !

R

N ,

2. M

u

!

R

N for some u 2 RO

R

(M) (not necessarily unique), and

3. M � C[P], N � C[Q] for some (P;Q) 2 R and C[] 2 �� with O

2

(C[]) = fug.

Note that if M 2 NF(R), then for no N one has M !

R

N .

Conventions

1. �, � , . . . range over reduction paths.

14

2. The reduction path � in De�nition 4.10 starts with M

0

. If there is a last term M

n

in

�, then � ends withM

n

. In that case one also says that � is a reduction path from M

0

to M

n

with length n. We also write � :M

0

�

R

M

n

to specify �.

3. Sometimes the u

0

, u

1

, . . . are left out in denoting a reduction path.

4. We often write � :M

0

!M

1

! � � � to indicate that � is the path M

0

!M

1

! � � �.

5. If � :M

0

! � � � !M

n

and � :M

n

! � � � !M

m

, then

� � � :M

0

! � � � ! M

n

! � � � !M

m

.

6. The one step reduction M

u

!

R

N is denoted by (u).

7. If � is an R-reduction path, then k�k is its length, i.e. the number of !

R

steps in it.

Note that k�k 2 IN [f1g .

Definition 4.12. CR and UN

Let R be a binary relation on ��.

1. R is CR (or has the Church-Rosser property) if =

R

� �

R

��

R

; whenever two terms

are R-convertible they have a common R-reduct.

2. R is UN (or has unique normal forms) if =

R

� � on NF(R); whenever two normal

forms are R-convertible they are equivalent.

3. R is conuent if�

R

��

R

��

R

��

R

; whenever we can do two diverging reductions we

can �nd converging reductions. This can also be stated as�

R

j= � (see Appendix A).

4. R is locally conuent if

R

� !

R

� �

R

��

R

; whenever we can do two diverging

reduction steps we can �nd converging reductions.

It is well known (and easy to show) that CR implies UN, conuence implies local conuence

and that conuence is equivalent to CR. Because of this last fact and because local conuence

does not imply conuence, local conuence is also called weak Church-Rosser or WCR for

short.

By the observations just made it is su�cient to prove � j= �. The following lemma

comes in handy. (Here `+' denotes the transitive closure; see Appendix A.)

Lemma 4.13. Let � be a binary relation. Then

� j= �) �

+

j= �

Now if we can �nd a relation� such that

�

! � � � � and� j= � then we are done

because�

+

j= � by the previous lemma,� =

�

!

+

��

+

��

+

=�, and hence� j= �

as required for proving conuence.

15

Definition 4.14. Concurrent Reduction

De�ne a binary relation�

1

on �� inductively as follows:

1. M �

1

M ;

2. M �

1

M

0

, N �

1

N

0

) (MN)�

1

(M

0

N

0

);

3. M �

1

M

0

) (�X:M)�

1

(�X:M

0

);

4. M �

1

M

0

,

~

N �

1

~

N

0

) ((�X:M)X[

~

N=~x])�

1

M

0

[

~

N

0

=~x]

The idea of concurrent reduction is to reduce an arbitrary number of redexes present in a

term concurrently. Two extreme case are reduction of no redex at all (`empty reduction'),

and reduction of all redexes present (`full substitution').

We �rst show that �

1

is a possible candidate and prove some simple properties. Some

routine proofs are again omitted.

Lemma 4.15.

�

! � �

1

��

Lemma 4.16. If M �

1

M

0

and

~

N �

1

~

N

0

, then M [

~

N=~x]�

1

M

0

[

~

N

0

=~x]

Proof. Straightforward (or see Appendix B). 2

Proposition 4.17.

1. (�X:M)�

1

N implies N � (�X:M

0

) with M �

1

M

0

.

2. (MN)�

1

L implies either

L � (M

0

N

0

) with M �

1

M

0

, N �

1

N

0

, or

L � P

0

[

~

N

0

=~x], M � (�X:P), N � X[

~

N=~x], and P �

1

P

0

,

~

N �

1

~

N

0

.

Note that �

1

does not satisfy the diamond property for arbitrary �, as the following

example shows.

Example 4.18.

1. Consider the term M

1

� ((�(Iy):z)(Iy)). Then both M

1

�

1

z and M

1

�

1

((�(Iy):z)y).

Now z and ((�(Iy):z)y) will�

1

-reduce to themselves only and therefore have no common

reduct. The problem is that the pattern of M

1

is not in normal form, so a term which

matches with it, needs not match any more after doing a reduction step.

2. Consider the termM

2

� ((�(xy):z)(Iy)). Clearly (xy), the pattern of M

2

, is in normal

form, but we have the reductionsM

2

�

1

z andM

2

�

1

((�(xy):z)y). Again the resulting

terms only reduce to themselves. The problem is that the variable occurrence of x in

the pattern is free and active. By instantiating it, for example by I, part of the pattern

can become reducible.

16

3. Finally consider the term M

3

� ((�(�x:((xy)y)):z)(�x:((x(II))(II)))). The pattern of

M

3

is in normal form and has no active free variable occurrences. Nevertheless we have

the reductions M

3

�

1

z � M

0

and M

3

�

1

((�(�x:((xy)y)):z)(�x:((xI)(II)))) � M

00

.

The argument of M

00

does not match with its pattern, so we need more than one step

to reach a common reduct. The problem now lies in the repetition of the free variable

y in the pattern.

The following condition on the set of patterns turns out to be su�cient for proving that

�

1

satis�es the diamond property.

Definition 4.19. Rigid Pattern Condition

Let � � ��. � is RPC (or satis�es the rigid pattern condition) if

8X 2 � and 8M;

~

Q 2 ��, 9

~

Q

0

2 �� such that

X[

~

Q=~x]�

1

M)

~

Q�

1

~

Q

0

& M � X[

~

Q

0

=~x]]

Obviously, V and ; are RPC, but �� is not. RPC is only needed in the proof of the

following (crucial) lemma.

Lemma 4.20. Let � be RPC, then

�

1

j= �

Proof. By induction on the de�nition of M �

1

M

0

it will be shown that for all M �

1

M

00

there is an M

000

such that M

0

�

1

M

000

, M

00

�

1

M

000

.

1. M �

1

M

0

is M �

1

M . Then we can take M

000

�M

00

.

2. M �

1

M

0

is (PQ)�

1

(P

0

Q

0

) and is a direct consequence of P �

1

P

0

, Q�

1

Q

0

.

One can distinguish two subcases.

(a) M

00

� (P

00

Q

00

) with P �

1

P

00

, Q�

1

Q

00

. Take M

000

� (P

000

Q

000

) (use the i.h.).

(b) M

00

� P

00

1

[

~

Q

00

=~x], P � (�X:P

1

), Q � X[

~

Q=~x], and P

1

�

1

P

00

1

,

~

Q �

1

~

Q

00

. By

Proposition 4.17 one has P

0

� (�X:P

1

) with P

1

�

1

P

0

1

. Because � is RPC, we

can �nd a

~

Q

0

such that Q

0

� X[

~

Q

0

=~x] and

~

Q�

1

~

Q

0

. By the induction hypothesis

there is a term-sequence

~

Q

000

with

~

Q

0

�

1

~

Q

000

,

~

Q

00

�

1

~

Q

000

. By Lemma 4.16 one can

take M

000

� P

000

1

[

~

Q

000

=~x].

3. M �

1

M

0

is ((�X:P)X[

~

Q=~x]) �

1

P

0

[

~

Q

0

=~x] and is a consequence of P �

1

P

0

,

~

Q �

1

~

Q

0

.

By Proposition 4.17 there are again two subcases.

(a) M

00

� ((�X:P

00

)Q

00

) with P �

1

P

00

, X[

~

Q=~x]�

1

Q

00

. Analogous to case 2b.

(b) M

00

� P

00

[

~

Q

00

=~x] with P �

1

P

00

,

~

Q�

1

~

Q

00

. Take M

000

� P

000

[

~

Q

000

=~x].

17

4. M �

1

M

0

is (�X:P) �

1

(�X:P

0

) and is a direct consequence of P �

1

P

0

. Then

M

00

� (�X:P

00

). By the induction hypothesis one can take M

000

� (�X:P

000

). 2

Theorem 4.21. �

��

is CR.

Proof. By Lemmas 4.13, 4.15 and 4.20. 2

As a consequence �

��

is UN, so a term can have at most one normal form.

Corollary 4.22.

1. �� is a conservative extension of �.

2. �� is consistent.

Proof.

1. We have to prove that for all �-terms M and N

�� ` M = N) � ` M = N

�� ` M = N) M =

�

��

N) M�

�

��

��

�

��

N) M�

�

��

�

N) � ` M = N

by Lemma 4.8, the previous Theorem and the observation that !

�

��

restricted to �-

terms coincides with the one step �-reduction relation for �.

2. We have to prove that there exist ��-terms M and N such that

�� 0 M = N

By 1 we can take any two �-terms which are not convertible in �, e.g. I and K. 2

We wanted to extend � with patterns but is there a set which is RPC and which properly

contains V? Because of Example 4.18 the following de�nition seems reasonable.

Definition 4.23. � = fM 2 NF(�) j M is linear and has no active free variablesg

One easily veri�es that � is RPC. That the examples in the introduction can be modelled

in � is shown in the next example.

Example 4.24.

1. Let [x;y] be an abbreviation of (�z:((zx)y)), and in general let [M;N] be an abbrevia-

tion of [x;y][hM;Ni=hx; yi], then the projection functions are de�ned by

�

0

= (�[x;y]:x) and �

1

= (�[x;y]:y).

2. Let T � (�x:(�y:x)) and F � (�x:(�y:y)) (true and false). Let S(x) and 0 be abbrevi-

ations of [F;x] and [T;I] respectively, then the predecessor and successor functions are

de�ned by

18

P

�

� (�S(x):x) and S

+

� (�x:S(x)).

The test for zero can be implemented by �

0

.

However, � is not the maximal set for which the corresponding �-reduction is CR.

Example 4.25.

Take �

= f
g [� where
 � ((�x:(xx))(�x:(xx))). It is easy to see that �

is RPC

and hence that �

��

satis�es the Church-Rosser property.

RPC does not prevent reductions from taking place inside patterns. However, one easily

veri�es that X ! Y implies Y � X. So redexes in patterns reduce in one step to themselves.

For � there is, due to the limitation of patterns being variables, only one such redex,
. In

�� one can construct others as the following example shows.

Example 4.26.

1. Take !

3

� (�(xx):(x(xx))), then

3

� (!

3

(!

3

!

3

))! (x(xx))[!

3

=x] � (!

3

(!

3

!

3

))

2. Take !

y

� (�(x

1

x

2

):(x

1

(x

1

y))), then

y

� (!

y

(!

y

y))! (x

1

(x

1

y))[h!

y

; yi=hx

1

; x

2

i] � (!

y

(!

y

y))

Note that

y

contains y as free variable, and that by replacing y by an arbitrary term

there are in�nitely many redexes which reduce in one step to themselves.

We consider patterns reducing to themselves to be pathological cases, so we assume hence-

forth that � does not contain such patterns. We leave it as an exercise to the reader to show

the way in which our notions can be extended to patterns containing redexes.

4.2. Conuence by Marking

Besides the one presented in the previous section, there is another well-known method for

proving conuence. The idea is that we can keep track of what happens to redexes in a

reduction. For this purpose we mark some redexes in a term and then \trace the marked

redexes through a reduction path", resulting in a set of residuals in the term the reduc-

tion path ends with. Then by investigating the interaction between marked reduction and

ordinary reduction we are able to prove conuence again.

We �rst introduce an auxiliary extension of �� in which lambda's can be marked.

Definition 4.27. Marked Terms

1. �

0

� is a set of words over the alphabet V [f:; (;); �g [f�

0

; �

1

; �

2

; . . .g.

2. Let � � �� The set �

0

� of �

0

�-terms is inductively de�ned as follows.

19

(a) V � �

0

�,

(b) i. M , N 2 �

0

�) (MN) 2 �

0

�,

ii. X 2 �, M ,

~

N 2 �

0

�) ((�

i

X:M)X[

~

N=~x]) 2 �

0

�, for all i 2 IN

(c) X 2 �, M 2 �

0

�) (�X:M) 2 �

0

�,

Alternatively, we can view marked terms as trees with some indexed application-nodes;

�

0

� is a subset of Lbintree(L

0

), where L

0

= L [f@

0

;@

1

;@

2

; . . .g.

Notice that, as patterns are taken from � they can not contain indexed lambda's. The

relation � on �� is extended to �

0

on �

0

� as follows.

Definition 4.28. Marked Reduction

1. Substitution on �

0

� is de�ned as in De�nition 3.8 with the added clause

((�

i

P:M)P [

~

Q=~y])[

~

N=~x] � ((�

i

P:M [

~

N=~x])P [

~

Q[

~

N=~x]=~y]).

2. The binary relation �

0

�

0

�

on �

0

� is de�ned by �

0

�

0

�

= �

�

0

�

[

S

i2IN

�

i

where

�

�

0

�

: ((�X:M)X[

~

N=~x])!M [

~

N=~x], and

�

i

: ((�

i

X:M)X[

~

N=~x])! M [

~

N=~x], for all i 2 IN.

3. If (M;N) 2 �

i

thenM is an i-redex. We abbreviate �

0

�

0

�

to �

0

, RO

�

i

(M) to RO

i

(M).

4. We extend these notations to subsets I of IN, e.g. �

I

=

S

i2I

�

i

and RO

I

(M) =

S

i2I

RO

i

(M).

Notice that in �

0

� only redexes can be marked, so it is crucial that �

0

� is closed under

reduction. By reexamining Example 4.18 and De�nition 4.19 it should be clear that we again

must impose the rigid pattern condition on �. We now examine the connections between

ordinary and marked reduction.

Definition 4.29. Projection of Reduction

If M 2 �

0

�, then bMc 2 �� is obtained from M by leaving out all indices. For example,

b((�

1

I:((�

2

x:x)x))I)c � ((�I:(Ix))I).

Lemma 4.30. Lifting and Projecting of Reductions

1. 8M , N 2 �� and 8M

0

2 �

0

�, 9N

0

2 �

0

�

M

u

!

�

N ^ bM

0

c �M) M

0

u

!

�

0

N

0

^ bN

0

c � N

2. 8M

0

, N

0

2 �

0

�

M

0

!

�

0

N

0

) bM

0

c !

�

bN

0

c

Proof.

20

1. By Proposition 4.11 we haveM � C[P], N � C[Q] for some (P;Q) � C[] 2 �� with

O

2

(C[]) = fug and (((�Y:P

1

)Y [

~

Q

1

=~y]); P

1

[

~

Q

1

=~y]) 2 �. Therefore M

0

� C

0

[P

0

] for

some C

0

[] and P

0

2 �

0

� such that bC

0

[]c � C[] and bP

0

c � P . So either

P

0

� ((�Y:P

0

1

)Y [

~

Q

0

1

=~y]), or

P

0

� ((�

i

Y:P

0

1

)Y [

~

Q

0

1

=~y])

and in both cases we can take N

0

� C

0

[P

0

1

[

~

Q

0

1

=~y]] to yield the desired result.

2. Similar but easier; b�

0

c `is' �. 2

By repeated application the result above also holds for the transitive closure of the reduc-

tion relations.

Apart from just leaving out all indices, there is another natural way to do away with the

indices; just reduce all the indexed redexes.

Definition 4.31. Full-Substitution

Let M 2 �

0

�. De�ne (M) 2 �� by induction on the structure of M as follows:

1. M 2 V) (M) �M ,

2. M � (PQ) then we distinguish two cases

(a) M =2 �

IN

2

) (M) � ((P) (Q)),

(b) M 2 �

IN

, M � ((�

i

Y:P

0

)Y [

~

Q

0

=~y])) (M) � (P

0

)[(

~

Q

0

)=~y],

3. M � (�Y:P)) (M) � (�Y: (P)).

In other words, contracts all the redexes with an index in a term from the inside to

the outside. How this operation interacts with marked reduction is stated in the following

lemmas which should be intuitively clear.

Lemma 4.32. 1. Let M ,

~

N 2 �

0

�, then (M [

~

N=~x]) � (M)[(

~

N)=~x],

2. 8M , N 2 �

0

�, then M �

�

0

N) (M)�

�

 (N).

Proof. See Appendix B. 2

Lemma 4.33. 8M 2 �

0

� bMc�

�

 (M).

Proof. By a standard induction on the structure of M , or see Appendix B. 2

Lemma 4.34. Strip Lemma

8M , M

0

and N 2 ��, 9N 2 �� such thatM !

�

M

0

^M �

�

N) N �

�

N

0

^M

0

�

�

N

0

.

2

By abuse of notation we write M 2 �

IN

for 9N [(M;N) 2 �

IN

]

21

Proof. Let M

u

!

�

M

0

and let

~

M 2 �

0

� be obtained from M by indexing the lambda

at occurrence u. Then obviously b

~

Mc � M and (

~

M) � M

0

. By Lemma 4.30(1) 9

~

N such

that

~

M �

�

0

~

N and b

~

Nc � N . Now if we choose N

0

� (

~

N) then we have M

0

� (

~

M)�

�

 (

~

N) � N

0

by Lemma 4.32(2), and N � b

~

Nc �

�

 (

~

N) � N

0

by Lemma 4.33 as required.

2

Proposition 4.35. �

�

j= �

Proof. By the Strip Lemma 4.34 and a simple diagram chase. 2

So both of the methods presented in this and the previous section are easily extended from

� to handle ��. Once CR is proved, the obvious question is to ask whether also the other

standard result from �, the Finite Developments theorem (FD), holds for ��. This question

is investigated in the next section.

5. The Finiteness of Developments

The main theorem in this section states that for each M 2 �� the so called developments (a

special kind of reduction starting withM) are always �nite. A more succinct formulation is

SN(�

IN

)

that is, reductions on �

0

� contracting only indexed redexes are always �nite. As is the

case for �, conuence of � can be derived from this theorem. For the proof we extend the

terminology for marked reduction given in the previous subsection following [Bar84].

Definition 5.1. Projection of Reduction Paths

Let �

0

be a �

0

-reduction path starting with M

0

2 �

0

�, say

�

0

:M

0

0

u

0

!

�

0

M

0

1

u

1

!

�

0

� � �

then b�

0

c is de�ned by

b�

0

c : bM

0

0

c

u

0

!

�

bM

0

1

c

u

1

!

�

� � �

Lemma 5.2. Lifting and Projecting of Reduction Paths

1. Let � be a �-reduction starting withM 2 ��. Then for eachM

0

2 �

0

� with bM

0

c �M

there is a (unique) �

0

-reduction path �

0

starting with M

0

such that b�

0

c = �.

2. Let �

0

be a �

0

-reduction path, then b�

0

c is a �-reduction path.

Let U be a set of redex occurrences in a ��-termM . If we are interested in what happens

with the elements of U during a reduction, then we can lift M to �

0

� by indexing the

elements of U .

22

Definition 5.3. Marking Terms

Let U � RO

�

(M), M 2 ��. Then (M;U) 2 �

0

� is the indexed term obtained from M by

indexing the redex occurrences of M that are in U by 0. Formally (M;U) is de�ned by

1. T

(M;U)

= T

M

2. `

(M;U)

(w) = @

0

, 8w 2 U ,

`

(M;U)

(w) = `

M

(w), otherwise.

In this notation M 2 �� is identi�ed with (M; ;) 2 �

0

�.

Definition 5.4. Residuals

1. Let M;N 2 ��, U � RO

�

(M) and let � : M �

�

N . The set of residuals of U in N

relative to � (notation U=�) is de�ned as follows. Lift � to �

0

: (M;U)� (N;U

0

), then

U=� = U

0

.

2. Let M

0

; N

0

2 �

0

�, U � RO

�

0

(M

0

) and let �

0

:M

0

�

�

0

N

0

, then U=�

0

= U=b�

0

c.

3. If U is a singleton set then we leave out the set-braces and write u=� instead of fug=�.

The next lemma states some properties of residuals. The last one states that we can `trace'

several redexes simultaneously.

Lemma 5.5.

1. Let M;N 2 ��, � :M � N and U = fu

1

; . . . ; u

n

g � RO(M), then U=� =

S

n

i=1

u

i

=�.

2. Let � :M � N , � : N � L, and U � RO(M), then U=� � � = (U=�)=� .

3. Let �

0

:M

0

�

�

0

N

0

, M

0

,N

0

2 �

0

�, then RO

i

(M

0

)=b�

0

c = RO

i

(N

0

).

Corollary 5.6. Let � :M � N , M , N 2 �� and let u 6= v 2M . Then u=� \ v=� = ;.

Now a special kind of reduction paths, the so called developments are de�ned. In a

development only residuals of redexes of the term the reduction path starts with, may be

contracted. Or equivalently, in a development no newly created redexes may be contracted.

Definition 5.7. Developments

1. Let M 2 �� and U � RO(M). A development of (M;U) is a reduction path

� :M � M

0

u

0

!M

1

u

1

! � � �

such that each redex occurrence u

i

2 RO(M

i

) is a residual of a redex in U relative to

(u

0

) � � � � � (u

i�1

).

2. � : M � N is a complete development of (M;U), notation � : (M;U) �

cpl

N , if � is a

development of (M;U) and moreover U=� = ;.

23

3. A development of M is a development of (M;RO(M)).

4. M �

dev

N i� N occurs in some development of M .

Developments and �

IN

-reductions correspond to each other in the following way.

Proposition 5.8. � is a development of (M;U) i� � lifted to �

0

starting with (M;U) is

a �

IN

-reduction.

In the next section we deviate from the line followed in [Bar84].

5.1. SN(�

IN

)

The Finite Developments Theorem states that all developments are �nite. According to the

previous lemma this is equivalent to stating that all �

IN

-reductions are �nite. We prove this

by a proof strategy which strongly resembles the one given in [dV87]. We establish an exact

upper bound on the length of the maximal development (maximal with respect to its length)

of a ��-term. The idea of proof is to assign to each M 2 �

0

� a special norm (integer) such

that

M !

�

IN

N) the norm of M is strictly greater than the norm of N .

Definition 5.9. Strong Normalisation

Let R be a binary relation on �

0

�.

1. A term M 2 �

0

�, R-strongly normalises if there is no in�nite R-reduction starting

with M .

2. R is strongly normalising (notation SN(R)) if every M 2 �

0

� R-strongly normalises.

Definition 5.10. Weight of a Term

1. For all weighings, � : V ! IN, we de�ne the �-norm of M 2 �

0

� by induction on the

structure of M as follows.

(a) M � x 2 V) kMk

�

= �(x)

(b) M � (M

1

M

2

), then there are two cases to consider :

M =2 �

IN

) kMk

�

= kM

1

k

�

+ kM

2

k

�

M 2 �

IN

so M

1

� (�

i

Y:P), M

2

� Y [

~

Q=~y])

kMk

�

= 1 + kPk

�[

~

Q=~y]

+

P

y

i

2~y�~p

kQ

i

k

�

where �[

~

Q=~y] = �[k

~

Qk

�

=~y] is de�ned by

�[

~

Q=~y](x) = kQ

i

k

�

for all x � y

i

2 ~y

�[

~

Q=~y](x) = kxk

�

otherwise.

(c) M � (�X:M

1

)) kMk

�

= kM

1

k

�[

~

0=~x]

, where

~

0 = h0; . . . ; 0i has the same length

as ~x.

24

2. We assume a pointwise ordering on weighings.

3. kMk, the norm of M is the c

0

-norm of M , where c

0

is the constant zero function.

The reader should verify that this norm represents the intuition of the maximal number of

steps of a development. In the example below some simple situations are being investigated.

Example 5.11.

1. The norm of variables is zero, as we expect.

kxk = kxk

c

0

= c

0

(x) = 0

2. The norm of an `inactive application' is the sum of the norms of the parts.

k(M

1

M

2

)k = k(M

1

M

2

)k

c

0

= kM

1

k

c

0

+ kM

2

k

c

0

= kM

1

k+ kM

2

k

3. The norm of a `redex application' consists of three parts :

(a) one for actually reducing the redex,

(b) the norm of the body with pattern-variables weighed by the norms of the terms

bound to them in the argument, and

(c) the sum of the norms of the terms bound to the pattern-variables in the argument

which have no free occurrence in the body.

k((�

0

[y

0

;y

1

]:(y

0

Q

2

))[Q

0

;Q

1

])k =

1 + k(y

0

Q

2

)k

c

0

[hQ

0

;Q

1

i=hy

0

;y

1

i]

+

P

y

i

2hy

0

;y

1

i�hy

0

i�~q

2

kQ

i

k

c

0

=

1 + kQ

0

k

c

0

+ kQ

2

k

c

0

+ kQ

1

k

c

0

4. The norm of an abstraction is the norm of its body with pattern-variables having

weight zero.

k(�X:M)k = kMk

c

0

[

~

0=~x]

= kMk

c

0

= kMk

Lemma 5.12. Norm Properties

1. Using the notation of page 7, we have :

kP (~y � ~p)k

�[

~

Q=~y]

= kPk

�[

~

Q=~y]

+

X

y

i

2~y�~p

kQ

i

k

�

2. Finiteness and Monotonicity

For all weighings �

1

, �

2

, for all terms M 2 �

0

� and for every relation 2 2 f=; >g

�

1

� FV(M) 2 �

2

� FV(M)) kMk

�

1

2 kMk

�

2

25

3. Substitution Lemma

kMk

�[

~

N=~x]

= kM [

~

N=~x]k

�

and therefore, if ~x \ ~y = ; and ~y \ FV(

~

N) = ;

�[

~

N=~x][

~

Q=~y] = �[

~

Q[

~

N=~x]=~y][

~

N=~x]

4. Splitting

For all ~x � FV(M)

kMk

�

� kMk

�[

~

0=~x]

+

X

z2~x

kzk

�

Proof.

1. Immediate from the de�nitions.

2. Easy induction on the structure of M .

3. Induction on the structure of M , the only di�cult case being M � ((�i:Y)P)Y [

~

Q=~y].

By the variable convention we may assume ~x \ ~y = ~y \ FV(

~

N) = ;. Now we have

kMk

�[

~

N=~x]

= k((�

i

Y:P)Y [

~

Q=~y])k

�[

~

N=~x]

= 1 + kP (~y � ~p)k

�[

~

N=~x][

~

Q=~y]

=

1 + kP (~y � ~p)k

�[

~

Q[

~

N=~x]=~y][

~

N=~x]

=

1 + kP [

~

N=~x](~y � ~p)k

�[

~

Q[

~

N=~x]=~y]

= k((�

i

Y:P [

~

N=~x])Y [

~

Q[

~

N=~x]=~y])k

�

= kM [

~

N=~x]k

�

by 1, the induction hypothesis and the Substitution Lemma 3.10. The second part is

again a consequence of Lemma 3.10.

4. See Appendix B for the straightforward but somewhat technical proof by induction on

the structure of M . 2

The �rst norm property gives a more convenient notation for the weighing of an indexed

redex as de�ned in De�nition 5.10(1b), which we will use henceforth. The second property

states that the �-norm of a termM only depends on the weighings of the free variables ofM

(=), and that if we increase the weighing of one of these, the �-norm ofM also increases (>).

The third property states that it makes no di�erence whether one �rst substitutes subterms

for free variables in a term and then takes the �-norm or one takes the norm of the term

with the variables weighed by the �-norms of the corresponding subterms. The last property

roughly states that the weight of a term is greater than or equal to the sum of the weights of

the parts. Now the technical work has been done we can prove the main lemma by a simple

case analysis.

Lemma 5.13. For all weighings �

M !

�

IN

N) kMk

�

> kNk

�

26

Proof. By induction on the generation of !

�

IN

.

1. M !

�

IN

N because (M;N) 2 �

IN

, so M � ((�

i

Y:P)Y [

~

Q=~y]), N � P [

~

Q=~y], then

kMk

�

= k((�

i

Y:P)Y [

~

Q=~y])k

�

= 1+ kP (~y � ~p)k

�[

~

Q=~y]

> kPk

�[

~

Q=~y]

= kP [

~

Q=~y]k

�

= kNk

�

by the substitution lemma.

2. M !

�

IN

N because M � (LM

2

), M

2

!

�

IN

N

2

and (LN

2

) � N . We consider two cases

(a) M =2 �

IN

. Then

kMk

�

= kLk

�

+ kM

2

k

�

> kLk

�

+ kN

2

k

�

= kNk

�

by the induction hypothesis for M

2

!

�

IN

N

2

.

(b) M 2 �

IN

so L � (�

i

Y:P), M

2

� Y [

~

Q=~y], N

2

� Y [

~

Q

0

=~y] and

~

Q!

�

IN

~

Q

0

, then

kMk

�

= k((�

i

Y:P)Y [

~

Q=~y])k

�

= 1 + kP (~y � ~p)k

�[

~

Q=~y]

>

1 + kP (~y � ~p)k

�[

~

Q

0

=~y]

= k((�

i

Y:P)Y [

~

Q

0

=~y])k

�

= kNk

�

by the induction hypothesis for

~

Q!

�

IN

~

Q

0

and monotonicity.

3. M !

�

IN

N because M � (M

1

L), M

1

!

�

IN

N

1

and (N

1

L) � N . Again two cases arise

(a) M =2 �

IN

. Then

kMk

�

= kM

1

k

�

+ kLk

�

> kN

1

k

�

+ kLk

�

= kNk

�

by the induction hypothesis for M

1

!

�

IN

N

1

.

(b) M 2 �

IN

so M

1

� (�

i

Y:P), L � P [

~

Q=~y], N

1

� (�

i

Y:P

0

) and P !

�

IN

P

0

, then

kMk

�

= k((�

i

Y:P)Y [

~

Q=~y])k

�

= 1 + kP (~y � ~p)k

�[

~

Q=~y]

>

1 + kP

0

(~y �

~

p

0

)k

�[

~

Q=~y]

= k((�

i

Y:P

0

)Y [

~

Q=~y])k

�

= kNk

�

by splitting (for ~x = ~p�

~

p

0

), �niteness and the induction hypothesis for P !

�

IN

P

0

.

4. M !

�

IN

N because M � (�X:M

1

), M

1

!

�

IN

N

1

and (�X:N

1

) � N then

kMk

�

= kM

1

k

�[

~

0=~x]

> kN

1

k

�[

~

0=~x]

= kNk

�

by the induction hypothesis for M

1

!

�

IN

N

1

. 2

Observe that the norm is an exact upper bound on the length of the development of a

term. If we had taken

kMk

�

= 1 + kPk

�[

~

Q=~y]

+

X

y

i

2~y

kQ

i

k

�

in De�nition 5.10(1b), for the �-norm of an indexed redex, there would have been no need

for splitting in Lemma 5.13(3b), thus yielding a considerable simpli�cation of the proof. The

price to be paid is that we then no longer obtain an exact upper bound.

27

Lemma 5.14. SN(�

IN

) (I.e. �

IN

-reduction is strongly normalising).

Proof. Suppose

� :M

0

!

�

IN

M

1

!

�

IN

M

2

!

�

IN

� � �

is a �

IN

-reduction starting with M

0

2 �

0

�. Then by the previous lemma

kM

0

k > kM

1

k > kM

2

k > � � �

and because IN is well-founded this sequence and hence � must be �nite. 2

Theorem 5.15. Finiteness of developments (FD)

Let M 2 ��. Then all developments of M are �nite.

Proof. By Lemma 5.14 and Lemma 5.8. 2

Corollary 5.16. Let M 2 ��

1. For U � RO(M) each development of (M;U) can be extended to a complete one.

2. The set fN j M �

dev

Ng is �nite.

Proof.

1. Immediate by FD.

2. By FD and K�onigs lemma. 2

5.2. Conuence by Finite Developments

Now it will be proved that all complete developments of an (M;U) terminate with the same

result. For this purpose it is enough to show that �

IN

is CR, because CR implies UN. That,

in the presence of SN(�

IN

), it is su�cient to prove WCR is stated in the next lemma.

Lemma 5.17. (specialised version of) Newman's lemma [New42]

SN(�

IN

) & �

IN

is WCR) �

IN

is CR.

In the next lemma, ! will stand for !

�

IN

.

Lemma 5.18. The relation ! satis�es the weak diamond property.

Proof. SupposeM !M

1

, M !M

2

in order to construct anM

3

such thatM

1

�M

3

and

M

2

�M

3

. Let (u

i

) :M !M

i

, i = 1; 2, with �

i

� u

i

nM � ((�

k

i

X

i

:P

i

)Q

i

), Q

i

� X

i

[

~

Q

i

=~x

i

],

and let �

0

i

� P

i

[

~

Q

i

=~x

i

]. We give a case analysis by considering the relative positions of u

1

and u

2

.

1. u

1

?u

2

, so �

1

and �

2

are disjoint. Then

M

1

� � � ��

0

1

� � ��

2

� � �

28

M

2

� � � ��

1

� � ��

0

2

� � �

and we can take

M

3

� � � ��

0

1

� � ��

0

2

� � �

2. u

1

= u

2

, so �

1

and �

2

are identical. Then we can take M

1

�M

3

�M

2

.

3. u

2

/ u

1

, so �

1

is a proper subterm of �

2

. Depending on whether �

1

is in the body or

in the argument of �

2

, we distinguish two cases.

(a) u

2

� h0; 1i E u

1

, so �

1

� P

2

, �

1

is in the body of �

2

.

Then M � � � � ((�

k

2

X

2

:� � ��

1

� � �)Q

2

) � � �, where � � ��

1

� � � � P

2

,

M

1

� � � � ((�

k

2

X

2

:� � ��

0

1

� � �)Q

2

) � � �

M

2

� � � � (� � ��

1

� � �)[

~

Q

2

= ~x

2

] � � �

Take

M

3

� � � � (� � ��

0

1

� � �)[

~

Q

2

= ~x

2

] � � �

Then clearly M

1

! M

3

and M

2

! M

3

by substitutivity of �

IN

(proved as in

Proposition 4.7(2)).

(b) u

2

� h1i E u

1

, so �

1

� Q

2

, �

1

is in the argument of �

2

.

Then M � � � � ((�

k

2

X

2

:P

2

)� � ��

1

� � �) � � �, where � � ��

1

� � � � Q

2

,

M

1

� � � � ((�

k

2

X

2

:P

2

)� � ��

0

1

� � �) � � �

M

2

� � � �P

2

[

~

Q

2

= ~x

2

] � � �

By RPC, we can �nd a term Q

0

� X

2

[

~

Q

0

= ~x

2

] such that Q

2

� Q

0

and � � ��

0

1

� � � �

X

2

[

~

Q

0

= ~x

2

]. Then clearlyM

1

� � � � ((�

k

2

X

2

:P

2

)X

2

[

~

Q

0

= ~x

2

]) � � ��M

3

andM

2

�M

3

by Proposition 4.7(1).

4. u

1

/ u

2

. This case can be treated analogously to case 3. 2

By Newman's Lemma 5.17 we have that �

IN

is CR. In the same way we can prove that �

0

is WCR. By leaving out all indices, we obtain a proof of WCR for �.

Remark. By examining the proof above (especially case 3b), it is clear that RPC can be

weakened to the following condition to prove WCR for �. For marked reduction this is not

the case, because then it is required that the common reduct is reached by `essentially the

same reduction paths'.

Definition 5.19. WCR Condition

Let � � ��. � is WCR (or satis�es the WCR condition) if

8X 2 � and 8M;

~

Q 2 ��, 9

~

Q

0

2 �� such that

X[

~

Q=~x]!M)

~

Q�

~

Q

0

& M � X[

~

Q

0

=~x]

29

In other words, we do not need linearity of the patterns to prove WCR for unmarked

reduction. This condition is not su�cient for proving CR because one has the following

counterexample based on [Klo80].

Example 5.20. Consider �

D

= � [f[x;x]g, and the following terms

D � (�[x;x]:e)

C � (�(�c:(�x:(D[x;(cx)]))))

A � (�C)

where � � (�

0

�

0

), (Turings �xed point combinator) and �

0

� (�x:(�y:(y((xx)y)))). Now

�

D

is WCR, but we have both

A� (CA)� (D[A;(CA)])� (D[(CA);(CA)])! e

and

A� (CA)� (Ce)

and these terms have no common reduct by arguments similar to the ones in [Klo80].

This example is a counterexample to CR but not to UN as is shown in [dV87]. It is

conceivable that by a method similar to the one used there one can show UN, and therefore

consistency of �� for � which are WCR. We do not consider this here.

Theorem 5.21. FD!

Let M 2 �� and U � RO(M).

1. All developments of M are �nite.

2. All developments of (M;U) can be extended to a complete development of (M;U).

3. All complete developments of (M;U) end with the same term.

Proof.

1. By FD and its corollary.

2. By FD and its corollary.

3. By Lemma 5.18, Newman's Lemma 5.17 and Lemma 5.8. 2

Definition 5.22.

1. Let M

0

2 �

0

�. Then Cpl(M

0

) is the unique �

IN

-nf of M

0

.

2. For M 2 ��, U � RO(M) de�ne M �

1

Cpl((M;U)).

(There is no ambiguity with the earlier de�nition of �

1

.)

30

It is easy to show that Lemma 4.15 holds. That�

1

satisi�es the diamond property can be

shown in another way.

Proof. (Lemma 4.20)

De�ne M

000

� Cpl((M;U

1

[U

2

)). Then M

0

�

1

M

000

. M �

1

M

0

results from a development of

(M;U

1

[U

2

). Hence by FD! we can complete this development and this complete development

ends with the term M

000

. Similarly for M

00

and one has the diamond property. 2

6. Conclusions

Pattern matching lambda calculus, ��, allows one to write functions in a way resemblant of

functional programs without losing the fundamental theorems (CR and FD) from ordinary

�-calculus. But not everthing is hunky-dory. For systems which satisfy the Church-Rosser

property no matter what reductions we perform, we know we can still reach the normal form

(if it exists). For systems which are UN but not CR this no longer holds, as Example 5.20

shows. In this case the reduction strategy, i.e. the strategy determining which redex to

reduce next, is obviously important. However also for Church-Rosser systems it is. If we

reduce in a naive way we could get stuck in a loop, e.g. ((KI)
) ! ((KI)
) ! . . ., but

((KI)
)! I. For � (CR) we have the Standardization Theorem, which states that always

reducing the leftmost outermost redex, i.e. the one with the least occurrence with respect

to the lexicographic ordering, leads to the normal form (if one exists). For �� this is not

the case due to the fact that patterns can be `built', as the next example based on [HL79]

shows.

Example 6.1. Take the following term

F � ((�[x;I]:e)[
;(II)])

If we use standard reduction, then we get nowhere

F ! F ! F ! . . .

However we can reduce this term to normal form as follows

F ! ((�[x;I]:e)[
;I])! e

This is similar to the situation in term rewriting systems investigated in [HL79]. For an

overview of the theory of term rewriting systems see e.g. [Klo90].

As the examples show, �� has characteristics of both lambda calculus (evidently) and

term rewriting systems (where rewriting is based on pattern matching). As shown in the

examples term rewriting systems can be `coded' in ��, but at present the coding of a case

analysis is a bit clumsy as the following example shows.

31

Example 6.2. Consider the term rewriting system de�ned by the rules

A(0; y)! y

A(S(x); y)! A(x; S(y))

This is in fact a recursive de�ntion of addition :

A((x; y)) = IF x = 0 THEN y ELSE A((x; S(y))),

which can be code in �� as

A � (�(�ha; [[c;x];y]i:IF c = 0 THEN y ELSE (a[x;S(x)]))),

where the de�nitions are taken from the previous examples and ordinary lambda calculus.

Now

(A[S(0);0])� (A[0;S(0)])� S(0)

A. Notations

IN is the set of natural numbers (0 2 IN).

Sets Let X, Y and Z be sets.

That X is a subset of Y will be denoted by X � Y . That X is a proper subset of Y will

be denoted by X � Y . The union of X and Y will be denoted by X [Y . The intersection

of X and Y will be denoted by X \Y . The di�erence of X and Y will be denoted by X�Y .

(We use the same notations for operations on sequences.) The product of X and Y will be

denoted by X � Y . We inductively de�ne X

n

:

1. X

0

= f;g

2. X

n+1

= X

n

�X

Functions Let A, B, C and D be sets.

f : A 7! B denotes that f is a total function with domain A and codomain B.

f �C : A \ C 7! B, the restriction of f to C, is de�ned by f �C(c) = f(c).

id

A

: A 7! A is the identity map on A.

Let f : A 7! B and g : B 7! C then g � f : A 7! C is the composition of f and g and is

de�ned by g � f(a) = g(f(a)).

If f : A 7! B and g : A 7! C then hf; gi : A 7! B � C is the pairing of f and g and is

de�ned by hf; gi(a) = (f(a); g(a)).

If f : A 7! C and g : B 7! D then f�g : A � C 7! B �D is the product of f and g and

is de�ned by f �g((a; b)) = (f(a); g(b)).

Relations If� � X�Y , then� is a relation on X and Y . To indicate that (x; y) 2�

we also write x� y. If X = Y then� is a binary relation on X. The diagonal of X will be

denoted by =

X

or just X if it is clear from the context that a binary relation is meant. Let

32

P be a property of relations. �

0

is the P closure of� if it is the least relation (with respect

to the subset ordering) extending� that has the property P , if such a relation exists.

Let�

1

,�

2

be relations on X and Y and on Y and Z respectively.

The composition of �

1

and �

2

is the relation�

1

��

2

on X and Z de�ned by x �

1

�

�

2

z , 9y[x�

1

y�

2

z].

Let� be a binary relation on X. We de�ne�

n

by induction as follows.

1. �

0

= X

2. �

n+1

= �

n

��

Let � be a relation on X and Y . The inverse of � is the relation �

�1

on Y and X

de�ned by y �

�1

x , x� y. If the symbol used to denote the relations can be `mirrored'

then also the mirrored symbol will be used to denote the inverse relation, e.g. � = �

�1

.

Given a binary relation� on X, we say it is

1. reexive if X � �,

2. irreexive if X\�= ;,

3. symmetric if� ��,

4. transitive if�

2

� �.

The reexive closure of� will be denoted by

X

�. For the symmetric closure of � we have

no special notation. The transitive closure of� will be denoted by�

+

.

A relation is a quasi-order if it is reexive and transitive. A relation is a partial order

if it is irreexive and transitive. A relation � is a total order if it is a quasi-order and

� [� = X

2

. An equivalence relation is a symmetric quasi-order.

Let - be a quasi-order. The equivalence relation generated by - is - \ % and is denoted

by �. The partial order generated by - is - � � and is denoted by �. (Of course only in

cases where the quasi-order symbol admits these notations.)

A binary relation� satis�es the diamond property (notation� j= �) if� �� �� ��.

�-congruence

Definition A.1. Let M and M

0

be generalised lambda terms. M is �-congruent withM

0

,

notation M �

�

M

0

, if

1. T

M

= T

M

0

,

2. O

�

(M) = O

�

(M

0

), O

@

(M) = O

@

(M

0

) and O

FV
(M)

(M) = O

FV
(M

0

)

(M

0

), and

3. 8w 2 O

�

(M), For all free variable occurrences u; v, in either the pattern or the body

of wnM :

`

wnM

(u) � `

wnM

(v) 2 FV(w � h0inM) , `

wnM

0

(u) � `

wnM

0

(v) 2 FV(w � h0inM

0

)

33

In words this reads : M and M

0

have the same underlying tree and variables that are

bound by a variable occurrence in the pattern of an abstraction in M , are bound by that

occurrence in M

0

and vice versa.

B. Proofs

Proof. (Lemma 4.16)

By induction on the de�nition of M �

1

M

0

.

1. M �

1

M

0

is M �

1

M . Then one has to show M [

~

N=~x] �

1

M [

~

N

0

=~x]. This follows by

induction on the structure of M .

(a) M � x

i

2 ~x, then M [

~

N=~x] � N

i

�

1

N

0

i

�M [

~

N

0

=~x] by assumption.

(b) M � y =2 ~x, then M [

~

N=~x] � y � M [

~

N

0

=~x] by De�nition 4.14(1).

(c) M � (PQ), then M [

~

N=~x] � (P [

~

N=~x]Q[

~

N=~x]) �

1

(P [

~

N

0

=~x]Q[

~

N

0

=~x]) � M [

~

N

0

=~x]

by the induction hypothesis and De�nition 4.14(2).

(d) M � (�Y:P), then M [

~

N=~x] � (�Y:P [

~

N=~x]) �

1

(�Y:P [

~

N

0

=~x]) � M [

~

N

0

=~x] by the

induction hypothesis and De�nition 4.14(3).

2. M �

1

M

0

is (PQ) �

1

(P

0

Q

0

) and is a direct consequence of P �

1

P

0

, Q �

1

Q

0

. Then

M [

~

N=~x] � (P [

~

N=~x]Q[

~

N=~x])�

1

(P

0

[

~

N

0

=~x]Q

0

[

~

N

0

=

~

x

0

]) � M

0

[

~

N

0

=~x] by De�nition 4.14(2)

and the induction hypothesis.

3. M �

1

M

0

is ((�Y:P)Y [

~

Q=~y]) �

1

P

0

[

~

Q

0

=~y] and is a direct consequence of P �

1

P

0

,

~

Q�

1

~

Q

0

. Then

M [

~

N=~x] � ((�Y:P [

~

N=~x])Y [

~

Q=~y][

~

N=~x])

� ((�Y:P [

~

N=~x])Y [

~

Q[

~

N=~x]=~y])

�

1

P

0

[

~

N

0

=~x][

~

Q

0

[

~

N

0

=~x]=~y]

� P

0

[

~

Q

0

=~y][

~

N

0

=~x]

� M

0

[

~

N

0

=~x]

by the Variable Convention, De�nition 4.14(4), the induction hypothesis and the Sub-

stitution Lemma 3.10.

4. M �

1

M

0

is (�Y:P) �

1

(�Y:P

0

) and is a direct consequence of P �

1

P

0

. Then

M [

~

N=~x] � (�Y:P [

~

N=~x]) �

1

(�Y:P [

~

N=~x]) � M

0

[

~

N

0

=~x] by the Variable Convention,

De�nition 4.14(3) and the induction hypothesis. 2

34

Proof. (Lemma 4.32)

1. By induction on the structure of M :

(a) M 2 V then we can distinguish two cases :

i. M � x

i

2 ~x, then (x

i

[

~

N=~x]) � (N

i

) � (x

i

)[(

~

N)=~x]

ii. M � y =2 ~x, then (y[

~

N=~x]) � (y) � (y)[(

~

N)=~x]

(b) M � (M

1

M

2

) then again we distinguish two cases :

i. M =2 �

IN

, then

 ((M

1

M

2

)[

~

N=~x]) � ((M

1

[

~

N=~x]M

2

[

~

N=~x]))

� ((M

1

[

~

N=~x]) (M

2

[

~

N=~x]))

� ((M

1

)[(

~

N)=~x] (M

2

)[(

~

N)=~x])

� ((M

1

) (M

2

))[(

~

N)=~x]

� ((M

1

M

2

))[(

~

N)=~x]

by the induction hypothesis.

ii. M 2 �

IN

, so M

1

� (�

i

Y:P) and M

2

� Y [

~

Q=~y], then

 ((M

1

M

2

)[

~

N=~x]) � (((�

i

Y:P [

~

N=~x])Y [

~

Q[

~

N=~x]=~y]))

� (P [

~

N=~x])[(

~

Q[

~

N=~x])=~y]

� (P)[(

~

N)=~x][(

~

Q)[(

~

N)=~x]=~y]

� (P)[(

~

Q)=~y][(

~

N)=~x]

� (((�

i

Y:P)Y [

~

Q=~y]))[(

~

N)=~x]

� ((M

1

M

2

))[(

~

N)=~x]

by the induction hypothesis and the Substitution Lemma 3.10.

(c) M � (�Y:M

1

) then

 ((�Y:M

1

)[

~

N=~x]) � ((�Y:M

1

[

~

N=~x]))

� (�Y: (M

1

[

~

N=~x]))

� (�Y: (M

1

)[(

~

N)=~x])

� ((�Y:M

1

))[(

~

N)=~x]

2. We prove, by induction on the generation of !

�

0

, 8M , N 2 �

0

�

M !

�

0

N) (M)�

�

 (N).

The result then follows by transitivity.

35

(a) M !

�

0

N because (M;N) 2 �

0

, so M � ((�

i

Y:P)Y [

~

Q=~y]) and N � P [

~

Q=~y], then

 (M) � (P)[(

~

Q)=~y] � (N) by Lemma 4.32(1).

(b) M !

�

0

N because M

1

!

�

0

N

1

, M � (M

1

L) and N � (N

1

L), then either

i. M =2 �

IN

, then ((M

1

L)) � ((M

1

) (L)) �

�

((N

1

) (L)) � ((N

1

L))

by the induction hypothesis, compatibility of �

�

and the observation that

N =2 �

IN

, or

ii. M 2 �

IN

so M

1

� (�

i

Y:P), L � Y [

~

Q=~y] and N

1

� (�

i

Y:P

0

) with P !

�

0

P

0

, then ((M

1

L)) � (P)[(

~

Q)=~y] �

�

 (P

0

)[(

~

Q)=~y] � ((N

1

L)) by the

induction hypothesis and Proposition 4.7(2).

(c) M !

�

0

N because M

2

!

�

0

N

2

, M � (LM

2

) and N � (LN

2

), then either

i. M =2 �

IN

then ((LM

2

)) � ((L) (M

2

)) �

�

((L) (N

2

)) � ((LN

2

))

by the induction hypothesis, compatibility of �

�

and the observation that

N =2 �

IN

, or

ii. M 2 �

IN

so L � (�

i

Y:P), M

2

� Y [

~

Q=~y] and N

2

� Y [

~

Q

0

=~y] with

~

Q !

�

0

~

Q

0

,

then

 ((LM

2

)) � (P)[(

~

Q)=~y] �

�

 (P)[(

~

Q

0

)=~y] � ((LN

2

)) by the induction

hypothesis and Proposition 4.7(1).

(d) M !

�

0

N because M

1

!

�

0

N

1

, M � (�Y:M

1

) and N � (�Y:N

1

), then

 ((�Y:M

1

)) � (�Y: (M

1

)) �

�

(�Y: (N

1

)) � ((�Y:N

1

)) by the induction hy-

pothesis and compatibility of �

�

. 2

Proof. (Lemma 4.33)

1. M � x 2 V , then

bxc � x � (x).

2. M � (M

1

M

2

), then there are two cases :

(a) M =2 �

IN

, then b(M

1

M

2

)c � (bM

1

cbM

2

c)�

�

((M

1

) (M

2

)) � ((M

1

M

2

)).

(b) M 2 �

IN

, so M

1

� (�

i

Y:P) and M

2

� Y [

~

Q=~y], then

b(M

1

M

2

)c � ((�

i

Y:bPc)Y [b

~

Qc=~y])

�

�

((�

i

Y: (P))Y [(

~

Q)=~y])

!

�

 (P)[(

~

Q)=~y]

� ((M

1

M

2

))

3. M � (�X:M

1

), then b(�X:M

1

)c � (�X:bM

1

c)�

�

(�X: (M

1

)) � ((�X:M

1

)). 2

Proof. (Lemma 5.12(4))

By induction on the structure of the term M .

36

1. M 2 V , two cases arise :

(a) M � x, hxi � ~x, then kxk

�

= �[

~

0=~x](x) + kxk

�

= kxk

�[

~

0=~x]

+

P

z2~x

kzk

�

(b) M � y, y =2 ~x = hi, then kyk

�

= kyk

�[

~

0=~x]

+

P

z2hi

kzk

�

2. M � (M

1

M

2

), again we consider two cases

(a) M =2 �

IN

, then

kMk

�

= kM

1

k

�

+ kM

2

k

�

� kM

1

k

�[

~

0=~x\ ~m

1

]

+

X

z2~x\ ~m

1

kzk

�

+ kM

2

k

�[

~

0=~x\ ~m

2

]

+

X

z2~x\ ~m

2

kzk

�

= k(M

1

M

2

)k

�[

~

0=~x]

+

X

z2~x

kzk

�

(b) M 2 �

IN

, M

1

� (�

i

Y:P) and M

2

� Y [

~

Q=~y], then

k((�

i

Y:P)Y [

~

Q=~y])k

�

= 1 + kPk

�[

~

Q=~y]

+

X

y

i

2~y�~p

kQ

i

k

�

� 1 + kPk

�[

~

Q=~y][

~

0=~x\~p]

+

X

z2~x\~p

kzk

�[

~

Q=~y]

+

X

y

i

2~y�~p

0

@

kQ

i

k

�[

~

0=~x\~q

i

]

+

X

z2~x\~q

i

kzk

�

1

A

� 1 + kPk

�[

~

0=~x][k

~

Qk

�

=~y\~p]

+

X

z2~x\~p

kzk

�

+

X

y

i

2~y�~p

kQ

i

k

�[

~

0=~x]

+

X

z2~x\

�

S

y

i

2~y�~p

~q

i

�

kzk

�

� 1 + kPk

�[

~

0=~x][

~

Q=~y]

+

X

z2~x\

�

S

y

i

2~y\~p

~q

i

�

kzk

�

+

X

y

i

2~y�~p

kQ

i

k

�[

~

0=~x]

+

X

z2~x\

�

~p[

S

y

i

2~y�~p

~q

i

�

kzk

�

= k((�

i

Y:P)Y [

~

Q=~y])k

�[

~

0=~x]

+

X

z2~x

kzk

�

3. M � (�Y:M

1

), then

k(�Y:M

1

)k

�

= kM

1

k

�[

~

0=~y]

� kM

1

k

�[

~

0=~y][

~

0=~x\ ~m

1

]

+

X

z2~x\ ~m

1

kzk

�[

~

0=~y]

= kM

1

k

�[

~

0=~x][

~

0=~y]

+

X

z2~x

kzk

�

= k(�Y:M

1

)k

�[

~

0=~x]

+

X

z2~x

kzk

�

37

C. Generalised Nameless Terms

Instead of working modulo �-congruence, de Bruijn has shown [dB72] how to give a denota-

tion of terms which identi�es �-congruent terms.

We will extend this for generalised �-terms. To see how this can be done we will �rst

repeat the (slightly modi�ed) de�nition of the de Bruijn notation of a �-term.

Definition C.1. Nameless Terms

1. nameless terms are words over the alphabet IN [f�; :; (;)g.

2. The set �

�

of nameless (or �

�

-) terms is de�ned inductively as follows :

(a) i 2 IN) i 2 �

�

(b) A, B 2 �

�

) (AB) 2 �

�

(c) B 2 �

�

) (�0:B) 2 �

�

(nameless abstraction)

3. The function �

�

(M) = [[M]]

id

IN

maps a �-term to its corresponding nameless term. We

de�ne [[M]]

�

, for all � : IN! IN by induction on the structure of M .

(a) M � v

i

) [[M]]

�

= �(i)

(b) M � (M

1

M

2

)) [[M]]

�

= ([[M

1

]]

�

[[M

2

]]

�

)

(c) M � (�v

i

:M

2

)) [[M]]

�

= (�[[v

i

]]

�

0

:[[M

2

]]

�

0

) = (�0:[[M

2

]]

�

0

),

where �

0

= (� � succ)[0=i] and succ is the successor function.

Observe that if we take V = IN then we almost have �

�

= �. In nameless terms the name

of the variable in a pattern is not needed in the body (only its position), so we take 0 as the

pattern of an abstraction.

Lemma C.2. �

�

(M) � �

�

(N) , M �

�

N

Proof. Tedious. 2

What changes for generalised lambda terms? For each variable we must specify, in addi-

tion to the distance to its binding abstraction, by which occurrence in the pattern of that

abstraction the variable is bound. If we choose an ordering of the free variables of a term

which solely depends on the underlying tree (so on the occurrence of a variable rather than

on its name) we can de�ne a denotation which identi�es �-congruent terms.

Definition C.3. Generalised Nameless Terms

1. Generalised nameless terms are words over the alphabet IN

2

[f�; :; (;)g.

2. The set �

�

�

�

of generalised nameless terms is de�ned inductively as follows :

(a) (i; j) 2 IN

2

) (i; j) 2 �

�

�

�

(b) A, B 2 �

�

�

�

) (AB) 2 �

�

�

�

38

(c) A, B 2 �

�

�

�

) (�A:B) 2 �

�

�

�

(generalised nameless abstraction)

3. The function �

�

�

�

(M) = [[M]]

hc

0

;id

IN

i

, where c

0

is the constant zero function, maps a

term to its corresponding nameless term. We de�ne [[M]]

�

, for all � : IN ! IN

2

by

induction on the structure of M .

(a) M � v

i

) [[M]]

�

= �(i)

(b) M � (M

1

M

2

)) [[M]]

�

= ([[M

1

]]

�

[[M

2

]]

�

)

(c) M � (�M

1

:M

2

)) [[M]]

�

= (�[[M

1

]]

�

0

:[[M

2

]]

�

0

),

where �

0

= (� � succ

0

)[(0; 0); . . . ; (0; n � 1)=i

0

; . . . ; i

n�1

], succ

0

= succ � id

IN

and

hv

i

0

; . . . ; v

i

n�1

i is the sequence of free variables in M

1

, lexicographically ordered.

Note that some generalised nameless terms do not correspond to generalised lambda terms,

e.g. (1; 0), (�(0; 0):(0; 1)). We do have however the following correspondence.

Lemma C.4. �

�

�

�

(M) � �

�

�

�

(N) , M �

�

N

Proof. Just as tedious. 2

As for nameless terms we can de�ne substitution directly for generalised nameless terms.

The only technicality is to update the numbering of the terms to substitute when we en-

counter an abstraction.

Definition C.5. Nameless Substitution

Let A,

~

B = hB

1

; . . . ; B

n

i 2 �

�

�

�

, then A[

~

B=~{] � A[�[

~

B=c

0

�~{]], where for all � : IN

2

! �

�

�

�

,

A[�] is de�ned by induction on the structure of A as follows

1. (i; j)[�] = �((i; j))

2. (A

1

A

2

)[�] = (A

1

[�]A

2

[�])

3. (�A

1

:A

2

)[�] = (�A

1

[�

0

]:A

2

[�

0

]),

where �

0

((0; j)) = (0; j) and �

0

(succ

0

((i; j))) = �(i; j)[succ

0

]

Lemma C.6. �

�

�

�

(M [

~

N=~x]) = �

�

�

�

(M)[�

�

�

�

(

~

N)=�

�

�

�

(~x)]

Proof. Even more tedious. 2

References

[Bar84] H.P. Barendregt. The Lambda Calculus, its Syntax and Semantics. North-Holland,

2nd edition, 1984.

[dB72] N.G. de Bruijn. Lambda-calculus notation with nameless dummies, a tool for auto-

matic formula manipulation. Indagationes Mathematicae, 34:381{392, 1972.

39

[dV87] R.C. de Vrijer. Surjective Pairing and Strong Normalization: Two Themes in

Lambda Calculus. PhD thesis, Universiteit van Amsterdam, January 1987.

[HL79] G. Huet and J.-J. L�evy. Call by need computations in non-ambiguous linear term

rewriting systems. Report 359, INRIA, 1979.

[HS86] J.R. Hindley and J.P. Seldin. Introduction to Combinators and �-Calculus, volume 1

of London Mathematical Society Students Texts. Cambridge University Press, 1986.

[Klo80] J.W. Klop. Combinatory Reduction Systems, volume 127 of Mathematical Centre

Tracts. Centre for Mathematics and Computer Science, Amsterdam, 1980. PhD

thesis.

[Klo90] J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum,

editors, Handbook of Logic in Computer Science, volume I. Oxford University Press,

1990. to appear.

[New42] M.H.A. Newman. On theories with a combinatorial de�nition of equivalence. Annals

of Mathematics, 43(2):223{243, 1942.

[Pey87] S.L. Peyton Jones. The Implementation of Functional Programming Languages.

Prentice-Hall International, 1987.

40

