
Explicit substitution for graphs

Vincent van Oostrom
Universiteit Utrecht

Faculteit Wijsbegeerte, Theoretische Filosofie
Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

Vincent.vanOostrom@phil.uu.nl

Abstract

We present an atomic decomposition of substitution into
erasure, duplication and (for bound variables) scoping.

1. Introduction

Substitution pervades logic. Implementing logic one im-
mediately realises that substitution is not an atomic oper-
ation. Thus one is faced with the question how to imple-
ment substitution. In the seminal work by De Bruijn on
Automath this question was answered by introducing what
is now known as an explicit substitution calculus on terms.
Here, working on graphs instead of on terms, we present
explicit substitution for graphs. In particular, we show how
substitution can be made explicit by means of three atomic
operators for erasure, duplication, and scoping. Here we
aim to present the basic ideas in an intuitive way. We illus-
trate the issues for rewriting systems, although similar ideas
can be found in many other sub-fields of logic.

2. Linear substitution

A term rewriting system (TRS) is given by an alphabet
together with a set of rewrite rules over the alphabet [9].
As an example consider the TRSA for addition of (unary)
natural numbers having rules:

x + 0 → x

x + S(y) → S(x + y)

Using these rules we may find the reductionR given by

S(S(0) + S(0)) →A S(S(S(0) + 0))) →A S(S(S(0)))

For instance, the first step is obtained by observing that the
underlined sub-term ofS(S(0) + S(0)) is a substitution in-
stance of the left-hand sidex + S(y) of the second rule

(substituteS(0) for x and0 for y). The step is obtained
by replacing this sub-term by taking the same substitution
instance for the right-hand side of the same rule, yielding
S(S(S(0) + 0)), where the replaced sub-term is over-lined.

The reason for being so detailed about this here, is that
we want to stress that rewriting is a three-phase process
consisting ofmatching(decomposing a term into a context
and a left-hand side),replacement(replacing the left-hand
side by the corresponding right-hand side), andsubstitution
(composing the context and the right-hand side into a term).
Whereas usually emphasis is put on the second phase, here
we will be interested in the third phase, substitution.

In the case of addition, the substitution phase is always
simple since each rule ofA is linear. That is, every variable
occurs exactly once in both its sides (or not at all). For
this reason, substitution can be thought of mathematically
as a permutation. Implementing terms by graphs, and term
rewrite rules by graph rewrite rules, so-called term graph
rewriting [8]. permutation boils down to rewiring which can
be performed in constant time. In Figure 1 the graph rewrite

+

+

0

+

S

S

Figure 1. Graph rewrite rules for A

system (GRS) corresponding to the TRSA is presented and
Figure 2 displays the graph reduction corresponding to the
reductionR. Note that also a graph rewrite step can be
decomposed into the three phases mentioned above. Typical
other examples of linear term rewrite rules are the rules for
commutativity and associativity:

x + y → y + x

(x + y) + z → x + (y + z)

Unfortunately, not all term rewrite rules are linear.



A

S

S

+

S

0

0

S

+

S S

0 0

S

S

S

0

A

Figure 2. Graph reduction for R

3. Non-linear substitution

Consider the extensionM of the TRSA for addition, by
the rules for multiplication:

x × 0 → 0

x × S(y) → x + (x × y)

with typical reductionS given by

S(0) × S(0) →M S(0) + (S(0) × 0) →M S(0) + 0

Note that neither of the rules for multiplication is linear.The
first is erasing: the variablex appears in its left-hand side,
but not in its right-hand side. The second isduplicating:
the variablex appears once in its left-hand side, but twice
in its right-hand side. To represent replication we introduce
the eraser node} and the duplicator nodeO in the graph
representation of these rules in Figure 3. The formal rewrite

×
0

× 0

S

× +

Figure 3. Graph rewrite rules for M

rules for these replicator nodes will be presented in the next
section, but the idea should be clear already from looking
at the implementation of the reductionS in Figure 4: the
argument connected to such a node is node-wise replicated
the appropriate (0 or 2) number of times. The important
point is that the substitution phase of reduction has become
non-trivial; replication takes time linear in the size of the
replicated argument. Indeed, substitution steps, indicated
by the subscriptx, form the majority of the steps in Figure 4.
The idea is then to delay such steps.

x
×

S

00

S

+

S

0

×

0

+

0

S S

×

0

+

S

0

×

0

0

S

0

+

S

0

S

0

+

S

0

0

0

+

S

0

0

M Mx x x

Figure 4. Graph reduction for S

4. Explicit substitution rules

The graph rewrite rules for the eraser and duplicator are
both instances of the two rule schemata in Figure 5. In a

n

. . .
n

. . .
m

. . .

m

n

. . .

commute

. . .

. . .

. . .

. . .

. . .

. . .

. . .

annihilate

. . .

. . .

n n

n

Figure 5. Schemata for explicit substitution

slogan: distinct symbols commute; identical symbols anni-
hilate. All our rules for substitution operators will be in-
stances of only these two simple schemata. In fact, for the
moment just commutation suffices. In Figure 6 commuta-
tion is spelled out between on the one hand the replicators
} andO and on the other hand the function symbols0 and
S. Note that the right-hand side of the commutation rule for

0SS

S S

0

0 0

Figure 6. Commutation of O, } with S, 0

} and0 in Figure 6 is the empty graph, as in this case both
n andm in the commutation rule of Figure 5 are zero.

5. Delaying explicit substitution

In the naive graph rewriting implementation ofM as in
Figure 4, anM-step is followed by a number of substitution
steps until none is possible anymore, after which the next
M-step takes place, etc.. Having an explicit representation
of substitution gives one the freedom to break this pattern.
For instance, it is intuitively clear that duplicating a sub-
term for which it takes an expensive computation to yield a



simple result is wasteful; computing the result first and then
duplicating it saves half the time.

For terms, the delay of substitution is usually brought
about by extending terms with thelet-construct. For in-
stance, applying a rulex × 2 → x + x to E × 2, yields
letx = E in x + x instead ofE + E, which is a good thing
whenE is expensive to compute. Hence, thelet-construct
can be viewed as an explicit substitution operator for terms.

For graphs, it suffices to break the pattern of reducing to
substitution normal form after each rewrite step. Whereas
up till now ordinary rewrite rules were only applied to
graphs which were in fact trees, breaking the pattern leads
to their application to graphs which are not trees.

Remark 1. In a maximal sharing discipline, as imple-
mented in the ATerm library [3],all identical sub-terms
are shared. That is, duplication is not just delayed but per-
formed in the reverse direction to obtain maximal sharing.

6. Implementation

Stopping short of reaching the substitution normal form
gives rise to the following adequacy questions, cf. [8]:

• Can one characterise the graphs representing terms?

• How do graph and term rewriting relate?

To give somewhat precise answers to these questions, it is
useful to introduce a bit of notation. LetG(t) denote the
directed graph (in fact, tree) corresponding to the termt,
obtained by directing all edges downward. LettingT(G)
denote the (unique if any) termt such thatG(t) is the sub-
stitution normal form ofG, we have thatT ◦ G is the iden-
tity on terms. The standard answer to the first question then
is: representing graphs are directed and acyclic (dags). An
equivalent characterisation in terms of substitution is:

graphs whose substitution normal form is a finite tree.

Uniqueness of substitution normal forms follows from con-
fluence which holds since the substitution rules are orthog-
onal to one another; they constitute an interaction net [6].A
first answer to the second question is:

Lemma 2. (commutation) If G → H , thenT(G) ◦−→

T(H), where ◦−→ denotes multi-step reduction, con-
tracting a number of redexes in a term simultaneously.

(progress) If T(G) → s, then there existG′, H such
that G �x G′ → H , with the corresponding multi-
stepT(G′) ◦−→ T(H) contracting at least the redex
contracted byT(G) → s (note thatT(G′) = T(G)).

Remark 3. Depending on one’s needs more stringent con-
ditions can be put on the relationship, e.g. that graph rewrit-
ing of G(t) should terminate if term rewriting oft does so.

7. Cyclic substitution

Dropping the finiteness condition in the characterisation
of representing graphs above allows for the implementation
of (potentially) infinite terms. To see this, considerones,
the infinite streams of1s

1:1:1:1: . . .

For terms, this infinite stream can be brought about by
means of theletrec-construct

letrec x = 1:x in x

For graphs, it suffices to forget the finiteness condition
on their substitution normal form in the characterisation
above, as then the stream can be represented as the graph
on the left in Figure 7. Indeed, computing the substitution

. . .

1

:

1

:

:

1

x

1

:

:

1 :

1x x

Figure 7. Infinite substitution normal form

normal form of this graph yields ‘in the limit’ an infinite
tree representing the infinite stream of1s as suggested in
the figure. The results of the previous section for acyclic
substitutions should extend to this cyclic case. We expect
the implementation Lemma 2 can be shown by extending
the theory of infinitary rewriting [9] from terms to graphs.

Note that we employ the same rule schemata for comput-
ing substitutions as before, and that combining them with an
orthogonal TRS yields a combined system which is orthog-
onal, hence confluent. This is a bit surprising as it is well-
known that collapsing on the one hand all thegs and on the
other hand all thefs, in the infinite termf(g(f(g(. . .))))
with respect to the orthogonal term rewrite rulesg(x) → x

andf(x)→x, yields infinite termsf(f(. . .)) andg(g(. . .))
which arenot joinable in the infinitary TRS. However, for
their cyclic representation this is not a problem as shown in
Figure 8; a so-called vicious circle [6] serves as the com-
mon reduct. A vicious circle is intuitively meaningless [9],
but that’s not needed here.

Remark 4. All infinite terms above represented by finite
graphs are regular. Allowing the context-free substitutions
to be introduced in the next section, non-regular ones such
as the stream of natural numbers can be represented too.



f

g

f

g

Figure 8. Confluence using a vicious circle

8 Scoping substitution

We now turn to implementing substitution for terms hav-
ing binding symbols such asλ, ∀,

∑
etc. in an atomic

manner. We treat the particular case of implementingβ-
reduction, i.e. substitution, for theλ-calculus [2]. As run-
ning example we take the Church-numeral2 given by

λx.λy.x(xy)

First, we switch to the namelessλ-terms of [4], where each
variable is replaced by a (unary) natural number indicat-
ing by whichλ above it in the syntax tree the variable was
bound (counting from zero). The representation of2 is

λλ(S0)((S0)0)

Second, we reinterpret a successorS as an explicit scope
operator [5]; in a slogan:S stands for scope. The idea is il-
lustrated in Figure 9, displaying from left to right, the syntax

@@@

λx

λy

x x y

λ

λ

S S

0 0

0

@@

λ

λ

S S

0 0

0

@

Figure 9. Reinterpreting successor as scope

tree of the ordinaryλ-term2, the syntax tree of its nameless
version, and that tree again with scopes explicitly indicated
by boxes. The boxes show thatbinding for an ordinaryλ-
term corresponds tomatchingfor its nameless version: ev-
eryS corresponds to a unique matchingλ; any node below
theS is out of scopeof theλ, i.e. will not be affected by a
substitution for its variable. Thus,λ-terms can be seen as
context-freetrees. The idea is to introduce thescopeop-
eratorS into to our alphabet of substitution operators and
implement substitution such that the matching structure is
preserved. Unfortunately, this does not quite work because

duringβ-reduction the neat nesting structure of boxes will
be lost, they may partially overlap, and we must for each
scope- and duplication-node individually keep track of how
deep it is nested. To that end, we also index our operators as
ti andOi for arbitrary depthi, settingO = O0 andS = t0.

9. Translating λ-terms

We present an inductive translation of closedλ-terms
into graphs built out of the explicit substitution operators
and the function symbolsλ (abstraction) and@ (applica-
tion). Here a termt is closedif 0` t in the following infer-
ence system (to be read top–down)

Si` 0
0

Si`St
S

i` t

i`λt
λ

Si` t

i` t1t2
@

i` t1 i` t2

The nameless term2 is closed, as shown in Figure 10. A

SS0` (S0)0

0`λλ(S0)((S0)0)

S0`λ(S0)((S0)0)

SS0` (S0)((S0)0)

λ

λ

0

@

@
SS0` S0

S0` 0
S

0
SS0` S0

S0` 0
0

S
S0` 0

Figure 10. Derivation showing 2 is closed

well-formed termi` t is mapped to a graph havingi + 1
free ports, which is defined by induction and cases (0, S, λ,
and@) on the derivation, in Figure 11. Here a numberi next

λ

i i` t

i

i

Si ` t
i i

i

i` t1 i` t2

@

Figure 11. From λ-terms to graphs.

to a slashed edge represents that in fact the edge is a ‘bus’
consisting ofi edges (connected to an appropriate number
of nodes). Figure 12 shows the application to2.

10 Implementing β-reduction

β-reduction is implemented by the rule in Figure 13. As
before substitution is dealt with by the two rule schemata
of Figure 5 (now annihilate is needed). In addition, indices
need to be updated, where anupdateis an increment of the
indexi (if any) of a substitution operator, which takes place
iff the other symbol is eitherλ ortj , with i ≥ j.



λ

@

@

λ

Figure 12. The graph translation of 2.

λ

@

Figure 13. Translation of β-reduction rule

To get a flavour of this decomposition ofβ-reduction into
atomic steps, in Figure 14 a part of the reduction of (an op-
timised translation of)2 2 to graph normal form is shown.
Although each of the individual steps is simple, it is easy to
lose track of what is really happening, because there are so
many steps. Recalling that application of Church-numerals
is exponentiation, the final graph displayed should be a rep-
resentation of the Church-numeral4. Indeed it is. For an
explanation as to why see [7]. There it is also shown that,
as for the first-order case above, the implementation is ad-
equate (Lemma 2). Again, the proof of adequacy does not
depend on acyclicity, so should generalise to cyclicλ-terms.

11. Conclusion

We have presented an implementation of term rewrit-
ing based on keeping a clear distinction between on the
one hand the implementation of substitution (thesubstitu-
tion calculusin the terminology of [10]), and on the other
hand the implementation of operations on terms (here: the
term rewrite rules). We have illustrated this for both the
acyclic as well as the cyclic case, for first-order term rewrit-
ing and theλ-calculus. The atomic decomposition of sub-
stitution presented is simple (three operators), easy to im-

x

@

λ

λ

1 1

1 1 11

λ

2

@

λ

λ

@

2

@

λ

@@ @

2

@

2

@

β

Figure 14. Reduction of 2 2

plement (two rule schemata), versatile (both acyclic and
cylic), and intuitive (erasure, duplication and scoping are
found in many contexts). We conclude with mentioning two
possible applications. Representing proofs: the graphs can
be seen as atomic decompositions of (the box in) Girard’s
proof nets for multiplicative exponential linear logic. Im-
plementing functional programming: the implementation of
β-reduction is in fact optimal in the sense of [1]. It would
be interesting to combine this with other techniques.

Acknowledgements I have benefited from discussions
over the years with co-authors, colleagues and students on
the topic of this note, for which I thank them.

References

[1] A. Asperti and S. Guerrini.The Optimal Implementation of
Functional Programming Languages. CUP, 1998.

[2] H. Barendregt. The Lambda Calculus: Its Syntax and Se-
mantics. North-Holland, 1984.

[3] M. v. d. Brand, H. de Jong, P. Klint, and P. Olivier. Efficient
annotated terms.Software – Practice & Experience, 30:259–
291, 2000.

[4] N. de Bruijn. Lambda calculus notation with nameless dum-
mies, a tool for automatic formula manipulation.Indaga-
tiones Mathematicae, 34:381–392, 1972.

[5] D. Hendriks and V. v. Oostrom. λ. In CADE 19, volume
2741 ofLNAI, pages 136–150. Springer, 2003.

[6] Y. Lafont. Interaction nets. InPOPL 17, pages 95–108.
ACM Press, 1990.

[7] V. v. Oostrom, K.-J. v. d. Looij, and M. Zwitserlood. ]. Draft.
Available from the first author’s homepage, 2004.

[8] M. Sleep, M. Plasmeijer, and M. van Eekelen, editors.Term
Graph Rewriting. John Wiley & Sons, 1993.

[9] Terese.Term Rewriting Systems. CUP, 2003.
[10] V. van Oostrom.Confluence for Abstract and Higher-Order

Rewriting. PhD thesis, Vrije Universiteit, Amsterdam, 1994.


