
Acyclicity is Modular for Orthogonal TRSs

Acyclicity is shown to be a modular property of orthogonal first-order term rewriting systems
(TRSs), which answers a question raised by Klop. Here, a rewrite system → is acyclic if it doesn’t
allow non-empty cycles, where a cycle on t is a reduction sequence of the form t � t.

We assume knowledge of modularity, standardisation, tracing, and externality in term rewrit-
ing. To be specific, we freely make use of the notions and results in Sections 5.7.1, 8.5, 8.6.1,
and 9.2.3 of [3]. For more information on acyclicity we refer the reader to [1].

Lemma (Standard Prefix). In an orthogonal TRS, the collection of standard reductions ending

in a head step, is totally ordered by the prefix relation.

Proof. First note that any standard reduction ending in a head step can be uniquely decomposed
into a number of standard reductions such that only their final step is a head step. Thus to prove
the lemma, it suffices to show that for any term there is at most one reduction of the latter type.
We claim that a standard reduction of which only the final step is a head step is in fact an external

reduction. The result then follows since supposing ρ and θ would be distinct such reductions from
t, we may assume w.l.o.g. that they already differ in their first steps, say φ and ψ, and by totality
of the textual order, we may assume w.l.o.g. that φ is to the left of ψ. Therefore, by externality
of φ and standardness of θ, φ must have a unique residual up to the final step of θ. But that final
step is a head step, so clearly it nests the residual of φ, contradicting externality of φ.

We prove the claim that any standard reduction of which only the final step is a head step, is
an external reduction by induction on the lengh of the reduction. If the length is 1, it is trivial.
Otherwise, we may write the reduction as φ · ρ for some step φ. Since any suffix of a standard
reduction is standard, the induction hypothesis yields that ρ is an external reduction.

For a proof by contradiction, suppose that φ contracting a redex-pattern at position p were
not external. That is, a reduction θ co-initial to ρ would exist, consisting of steps disjoint from
p and ending in a term allowing a step ψ at position q nesting p. By standardness of φ · ρ, the
position p is in the redex-pattern of the first step above p in ρ (if any). As ρ ends in a head step
such a step indeed exists, say it is φ′ at position p′ above p, and let ρ′ be the prefix of ρ up to φ′.

Now consider the projections θ of θ over ρ′, and ρ′ of ρ′ over θ. Since by construction neither θ
nor ρ′ contracts redex-patterns on the path from the root to p, neither do their projections, hence
the common reduct contains unique residuals of both ψ after ρ′ and of φ′ after θ, respectively at
positions q and p′ above p. Since the positions above p are totally ordered by the prefix relation,
either of q and p′ is above the other. We prove that neither is possible.

If q is properly above p′, then the reduction θ disjoint from p′ and ending in a term containing
a redex-pattern nesting p′, shows that φ′ is not external, contradicting the induction hypothesis.
If p′ is above q, then since q is above p and the redex-pattern at p′ overlaps p, the redex-patterns
of φ′ and ψ must have overlap in the common reduct of θ and ρ′, contradicting orthogonality.

Theorem. Acyclicity is modular for orthogonal TRSs.

Proof. Let Rb ] Rw be the disjoint union of the orthogonal TRSs Rb and Rw. To prove that
acyclicity is a modular property is to prove that the underlying rewrite system →Rb]Rw

, which
we will abbreviate to →, is acyclic if both →Rb

and →Rw
are. For a proof by contradiction, assume

that →Rb]Rw
would allow a non-empty cycle σ on some term t, which we may w.l.o.g. assume to

be of minimal rank. Since the rewrite systems →Rb
and →Rw

are acyclic by assumption, the rank
of t must be positive, say it is n + 1. By minimality, at least a single step in σ must contract a
redex-pattern in the top layer. Finally, w.l.o.g. we may assume t to have a minimal number, say
m+ 1, of principal subterms of maximal rank, i.e. of rank n.

Since rewriting does not increase the rank, the fact that σ is a cycle entails that the rank of all
the terms along σ must be n+ 1, so none of them has a principal subterm of rank greater than n.
Now, let ~p be the vector of positions of principal subterms of maximal rank in t. We claim that
for some index i and some positive k, pi is its own origin when tracing pi back along the k-fold
repetition σk of σ. The claim holds true by the Pigeon Hole Principle and the fact that a principal
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subterm of maximal rank has another such subterm as origin.1 Let s be the principal subterm of
maximal rank at the position pi given by the claim. We show that from t we can obtain a term
t′ which also allows a non-empty cycle but has at most m principal subterms of rank n, yielding
a contradiction. The term t′ is obtained from t by replacing a number of principal subterms, the
subterm s at position pi inclusive, by a term s′ the rank of which is less than that of s.

The replacement term s′ is defined as follows. If s allows some reduction having a destructive

step in its top layer, then as standardisation preserves this and a destructive step in the top layer
is a head step, the Standard Prefix Lemma yields some standard reduction ρ from s ending in a
destructive step, which is least among such in the prefix order, and we let s′ be the target of ρ.
Otherwise, we let s′ be a fresh variable. Either way, the rank of s′ is less than the rank of s.

To see which principal subterms, other than s at position pi, of t are to be replaced by s′, we
proceed as follows. Consider tracing pi forward along an infinite repetition of σk, where we only
let a position trace as long as it is the position of a principal subterm.2 Then we let ~p′ be the
collection of all descendants which occur in t after some repetititon of σk, and let t′ be obtained
from t by replacing all subterms at positions in ~p′ by s′. Note that by the above, pi itself is among
the ~p′, and that by construction the subterms of t at positions in ~p′ are reachable from s.

Next, we show the non-empty cycle σn on t can be simulated by a non-empty cycle σ′ on t′,
by simulating each step φ :u→ v by a reduction φ′ :u′ � v′ depending on the relative positions of
the redex-pattern contracted in φ and the (pairwise disjoint) descendants of ~p′ in u. The invariant

is that u′ is obtained from u by replacing all subterms at positions of descendants of ~p′ by s′.

• If φ contracts a redex-pattern outside, i.e. in the context of, the descendants of ~p′ in u, then
we let φ′ : u′ → v′ be obtained by contracting the same redex-pattern in u′.

• If φ contracts a redex-pattern inside some descendant of ~p′ and φ is not destructive at its
top layer, then we let φ′ : u′ � u′ be the empty reduction.

• If φ is a destructive step at a descendant p of ~p′, then the subterm v|p is reachable from s as
noted above, hence per construction of s′ and the Standard Prefix Lemma, there also exists
some reduction from s to v|p via s′, thus using u′ = u′[s′]p we may set φ′ : u′[s′]p � u′[v|p]p.

That σ′ is non-empty follows from the fact that σ contains at least one step in its top layer, which
will be simulated by exactly one step in σ′ according to the first item of the simulation. To show
that σ′ is a cycle, it suffices to show that each position p among ~p′ in t traces back along σk to
some position in that set again, which is trivial per construction of the set.

This complements the results on modularity of acyclicity in [2] based on the distribution of col-
lapsing and duplicating rules. Answering questions of Middeldorp, note the proof method also
yields modularity of absence of non-empty fixed-point reductions of shape t � C[t] for orthogonal
TRSs, and neither non-overlappingness nor left-linearity can be omitted from orthogonality:

Example. Let Rb either be the overlapping left-linear TRS with rules {g(x, y) → x, g(x, y) → y}
or the non-overlapping non-left-linear TRS with rules {g(x, y, z, z)→ x, g(x, y, z, S(z)) → y,∞→
S(∞)}. In either case, Rb is acyclic since applying a g-rule decreases the number of g-symbols.

Combining either with the acyclic orthogonal TRS Rw {f(0, 1, x) → f(x, x, x)} yields a cyclic

combination Rb ]Rw, as can be seen from f(0, 1, g(0, 1)) or f(0, 1, g(0, 1,∞,∞)), respectively.
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1Note that the claim need not hold when fixing k to 1. For instance, σ might swap two principal subterms.
2Per construction positions trace statically; a redex-pattern overlapping one would be polychrome quod non.
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