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1 Introduction16

Multisets are formal structures frequently occurring in computation and deduction. To give17

a few uses of multisets: sorting a list preserves the underlying multiset, the fundamental18

theorem of arithmetic asserts every positive natural number is represented by a unique19

multiset of prime numbers, there is a multiset model of the π-calculus, and in rewriting20

multisets are the basis for various termination and confluence methods.21

Given their prominence one would expect a relatively well-developed and -established22

body of multiset theory to be available. In the 1990s when working on my PhD thesis, I found23

this was not the case so developed the algebraic laws on multisets needed there in an ad hoc24

way [23, Sect. 1.4]. In the early 2000s I realised that a more principled algebraic approach was25

enabled by requiring composition to be commutative in the residual systems [26, Sect. 8.7]26

I had introduced, giving rise to a class of algebras dubbed commutative residual algebras27

(CRAs) [19, Sect. 5]. Multisets constitute CRAs, but initially it was open whether useful28

results on multisets could be established via CRAs, and whether those could be automated.29

On the practical side, a first confirmation of the former was that correctness of sorting30

could be factored through CRAs.1 On the theory side, the first result indicating CRAs had31

potential was developed by Albert Visser, who showed a representation theorem stating that32

any finite CRA is isomorphic to (an initial segment of) the multiset CRA of indecomposables,33

i.e. their elements are multisets, a result we recapitulate in the preliminaries.34

In this paper we provide further evidence to the potential of CRAs, foremost, in Sect. 3,35

by showing that a version of the IE, i.e. the inclusion–exclusion principle, can be stated36

and proven for CRAs. Somewhat surprisingly, the usual inclusion–exclusion principle for37

(measurable) sets then is a consequence of that for (measurable) multisets. Embedding CRAs38

in lattice-ordered groups allows us to recover the IE in its usual formulation. In Sect. 4 we39

indicate related and future work, in particular, we show CRAs equivalent to Dvurečenskij and40

1 We showed Coq’s multisets do constitute a CRA and then relied for correctness of sorting on that.
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23:2 CRAs; the inclusion–exclusion principle

Graziano’s commutative BCK algebras with relative cancellation [13] and discuss potential41

automation and formalisation.42

2 Preliminaries43

We recapitulate commutative residual algebras from [19, Sect. 5], in particular we present the44

natural order and the derived (partial) operations of meet, product, and join and their core45

structural properties in Sect. 2.2, and the representation theorem for well-founded CRAs in46

Sect. 2.3. To illustrate these and also later notions, constructions, and results, we introduce47

in Sect. 2.1 our running examples of CRAs. Products and joins, as defined below, are in48

general only partial functions. To enable convenient reasoning about expressions in which49

such partial functions occur, we employ Kleene equality .=. That is, for f a partial function50

and expressions e1, . . . , en, the expression e := f(e1, . . . , en) denotes v, if ei denotes vi and51

(v1, . . . , vn) is in the domain of f , and f applied to it has value v.2 Kleene equality e .= e′
52

asserts that if either of e, e′ denotes then so does the other and then their denotations are53

equal. This section does not contain novel material3 (compared to [19, Sect. 5] or partially54

also [13], [26, Sect. 8.7]). It is meant to be a short introduction to CRAs.455

▶ Definition 1. A commutative residual algebra is an algebra ⟨A, 1, /⟩ with5 constant 1 and56

binary residual or residuation function / such that for all a, b, c ∈ A:57

a/1 = a (1)58

(a/b)/(c/b) = (a/c)/(b/c) (4)59

(a/b)/a = 1 (5)60

a/(a/b) = b/(b/a) (6)61
62

▶ Remark 2. Each of the CRA laws is independent of the others as easy models show.6 We63

have not numbered the laws consecutively because we have omitted the derivable7 ones:64

a/a = 1 (2)65

1/a = 1 (3)66
67

and algebras satisfying laws (1)–(4) are interesting in their own right: They are residual68

algebras (RAs), the algebras corresponding to residual systems (RSs [26, Sect. 8.7]).8 More69

precisely, such RAs correspond to RSs over a rewrite system having exactly one object,70

hence all results for residual systems, e.g. [26, Table 8.5], directly apply to RAs and CRAs.71

Where RAs have objects a, b, c, . . ., RSs have steps ϕ, ψ, χ, . . .. Steps allow for an intuitive72

visualisation of laws. For instance, why law (4) is aka the cube law9 is clear from its73

visualisation in Fig. 1. Despite that, as discussed below, laws (5),(6) force sources and targets74

2 We take denoting to be strict; e.g. 0 · 1
0 does not denote because its sub-expression 1

0 does not.
3 Maybe with the exception of the CRA of measurable multisets; a quick search only yielded [3].
4 Omitted proofs can also be found by ATP. See App. B for illustrative examples.
5 We use multiplicative instead of additive notation. We pronounce 1 as unit or one and a/b as a after b.
6 E.g. taking for / the constant-1 function satisfies all laws except (1).
7 By a/a

(1)
= (a/1)/a

(5)
= 1 and 1/a

(2)
= (a/a)/a

(5)
= 1 respectively, so only using (1) and (5).

8 The correspondence is intended to be helpful for people familiar with some notion of causal equival-
ence [26, Sect. 8.3.1] (cf. causal invariance of [27, Sect. 5.2]) as modelled by derivates [22, Sect. 8], or
derivatives [15], or residuals [26, Sect. 8.7] in rewrite systems and in concurrent transition systems [25].

9 Due to Lévy for rewrite systems and to Stark for concurrent transition systems, see [26, Remark 8.7.1].
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Figure 1 Rewrite step, residuation diamond, cube law (4), and composite laws (7,8). (4) states
residuation of ϕ via the back (χ) and top (ψ/χ), and via the bottom (ψ) and front (χ/ψ), coincide

to coincide, trivialising the notion of step, several of our constructions do not depend on them75

and we will visualise such constructions in a way similar to that in which Fig. 1 visualises (4).76

To give a flavour of CRA reasoning we show two simple but interesting (cf. Theorem 42)77

laws whose proofs being not quite trivial illustrates that CRA proofs are best left to ATPs.78

▶ Proposition 3. (a/b)/c = (a/c)/b and (a/b)/(b/a) = a/b.79

Proof. Abbreviating a/(a/b) to a ∧ b (cf. Def. 10), the former is seen to hold by80

(a/b)/c (1,5)= ((a/b)/c)/((c/b)/c) (i)= ((a/c)/(b/c))/(c ∧ b) (ii)= (a/c)/b81

where (i) and (ii) are derived as (instances of) respectively:82

((a/b)/c)/((c/b)/c) (4)= ((a/b)/(c/b))/(c/(c/b)) (4),def= ((a/c)/(b/c))/(c ∧ b)83

84

(a′/(b/c))/(c ∧ b) (6),def= (a′/(b/c))/(b ∧ c) def,(4)= (a′/b)/((b/c)/b) (5,1)= a′/b85

The latter, expressing parts a/b and b/a of the symmetric difference are disjoint, holds by:86

(a/b)/(b/a) (1),(5)= ((a/b) ∧ a)/((b/a) ∧ b) def,(6)= (a/(b ∧ a))/(b/(b ∧ a)) (4),(5),(1)= a/b ◀87

2.1 Examples of CRAs88

We show that some ubiquitous structures constitute CRAs. These will serve to illustrate our89

various operations, constructions, and results for CRAs in subsequent sections. Since among90

our examples the CRAs are determined by their carrier, we will refer to them via the latter.91

▶ Example 4. The natural numbers N with zero 0 and monus10 −̇ constitute the CRA92

⟨N, 0, −̇⟩. More precisely, that for all n,m, k ∈ N:93

n −̇ 0 = n94

(n −̇m) −̇ (k −̇m) = (n −̇ k) −̇ (m −̇ k)95

(n −̇m) −̇ n = 096

n −̇ (n −̇m) = m −̇ (m −̇ n)97
98

can be checked by distinguishing cases on the ≤-order of the various sub-expressions. For99

instance 3 ≤ 5, so 5 −̇ (5 −̇ 3) = 3 = 3 −̇ 0 = 3 −̇ (3 −̇ 5). CRAs are also obtained when100

changing the carrier to the non-negative real numbers R≥0 and/or restricting it to an initial101

segment N≤N of numbers smaller–than–or–equal–to a given number N .102

10 Monus and dovision are short for cut-off minus and division, with the latter defined by n /· m := n
gcd(n,m) .

CVIT 2016
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▶ Remark 5. Adjoining a fresh top to the natural numbers will not yield a CRA as (6) then103

fails.11 Instead ‘stacking’ a reverse copy of N on top (having the copy of 0 as top) does work.104

▶ Example 6. The multisets over A with empty multiset ∅ and difference − constitute the105

CRA ⟨Mst(A), ∅,−⟩. That for all M,N,L ∈ Mst(A):106

M − ∅ = M107

(M −N) − (L−N) = (M − L) − (N − L)108

(M −N) −M = ∅109

M − (M −N) = N − (N −M)110
111

follows from the previous example by pointwise extension and viewing Mst(A) as A→N. CRAs112

are also obtained restricting to the sets ℘(A) over A, i.e. to multisets having multiplicities113

≤ 1, and/or requiring supports to be finite Mstfin(A), where for a multiset M and a ∈ A, we114

refer to M(a) as the multiplicity of a and to {a ∈ A | M(a) > 0} as the support of M .115

▶ Example 7. The positive natural numbers Pos with one 1 and dovision10 /· constitute the116

CRA ⟨Pos, 1, /· ⟩. That the CRA laws hold follows from the previous example, viewing each117

positive natural number as its multiset of prime factors, unique by the fundamental theorem118

of arithmetic. In this view dovision corresponds to monus (pointwise, on the exponents of the119

factors). A CRA is again obtained for any initial segment Pos≤N of the positive numbers.120

Measurable multisets constitute a less standard example. We use a minimalistic set-up: we121

are only concerned with binary unions, not countable ones as in general measure theory.122

▶ Definition 8. An algebra12 A is a collection of subsets of an ambient set A containing A123

and closed under union and complement with respect to A. A multiset M is A-measurable if124

M i ∈ A for each i, with M i := {a | M(a) = i} (the set at height i of M); and125

M>i = ∅ for some i, with M>i :=
⋃
j>iM

j = {a | M(a) > i} (least i is the height of M)126

The idea is that those multisets are measurable at each height. Note that the M i partition127

A, that the support of M can be written as M>0, and that M is empty iff its height is 0.128

▶ Example 9. The A-measurable multisets Mst(A) constitute a CRA. By the above it suffices129

to show the multiset CRA operations preserve measurability. For M,N A-measurable:130

∅0 = A ∈ A and ∅>0 = ∅ = A−A ∈ A; and131

(M −N)i =
⋃
j−̇k=iM

j ∩Nk ∈ A and M −N has height below M .132

2.2 Natural order, meet, product, and join133

We recapitulate the natural order, the derived operations meet, product, join, and their basic134

properties, illustrated in Table 1. We assume an arbitrary, fixed CRA ⟨A, 1, /⟩.135

▶ Definition 10. The natural order is a ⩽ b := a/b = 1. The meet a ∧ b of a, b is a/(a/b).136

Thus (2) expresses ⩽ is reflexive, (3) that 1 is ⩽-least, and (6) that ∧ is commutative.137

▶ Lemma 11. ⩽ is a partial order; and138

⟨A,∧⟩ is a meet-semilattice, and a ⩽ b ⇐⇒ a = a ∧ b.139

11 As usual subtraction does not behave well on ‘infinities’ like such a top.
12 In measure theory terminology; in universal algebra A is a sub-algebra of the Boolean algebra ℘(A).
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CRA N R≥0 Mst Pos
natural order ⩽ less–than–or–equal ≤ idem sub-multiset ⊆ divisibility |

total? ✓ ✓
well-founded? ✓ ✓(on finite) ✓

meet ∧ minimum min idem intersection ∩ greatest–common–divisor gcd
product · sum + idem sum ⊎ product ·

join ∨ maximum max idem union ∪ least–common–multiple lcm

Table 1 The natural order, meet, product and join exemplified

Proof. Quasi-orderedness holds for residual systems [26, Lem. 8.7.23], anti-symmetry by:140

a ⩽ b ⩽ a ⇐⇒ (a/b = 1 and b/a = 1) =⇒ a
(1),ass= a/(a/b) (6)= b/(b/a) ass,(1)= b; and141

Idempotence and commutativity are trivial. We only show associativity: a∧ (b∧c) com,def=142

(b ∧ c)/((b ∧ c)/a) def,(∗)= (b/(b/c))/((b/a)/(b/c)) (4)= (b/(b/a))/((b/c)/(b/a)) (∗),def= (b ∧143

a)/((b ∧ a)/c) def,com= (a ∧ b) ∧ c using (a/b)/c (∗)= (a/c)/b twice. ◀144

▶ Definition 12. c is a product of a, b if a ⩽ c, c/a = b, and a join if a product of a, b/a.145

Products, and hence joins, are unique if they exist: suppose c and d are both products of146

a and b. Then by (anti-)symmetry of ⩽ it suffices to show c ⩽ d and that follows from147

c/d
(1),ass= (c/d)/(a/d) (4),ass= (c/a)/b ass,(2)= 1. Below we employ · and ∨ to denote the148

(partial) product and join functions. They are exemplified in Table 1.149

▶ Example 13. In the CRA ℘(A) of subsets of A product, i.e. disjoint union, is partial;150

products exist iff sets are disjoint. For the CRA of (measurable) multisets ⊎ and ∪ are total.151

▶ Lemma 14. if a · b denotes then, see Fig. 1:152

c/(a · b) = (c/a)/b (7)153

(a · b)/c .= (a/c) · (b/(c/a)) (8)154
155

⟨A, 1, ·⟩ is a partial commutative monoid, and a ⩽ b ⇐⇒ b
.= a · (b/a);156

⟨A,∨⟩ is a partial join-semilattice with neutral 1, and a ⩽ b ⇐⇒ a ∨ b
.= b;157

if c ⩽ a and a · b denotes so does c · b, and the same for ∨.158

Proof. See [19, Lemmata 74–76]. To give a flavour of reasoning with Kleene equality we show159

· commutative, i.e. a · b .= b · a. Assume c .= a · b, i.e. a/c = 1 and c/a = b. Then b/c ass,(5)= 1160

and c/b
ass,(6)= a/(a/c) ass,(1)= a, so also c .= b · a. That is, based on the lhs we constructed a161

purported witness (c) for the rhs and showed it indeed satisfied being a product of b and a.162

In that spirit, compatibility of product as in the last item is witnessed by (a · b)/(a/c). ◀163

▶ Remark 15. Motivated by that multiset sum is commutative, we originally arrived at com-164

mutative residual algebras, laws (5),(6), based on the following attempt to make composition165

commutative in residual systems with composition [26, Def. 8.7.38] using laws (7),(8):166

(a · b)/(b · a) (7),(8)= (

(5)︷ ︸︸ ︷
(a/b)/a) · (

(6)︷ ︸︸ ︷
(b/(b/a))/(a/(a/b))) ?= 1 · 1 = 1167

CVIT 2016



23:6 CRAs; the inclusion–exclusion principle

2.3 The multiset representation theorem for well-founded CRAs168

We recapitulate from [19, Sect. 5] that well-founded CRAs can be represented as multiset169

CRAs, by an appeal to the unique decomposition theorem for decomposition orders (the170

main result of [19]). We assume an arbitrary but fixed partial commutative monoid ⟨A, 1, ·⟩.171

▶ Definition 16. a is indecomposable13 if a ̸= 1 and a = b · c implies b = 1 or c = 1;172

multiset [a1, . . . , an] is a decomposition of a if each ai is indecomposable and a .= a1·. . .·an;173

divisibility is defined by a ⩽ b if b .= a · c for some c.174

These notions apply to CRAs via the partial commutative monoid of their product and the175

natural order of the CRA then coincides with the divisibility order (Lem. 14).176

▶ Definition 17. a partial order ≼ is a decomposition order if177

(well-founded) there are no infinite descending ≺-chains;178

( least) 1 ≼ a for all a;179

( strictly compatible) if a ≺ b and b · c denotes, then a · c denotes and a · c ≺ b · c;180

(Riesz decomposition) if a ≼ b · c, then a = b′ · c′ for some b′ ≼ b and c′ ≼ c;181

(Archimedean) if an defined and an ≺ b for all n, then a = 1.182

Having unique decompositions means that decompositions exist and are unique. It trivially183

fails for R≥0 in the absence of indecomposables; its natural order ⩽ is not well-founded.184

▶ Theorem 18 ([19]). Unique decomposition holds iff there exists a decomposition order, in185

particular if divisibility is well-founded, strictly compatible, and has Riesz decomposition.186

Having a partial commutative monoid suffices; neither a ring structure, nor having cancellation187

as in the standard abstract algebraic approach to the fundamental theorem of arithmetic (FTA;188

for unique factorisation domains), nor totality of products, are needed. As a consequence the189

proof of Thm. 18 is very different from the usual proofs of the FTA (it is based on Milner’s190

technique). Decomposition orders were designed, and have been applied, to show that every191

process can be uniquely decomposed as the parallel composition of sequential processes for192

process calculi such as BPP, ACPϵ, and the π-calculus (search [19] for pointers) but, as they193

are complete, they also cover the FTA, separation algebras,14, and well-founded CRAs:194

▶ Corollary 19 ([19]). Well-founded CRAs have unique decomposition.195

Proof. By the if-part of Thm. 18 using Lem. 14: well-foundedness is immediate; strict196

compatibility holds since if b · c denotes and a < b, then a · c denotes and a · c ⩽ b · c by197

compatibility, so a · c < b · c as (b · c)/(a · c) com,(7),(8),(2),(1)= b/a ̸= 1 by assumption; and198

finally Riesz decomposition holds since if a ≼ b · c setting b′ := b/d and c′ := c/(d/b) where199

d := (b · c)/a is seen to work; e.g., a ass= a/(a/(b · c)) (6)= (b · c)/d (8)= b′ · c′. ◀200

For the CRA N this boils down to the triviality n =
n︷ ︸︸ ︷

1 + . . .+ 1. For Pos we recover15 FTA.201

▶ Theorem 20 ([19]). A well-founded CRA ⟨A, 1, /⟩ is isomorphic to the CRA ⟨A′, ∅,−⟩,202

with A′ the initial segment wrt. sub-multiset ⊆, of finite multisets of indecomposables of A.203

13 For rings this is known as being irreducible.
14 Substate is well-founded for the partial functions with finite domain in [6]; indecomposables are singletons.
15 Thm. 18 should be applied directly though to avoid circularity; we used FTA in showing Pos a CRA.
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Proof. Let h map a ∈ A to the finite multiset h(a) = [a1, . . . , an] of indecomposables ai204

such that a .= a1 · . . . · an. Observe that for any a, b we have a .= (a/b) · (a/(a/b)), so if a205

is indecomposable then a/b is 1 if a = b, and a otherwise.16 Hence if h(a) = [a1, . . . , an]206

and h(b) = [b1, . . . , bm], then h(a/b) = [a1, . . . , an] − [b1, . . . , bm] is seen to hold by repeated207

cancellation, using (7),(8), of the bj occurring among the ai in (a1 · . . . · an)/(b1 · . . . · bm). ◀208

Thus, elements of well-founded CRAs are finite multisets in the same way positive natural209

numbers are multisets of prime numbers, (The CRA need not be finite though; e.g. N is not.)210

3 The inclusion–exclusion principle211

A basic tool in combinatorics is the inclusion–exclusion principle going back to de Moivre,212

da Silva, and Sylvester in the 17/18th century. In some standard formulation it reads:213

▶ Theorem 21. For a finite family AI := (Ai)i∈I of finite sets214 ∣∣∣⋃AI

∣∣∣ =
∑

∅⊂J⊆I
(−1)|J|−̇1 ·

(∣∣∣⋂AJ

∣∣∣)215

Spelling that out for index sets of sizes 2 and 3 gives, for finite sets A,B,C, the well-known:216

|A ∪B| = |A| + |B| − |A ∩B|217

|A ∪B ∪ C| = |A| + |B| + |C| − |A ∩B| − |B ∩ C| − |C ∩A| + |A ∩B ∩ C|218

For instance, for I := {1, 2, 3}, a1 := {x, y}, a2 := {y, z}, and a3 := {z, x},219

|{x, y, z}| = 3 = |{x, y}| + |{y, z}| + |{z, x}| − |{y}| − |{z}| − |{x}| + |∅|220

The inclusion–exclusion principle and its standard binomials-based proof have been generalised221

to various other settings, e.g. to probabilities and to multisets. Our starting point here is the222

observation that analogues of the IE hold in each of the CRAs in Sect. 2.1. For instance, for223

a1 := 6, a2 := 15, and a3 := 10 in ⟨N, 1, /⟩,224

max (6, 15, 10) = 6 + 15 + 10 − min (6, 15) − min (15, 10) − min (10, 6) + min (6, 15, 10)225

Since CRAs only deal with natural resources we formulate a version of the IE where the226

positive/negative resources (for index sets of odd/even cardinality) are grouped together,227

with the former as large as the latter. Since products need not exist we use Kleene equality.228

Our proof of IE relies on how CRA operations interact with others, as summarised in:229

▶ Lemma 22. 1. (b/a) ∧ (c/a) = (c/a)/(c/b) = (b ∧ c)/(a ∧ c);230

2. (a · b)/(c · d) = (a/c)/(d/b), if c ⩽ a, b ⩽ d, and a · b and c · d denote;231

3. (a · b) ∧ c
.= (a ∧ c) · (b ∧ (c/a)), if a · b denotes;232

4. (a ∨ b) ∧ c
.= (a ∧ c) ∨ (b ∧ c), if a ∨ b denotes; and233

5. a ∨ (a ∧ b) .= a and a ∧ (a ∨ b) .= a, if a ∨ b denotes.234

If product is total CRAs are distributive lattices, not necessarily bounded as shown by N.235

▶ Theorem 23. If aI := (ai)i∈I is a finite family and
∏
Jo⊆I

∧
aJ ,

∏
∅⊂Je⊆I

∧
aJ denote:17

236

∨
aI

.=

 ∏
Jo⊆I

∧
aJ

 /

 ∏
∅⊂Je⊆I

∧
aJ

237

16 That is, indecomposables are orthogonal letters in the sense of [26, Example 8.7.13].
17 The subscripts ‘o’/‘e’ to the subset-symbol ‘⊆’ indicate restriction to subsets of odd/even cardinality.

CVIT 2016
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Proof. We mimic the standard inductive proof of IE adapting it as needed to deal with238

partiality of product and join in CRAs. More precisely, letting O and E be the first and239

second argument of the / in the rhs, i.e. the odd and even products, we show that if O,E240

denote, then
∨
aI

.= O/E and 1 = E/O by induction on the cardinality of the index set I.241

As the base case, I = ∅, is trivial, consider the step-case for I ∪ {k}, so that O :=242 ∏
Jo⊆I∪{k}

∧
aJ and E :=

∏
∅⊂Je⊆I∪{k}

∧
aJ . We show that the rhss O/E and E/O of the243

left and right conjuncts can be stepwise transformed into their respective lhss. To that end,244

we first split the products in O,E into ones that do and do not contain ak, so that O is245

transformed into a · b · ak and E into c · d for246

a :=
∏

Jo⊆I∪{k}

∧
aJ , b :=

∏
∅⊂Je⊆I

∧
(aj∧ak)j∈J , c :=

∏
∅⊂Je⊆I

∧
aJ , d :=

∏
Jo⊆I

∧
(aj∧ak)j∈J247

using · is a partial monoid (to rearrange factors) and ∧ a meet-semilattice (to distribute ak).248

Using that, we transform the rhs O/E of the left conjunct
∨
aI

.= O/E as ((a · b) ·ak)/(c ·249

d)
(8).= ((a·b)/(c·d))·(ak/((c·d)/(a·b)))

com,Lem. 22(2).= ((a/c)/(d/b))·(ak/((d/b)/(a/c))), where250

the conditions c ⩽ a and b ⩽ d of Lem. 22(2) are satisfied by the right conjunct of the IH for251

the families aI respectively (ai ∧ ak)i∈I . We see that, for the same families, the left conjunct252

of the IH applies to the occurrences of a/c and d/b in ((a/c)/(d/b)) ·(ak/((d/b)/(a/c))) giving253

((
∨
aI)/(

∨
(ai ∧ ak)i∈I)) · (ak/((

∨
(ai ∧ ak)i∈I)/(

∨
aI)))254

From this we conclude, using ∨ is a join-semilattice and distributivity of ∧ over ∨, by255

((
∨
aI)/(ak ∧

∨
aI)) · ak = ((

∨
aI)/ak) · ak = ak ∨

∨
aI =

∨
aI∪{k}256

Further transforming the rhs E/O of the right conjunct as (c·d)/((a·b)·ak) (7),com,Lem. 22(2)=257

((d/b)/(a/c))/ak, we see that, for the same families as above, the right conjunct of the IH258

applies to the occurrences of a/c and d/b, and then we conclude by259

((
∨

(ai ∧ ak)i∈I)/(
∨
aI))/ak

Lem. 22(4)= ((ak ∧
∨
aI)/(

∨
aI))/ak = 1 ◀260

This theorem entails all the versions of the inclusion–exclusion principle we know of.261

3.1 The inclusion–exclusion principle for (measurable) sets262

Although the inclusion–exclusion principle for CRAs does not directly cover the standard263

one for (measurable) sets as it does not refer to cardinalities/measures, we show it can be264

recovered by showing such sets can be embedded into the CRA of (measurable) multisets.265

▶ Definition 24. The cardinality |M | of multiset M over A is
∑
a∈AM(a) ([23, Def. 1.4.3]).266

This definition is such that viewing a set as a multiset preserves its cardinality. That, if267

N ⊆ M for finite multisets M,N then |M −N | = |M | −̇ |N |, follows from:268

▶ Lemma 25. For finite multisets M,N , |M ⊎N | = |M | + |N |.269

▶ Theorem 26. for a non-empty finite family aI := (ai)i∈I of finite sets270 ∣∣∣⋃AI

∣∣∣ =
(∑

Jo⊆I

∣∣∣⋂AJ

∣∣∣) −̇
(∑

∅⊂Je⊆I

∣∣∣⋂AJ

∣∣∣)271
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Figure 2
∑

i
µ(M>i) =

∑
j
j · µ(Lj), horizontal = vertical (‘Lebesgue = Riemann’)

Proof. Viewing sets as multisets Thm. 23 yields the left equality in:272 ∣∣∣⋃AI

∣∣∣ =
∣∣∣(⊎

Jo⊆I

⋂
AJ

)
−

(⊎
∅⊂Je⊆I

⋂
AJ

)∣∣∣ =
(∑

Jo⊆I

∣∣∣⋂AJ

∣∣∣)−̇
(∑

∅⊂Je⊆I

∣∣∣⋂AJ

∣∣∣)273

with the right equality following from Lem. 25. ◀274

▶ Definition 27. A function µ from an algebra A to R≥0 is a measure if µ(∅) = 0 and275

µ(A ∪B) = µ(A) + µ(B) for disjoint A,B ∈ A. For multisets M , µ(M) :=
∑
iµ(M>i).276

▶ Lemma 28. For µ a measure and multisets M,N , µ(M ⊎N) = µ(M) + µ(M).277

Proof. Based on that
∑
iµ(M>i) =

∑
j j · µ(Lj), see Fig. 2, we conclude by278

µ(M ⊎N) =
∑

j,k
(j + k) · µ(M j ∩Nk) = µ(M) + µ(M) ◀279

Replacing cardinalities by measures and 25 by 28 in the proof of Thm. 26 shows:280

▶ Theorem 29. for a non-empty finite family aI := (ai)i∈I of measurable sets281

µ(
⋃
AI) =

(∑
Jo⊆I

µ(
⋂
AJ)

)
−̇

(∑
∅⊂Je⊆I

µ(
⋂
AJ)

)
282

3.2 The inclusion–exclusion principle in lattice-ordered groups283

By the very nature of CRAs being about natural resources there is still a discrepancy between284

the standard formulation of the IE in Thm. 21 and the one of Thm. 26; they are statements285

about the (group of) integers respectively the (monoid of) natural numbers. We show the286

standard formulation of the IE can be regained by embedding CRAs into lattice-ordered287

groups, in a way analogous to the representation of rational numbers as fractions, pairs of288

integers. We assume an arbitrary but fixed CRA ⟨A, 1, /⟩ and for simplicity that products289

exist turning (7) and (8) into ordinary equalities (cf. RSs with composition [26, Def. 8.7.38]).290

▶ Definition 30. A fraction is a pair (a, b), usually written as a
b .291

An element a of the CRA is embedded as the fraction a
1 , so 1 is embedded as 1

1 . Fractions292

constitute an involutive monoid, i.e. a monoid with reciprocal ( )−1 that is an involution293

(f−1)−1 = f and anti-automorphic (f · g)−1 = g−1 · f−1 for all fractions f, g. The involutive294

monoid is not yet a (commutative) group. To that end we then consider fractions up to295

normalisation, in the same way that fractions representing rationals are normalised.296
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▶ Remark 31. The construction of the involutive monoid does not need commutativity of the297

residual algebra. (More precisely, among the laws (1)–(8) the laws (5),(6) for commutativity298

are not needed.) Indeed, fractions can be defined for residual systems with composition [26,299

Def. 8.7.38] as valleys, i.e. reductions having the same target (co-spans or fractions in category300

theory). In line with Remark 2 we employ this below, in Fig. 3, to visualise the proof of301

associativity of the product of fractions. That visualisation also provides the intuition for302

the product as juxtaposition followed by turning the resulting peak into a valley by means of303

confluence (cf. that confluence is equivalent to transitivity of joinability).304

▶ Lemma 32. ⟨A×A, 1, ·, ( )−1⟩ is an involutive monoid for a
b · a

′

b′ := a·(a′/b)
b′·(b/a′) and (ab )−1 := b

a .305

Proof. Reciprocal ( )−1 is an involution by ((ab )−1)−1 = ( ba )−1 = a
b and anti-automorphic by306

(ab · a
′

b′ )−1 =
(
a·(a′/b)
b′·(b/a′)

)−1
= b′·(b/a′)

a·(a′/b) = b′

a′ · ba = (a
′

b′ )−1 · (ab )−1. Associativity is in Fig. 3. ◀307

(ψ′ · (ψ/ϕ′))/ϕ′′

ϕ ψ ϕ′ ψ′ ϕ′′ ψ′′

ϕ
ψ · ϕ′

ψ′ · ϕ′′

ψ′′

ψ/ϕ′ ψ′/ϕ′′

(ψ/ϕ′)/(ϕ′′/ψ′)

(ψ′/ϕ′′) · (ψ/(ϕ′ · (ϕ′′/ψ′)))

(7),(8)=

Figure 3 Associativity of product for fractions, aka associativity by orthogonality

▶ Example 33. The CRA N has all sums. Fractions are pairs (n,m) which we may think of as308

comprising assets n and debts m.18 Their components do not cancel, they do not constitute a309

group, and commutativity fails as illustrated by (2, 7) + (7, 2) = (2, 2) ̸= (7, 7) = (7, 2) + (2, 7).310

For CRAs normalising fractions suffices to obtain a commutative group.19
311

▶ Lemma 34. ⟨(A×A)/≡, 1, ·, ( )−1⟩ is a commutative group, embedding the monoid ⟨A, 1, ·⟩,312

where ≡ relates fractions having the same normalisation where the normalisation of a
b is a/b

b/a .313

Proof. We have an embedding of the CRA as follows from that a · b embeds as a·b
1 = a·(b/1)

1·(1/b) ,314

the product of a1 , b1 . Normalisation is the identity on embeddings. We show ≡ is a congruence315

for the operations, obtaining an involutive monoid by Lem. 32 and quotienting ≡ out. Both316

the additional law needed to constitute a group, f−1 · f ≡ 1, and commutativity hold:317

All and only fractions of shape a
a normalise to the unit 1, i.e. 1

1 . From this the group law318

is seen to hold for a fraction f := a
b by f−1 · f = b

a · ab = b
b ≡ 1. To see ≡ is a congruence for319

reciprocal suppose f ′ := a′

b′ such that f ≡ f ′. By definition of normalisation then a/b = a′/b′
320

and b/a = b′/a′, hence f−1 = b
a ≡ b/a

a/b = b′/a′

a′/b′ ≡ b′

a′ = f ′−1. For reasons of space we omit321

the proof of congruence and commutativity of product.20 ◀322

18 Albert Visser dubbed them stack numbers.
19 For RAs normalisation need not be idempotent. For CRAs a

b is normalised iff a ∧ b = 1.
20 Prover9 mostly takes a few minutes to generate the proofs; see App. B.
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▶ Example 35. For the CRA N, the group of normalised fractions comprises pairs of323

natural numbers at least one of which is 0, i.e. the usual integers constructed out of the324

natural numbers. The CRA Pos gives rise to the group of positive rationals represented by325

normalised fractions. The multiset CRA induces multisets having integer multiplicities; the326

signed multisets of [4, Sect. 7] arise by restricting to having finite support.327

▶ Remark 36. Normalisation of ab consists in cancelling a∧b common to a, b. Instead of basing328

oneself on cancellation one may alternatively rely on taking products (gcd vs. lcm): ϕ
ψ ≡′ ϕ′

ψ′329

if ϕ/ϕ′ = ψ/ψ′ and ϕ′/ϕ = ψ′/ψ. For instance, rationals 10
15 and 14

21 are seen equivalent by330

taking their products with 14 /· 10 = 7 and 10 /· 14 = 5.21 Identifying fractions in this way331

is standard in category theory; here both ways coincide20, cf. [7]. Interestingly, showing332

a
b ≡′ a/b

b/a hinges exactly on the extra laws (5) and (6) CRAs have compared to RAs.333

▶ Lemma 37. Defining meet a
b ∧ c

d as a∧c
b∨d and join a

b ∨ c
d as a∨c

b∧d makes the group lattice334

ordered for the natural order ⩽ defined by f ⩽ g if f = f ∧ g (equivalently, if f ∨ g = g).335

Proof. First observe that we may work exclusively with normalised fractions since these are336

preserved by joins and meets (if f and g are normalised, then so are f ∨ g and f ∧ g), hence337

all sub-expressions of the lattice laws yield normalised fractions as well. Next note that these338

laws, commutativity, associativity, idempotence, and absorption, for fractions, follow from339

the same laws for their numerators and denominators separately, i.e. for CRAs, which were340

shown above (absorption in Lem. 22(5) and the others in the preliminaries).341

Since product is commutative to verify the group is ⩽-ordered it suffices to show a
b · ef ⩽ c

d · ef342

if a
b ⩽ c

d . Again, this can be reduced to checking CRA properties of the numerators and343

denominators separately. More precisely, under the assumptions a ⩽ c and d ⩽ b one shows:20
344

(f · (b/e))/(a · (e/b)) = ((f · (b/e))/(a · (e/b))) ∧ ((f · (d/e))/(c · (e/d)))345

(a · (e/b))/(f · (b/e)) = ((a · (e/b))/(f · (b/e))) ∧ ((c · (e/d))/(f · (d/e))) ◀346

▶ Example 38. On the integers (induced by the CRA N) the natural order is the less–than–347

or–equal, on the positive rationals (induced by Pos) a
b ⩽ a′

b′ iff a | a′ and b′ | b, so 1
4 ⩽ 1

2 but348

not 1
3 ⩽ 1

2 , and on signed multisets it is pointwise less–than–or–equal of integer multiplicities.349

▶ Remark 39. The natural order allows to reconstruct the CRA within the group as its350

positive cone {f | 1 ⩽ f}, and division f / g defined by g−1 · f embeds residuation a/b for351

b ⩽ a (defined in this way division makes sense for the involutive monoid; f · g−1 would not).352

We have now introduced enough to formulate and prove an inclusion–exclusion principle for353

integer resources (lattice-ordered groups) instead of for natural resources (CRAs).354

▶ Theorem 40. For a finite family aI := (ai)i∈I of elements of A embedded as fractions355 ∨
aI =

∏
∅⊂J⊆I

(
∧
aJ)(−1)|J|−̇1

356

Proof. Since we have a group we may rearrange the rhs into O/E as in the proof of Thm. 23:357  ∏
Jo⊆I

∧
aJ

 /

 ∏
∅⊂Je⊆I

∧
aJ

358

We conclude by Thm. 23 and Remark 39, noting residuation in the CRA coincides with359

division in the group, using that E ⩽ O as shown in the proof of Thm. 23. ◀360

21 Pairs ( 10
15 , 7) and ( 14

21 , 5) of a stack number and a factor were dubbed triples by Albert Visser.
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The inclusion–exclusion principle for cardinalities (Thm. 21 and and similarly for measurable361

sets) are obtained analogously, using the integers being a group to rearrange summands,362

relying on the CRA version of inclusion–exclusion for (measurable) sets (Theorems 26 and 29).363

4 Related and future work364

As already indicated by the many footnotes, this work has lots of (potential) connections (as365

is obvious when viewing multisets as a generalisation of sets). We give a limited account of366

related and future work, limited by the knowledge we have, focusing on CRAs.367

4.1 Another specification: cBCK algebras with relative cancellation368

CRAs have the same equational theory as commutative BCK (cBCK) algebras with relative369

cancellation [13]. BCI and BCK algebras are algebraic structures introduced in [18, 17, 1]370

unifying set difference and (reverse) implication in propositional logic. Many variations have371

been studied, but here we will exclusively be concerned with commutative BCK algebras with372

relative cancellation22 as introduced by Dvurečenskij and Graziano, and refer the interested373

reader to [13, 12, 10, 11] for more on their background, results, and applications.374

▶ Definition 41. ⟨A, 1, /⟩ is a cBCK algebra with relative cancellation if for all a, b, c375

(a/b)/(a/c) ⩽ c/b (9)376

a/(a/b) ⩽ b (10)377

a ⩽ a (11)378

a = b if a ⩽ b and b ⩽ a (12)379

1 ⩽ a (13)380

a ∧ b = b ∧ a (14)381

b = c if a ⩽ b, c and b/a = c/a (15)382
383

where, as for CRAs, a ⩽ b if a/b = 1 and a ∧ b abbreviates a/(a/b).384

▶ Theorem 42. ⟨A, 1, /⟩ is a CRA iff it is a cBCK algebra with relative cancellation.385

Proof. We employ the following equational specification of cBCK algebras with relative386

cancellation given in [10]:23
387

a/a = 1 (16)388

a/1 = a (17)389

(a/b)/c = (a/c)/b (18)390

a/(a/b) = b/(b/a) (19)391

(a/b)/(b/a) = a/b (20)392

That these laws hold for CRAs is either immediate or follows from Proposition 3. For reasons393

of space we omit the proof of the other direction.20. ◀394

22 Here commutative corresponds to (14), with relative cancellation to (15), and a BCK algebra distinguishes
itself from a BCI algebra in that it has (13) instead of the law a = 1 if a ⩽ 1.

23 On page 5 of [12] and also in the proof of Thm. 5.2.29 of [10], 1/a = 1 is given instead of (17), which
clearly is a typo as then we would not even have a commutative BCK algebra; a 2-point model with /
interpreted as the constant-1-function shows that then (17) would not hold, but it should by (10)–(13).
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By the theorem, results for such cBCK algebras can be transferred to CRAs and vice395

versa. For instance, [10, Lemma 5.2.12] entails that if xI and yJ are finite families of396

non-negative real numbers such that
∑
xI and

∑
yJ denote, then there is a family zI×J such397

that xi =
∑
j∈Jzi,j for all i ∈ I, and yj =

∑
i∈Izi,j for all j ∈ J , i.e. even if the natural order398

⩽ is not well-founded and FTA does not hold, a Riesz decomposition result does. Except399

for recapitulating basic results in the preliminaries, we have tried to avoid redundancy. In400

particular, the main application to the inclusion–exclusion principle is novel, we think, and401

also the way we constructed the lattice-ordered group from the CRA via the involutive402

monoid is (although constructing lattice-ordered groups from cBCK algebras is well-studied).403

Finally, arriving at the notion (cBCK algebras with relative cancellation were introduced404

shortly before the turn of the century, CRAs shortly after independently) from different405

perspectives lends support to the theory being of interest.406

4.2 Another example: EWD 1313407

Having introduced a notion one tends to stumble upon it everywhere. The multiset repres-408

entation theorem, the inclusion–exclusion principle, and commutative BCK algebras with409

relative cancellation have been our main encounters with CRAs in the wild, but we had410

several others. Here we report on one which we like because it is short and simple and at411

first sight connected neither to sets nor to multisets.412

The note [9] addresses the question whether there is a nice calculational proof of the fact413

that, stated using the conventions of the present paper, for all n,m, k ∈ Pos:414

gcd(n,m) = 1 =⇒ gcd(n,m · k) = gcd(n, k)415

As it turns out, this can be stated and proven for CRAs.416

▶ Proposition 43. if a ∧ b = 1 and b · c denotes, then a ∧ (b · c) = a ∧ c.417

Proof. If a ∧ b = 1 and b · c denotes, a def,(5)= (a/b) · (a/(a/b)) def= (a/b) · (a ∧ b) ass=418

a/b, hence a ∧ d
def= a/(a/d) (1)= a/((a/d)/1) ass= a/((a/d)/(b/d)) (4)= a/((a/b)/(d/b)) =419

a/(a/(d/b)) ass,def= a ∧ c, where d is the denotation of b · c so that d/b = c and b/d = 1. ◀420

Instantiating the proposition for the multiset CRA yieldsM∩N = ∅ =⇒ M∩(N⊎L) = M∩L.421

For the CRA Pos it provides the desired calculational proof. Whether it is nice depends422

on what algebraic laws one accepts, but we note that the analysis in [9] was inconclusive.423

Suggesting a possible way forward the author there ends with: I would not be amazed if the424

uniqueness of the prime factorization were needed. Although above we indeed used the FTA425

to verify that Pos is a CRA, the proof of Prop. 43 itself does not require unique decomposition.426

For instance, we may instantiate it for R≥0, not having unique decomposition, yielding the427

simple fact that for non-negative real numbers min(x, y) = 0 =⇒ min(x, y + z) = min(x, z).428

4.3 Formalisation and automation429

Since the 1990s a substantial amount of multiset theory has been developed and incorporated430

into proof assistants, see e.g. the multiset theories of Isabelle and Coq.24 Despite the wealth431

24 In Isabelle https://isabelle.in.tum.de/library/HOL/HOL-Library/Multiset.html and in Coq
https://coq.inria.fr/library/Coq.Sets.Multiset.html (with further rewriting-related res-
ults in IsaFor: http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/
77914abd83e8/thys/Auxiliaries/Multiset2.thy respectively in CoLoR: http://color.inria.fr/
doc/CoLoR.Util.Multiset.MultisetCore.html.
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of results there still seems to be room for improvement in several ways: i) there is a certain432

lack of structuring/abstraction;25 concrete representations are chosen and results are proven433

for those, whereas different representations of multisets, e.g., as lists or as maps, each having434

its purpose, exist; ii) the developments support either multisets having finite support26 or435

multisets having arbitrary support, but not both whereas both constitute CRAs; and iii)436

the theories seem to miss out on several lemmata corresponding to key CRA and cBCK437

algebra laws such as (4), (8) and (20). For these reasons we think it could be interesting to438

factor results using multisets through an abstract algebraic interface based on CRAs.27 An439

interesting test-case for the construction of a lattice-ordered group out of a CRA would be440

to see whether the results on signed multisets in [4, Sect. 7] could be factored through it.28
441

Formalisation should become even more interesting if finding/checking CRA laws could be442

automated, i.e. if some of the following could be answered in the affirmative:443

is the equational theory of CRAs decidable (for some interesting fragment)?444

if so, what is the complexity (is it worthwhile to implement this)?445

if so, can it be decided by a complete TRS?446

what is a minimal equational base?447

We leave investigating these questions to future research,29 guessing that no complete TRS448

exists, and noting there are simple equational bases other than CRAs and cBCK algebras449

with relative cancellation, e.g., (1), (5), (20) combined with450

(a/b)/(a/c) = (c/b)/(c/a) (21)451

4.4 Gradification452

This section assumes familiarity with rewriting. Our residual algebras were obtained by453

forgetting the sources and targets of steps in the residual systems of [26, Sect. 8.7]. To make454

the correspondence more clear we now consider the reverse direction, enriching the objects of455

our residual algebras to steps of rewrite systems [22]30, a process we dub gradification:31
456

the carrier A of objects is lifted to a rewrite system → [26, Def. 8.2.2] of steps (Fig. 1);457

the one-object 1 is lifted to loop-steps 1a for each object a;458

residuation / is lifted to pairs of steps requiring them to have the same sources, and459

targets should be preserved by exchanging steps, i.e. the Skolemised diamond property:460

▶ Proposition 44. → has the diamond property (Fig. 1) iff it has a residuation (App. A);461

product · is lifted to composition; the target of the 1st step is the source of the 2nd;462

join ∨ lifts to pairs of steps with the same source and yields the diagonal of their diamond;463

Proceeding like this gives rise to residual systems as in [26, Sect. 8.7]:464

25 A comment in the Coq theory file, seemingly without follow-up, reads Here we should make multiset an
abstract datatype, by hiding Bag, munion, multiplicity; all further properties are proved abstractly. Cf.
also the frequent usage of multiset union where multiset sum is meant.

26 In themselves well-motivated, say by the wish for the multiset-extension to be well-founded, but making
that e.g. the inclusion–exclusion principle for measurable multisets can not even be stated.

27 Our formalisation of constructing groups from CRAs in Coq in 2001 is obsolete (not typeclass-based).
28 E.g. is α · (γ− β) +α · β = α · (β− γ) +α · γ for truncating subtraction, first speculated to hold and then

derived there, used for the associativity of ordinal multiplication, entailed by commutativity of join?
29 It could well be that one or more questions have been answered in the literature/have easy answers.
30 Rewrite systems relate to rewrite relations (endorelations) as categories relate to quasi-orders.
31 From gradus step. This is analogous to how monoids relate to typed monoids in [24]. We are primarily

interested in steps and residuation, even in the absence of composition, so do not target categories.
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▶ Definition 45. ⟨→, 1, /⟩ is a residual system if for co-initial ϕ, ψ, χ in rewrite system →:465

ϕ/1 = ϕ (1)466

ϕ/ϕ = 1 (2)467

1/ϕ = 1 (3)468

(ϕ/ψ)/(χ/ψ) = (ϕ/χ)/(ψ/χ) (4)469
470

It is a residual system with composition, for a · such that also (now for ϕ, ψ composable):471

(7) χ/(ϕ · ψ) = (χ/ϕ)/ψ, (8) (ϕ · ψ)/χ = (ϕ/χ) · (ψ/(χ/ϕ)), and 1 · 1 = 1.472

Examples of rewrite systems that can be naturally equipped with residual structure abound.473

▶ Example 46. For each of the following rewrite systems residuation is induced by the proof of474

the diamond property, as given in the works cited, e.g. the Tait–Martin-Löf proof that ≥1 has475

the diamond property in the λβ-calculus [2]: i) β-steps in the linear λβ-calculus; ii) ≥1-steps476

in the λβ-calculus [2]; iii) parallel steps q−→/multisteps ◦−→ in orthogonal first/higher-order477

term rewrite systems [16] or [26, Sect. 8.7],[5]; iv) positive braids with parallel crossings of478

strands [26, Sect. 8.9]; and v) multi-redexes/treks in axiomatic residual theory [21].32
479

Although none of the residual systems in the example have compositions,33 a residual system480

with composition can always be induced by considering finite reductions (formal compositions481

of steps) and defining residuation via the composition laws ((7),(8)) and quotienting out the482

equivalence induced by the natural order [26, Lem. 8.7.47,Prop. 8.7.48]. Analogously, any483

CRA induces a CRA with composition by considering finite multisets of objects. For instance,484

the CRA B of bits, i.e. N≤1, does not have composition, but induces the CRA N, which does.485

Conversely, the construction of Lem. 32 to turn a residual algebra with composition into an486

involutive monoid, e.g. turning N into Z, turns a residual system with composition, i.e. on487

reductions, into a typed involutive monoid31 on valleys (instead of just on conversions). We488

intend to study this construction and more generally involutive monoids, as we think they489

are of interest to rewriting, cf. [14, 7].34
490

▶ Remark 47. As an indication that involutive monoids are interesting in and of themselves,491

note that starting from a specification of groups, the usual complete TRS [26, Tab. 7.5] for492

groups obtained by completion, comprises intermediate complete sub-TRSs obtained simply493

by orienting equations: first for monoids (by rules 1 · x → x, x · 1 → x, (x · y) · z → x · (y · z)),494

then for involutive monoids (adjoining 1−1 → 1, (x · y)−1 → y−1 · x−1, (x−1)−1 → x [14,495

App. A]), and only finally for groups (adjoining x · x−1 → 1, x−1 · x → 1, x · (x−1 · y) → y496

x−1 · (x · y) → y) there are two extended rules, the last two, not simply obtained by orienting.497

5 Conclusion498

We have presented the inclusion–exclusion principle as a use-case for CRAs. Apart from the499

questions about deciding, automation, and formalisation raised above, we would be interested500

in investigating whether/how the approach could be extended to handle the multiset extension501

of orders, or could be adapted to non-well-founded multisets [8].502

32 As we will show elsewhere, the axioms of [21] are sufficient but not necessary obtain the main results
of [21] via the theory of the residual systems in [26, Sect. 8.7].

33 All have joins except for β-steps in linear λ-calculus and q−→ in orthogonal first-order term rewriting.
34 Already strings do not just constitute a monoid but an involutive one. Going further to typed groups

i.e. groupoids, seems to be too much in rewriting where the notion of interest is that of a conversion.

CVIT 2016



23:16 CRAs; the inclusion–exclusion principle

References503

1 Y. Arai, K. Iséki, and S. Tanaka. Characterizations of BCI,BCK-algebras. Proc. Japan Acad.,504

42(2):105–107, 1966. doi:10.3792/pja/1195522126.505

2 H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in506

Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 2nd revised edition,507

1984.508

3 M. Bhargava. The density of discriminants of quintic rings and fields. Ann. Math. (2),509

172(3):1559–1591, 2010.510

4 J.C. Blanchette, M. Fleury, and D. Traytel. Nested multisets, hereditary multisets, and511

syntactic ordinals in Isabelle/HOL. In D. Miller, editor, 2nd International Conference on512

Formal Structures for Computation and Deduction, FSCD 2017, September 3-9, 2017, Oxford,513

UK, volume 84 of LIPIcs, pages 11:1–11:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,514

2017. doi:10.4230/LIPIcs.FSCD.2017.11.515

5 H.J.S. Bruggink. Residuals in higher-order rewriting. In R. Nieuwenhuis, editor, Rewriting516

Techniques and Applications, 14th International Conference, RTA 2003, Valencia, Spain, June517

9–11, 2003, Proceedings, volume 2706 of Lecture Notes in Computer Science, pages 123–137.518

Springer, 2003. doi:10.1007/3-540-44881-0\_10.519

6 C. Calcagno, P.W. O’Hearn, and H. Yang. Local action and abstract separation logic. In 22nd520

IEEE Symposium on Logic in Computer Science (LICS 2007), 10–12 July 2007, Wroclaw,521

Poland, Proceedings, pages 366–378. IEEE Computer Society, 2007. doi:10.1109/LICS.2007.522

30.523

7 F. Clerc and S. Mimram. Presenting a Category Modulo a Rewriting System. In M. Fernández,524

editor, 26th International Conference on Rewriting Techniques and Applications (RTA 2015),525

volume 36 of Leibniz International Proceedings in Informatics (LIPIcs), pages 89–105, Dagstuhl,526

Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.527

RTA.2015.89.528

8 G. D’Agostino and A. Visser. Finality regained: A coalgebraic study of Scott-sets and multisets.529

Archive for Mathematical Logic, 41(3):267–298, 2002. doi:10.1007/s001530100110.530

9 E.W. Dijkstra. The gcd and the minimum. EWD1313, November 2001. URL: https:531

//www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1313.html.532

10 A. Dvurečenskij and S. Pulmannová. BCK-algebras, pages 293–377. Springer Netherlands,533

Dordrecht, 2000. doi:10.1007/978-94-017-2422-7_6.534

11 A. Dvurečenskij and S. Pulmannová. BCK-algebras in Applications, pages 379–446. Springer535

Netherlands, Dordrecht, 2000. doi:10.1007/978-94-017-2422-7_7.536

12 A. Dvurečenskij. On categorical equivalences of commutative BCK-algebras. Preprint 16/1998,537

June 1998.538

13 A. Dvurečenskij and M.G. Graziano. Commutative BCK-algebras and lattice ordered groups.539

Mathematica japonicae, 49(2):159–174, March 1999. URL: https://ci.nii.ac.jp/naid/540

10010236889/en/.541

14 B. Felgenhauer and V. van Oostrom. Proof orders for decreasing diagrams. In F. van542

Raamsdonk, editor, 24th International Conference on Rewriting Techniques and Applications,543

RTA 2013, June 24-26, 2013, Eindhoven, The Netherlands, volume 21 of LIPIcs, pages 174–189.544

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013. doi:10.4230/LIPIcs.RTA.2013.174.545

15 R. Hindley. An abstract form of the Church–Rosser theorem. I. Journal of Symbolic Logic,546

34(4):545–560, 1969. doi:10.1017/S0022481200128439.547

16 G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems, Part I + II. In J.L.548

Lassez and G.D. Plotkin, editors, Computational Logic – Essays in Honor of Alan Robinson,549

pages 395–443, Cambridge MA, 1991. MIT Press. Update of: Call-by-need computations in550

non-ambiguous linear term rewriting systems, 1979.551

17 Y. Imai and K. Iséki. On axiom systems of propositional calculi, xiv. Proc. Japan Acad.,552

42(1):19–22, 1966. doi:10.3792/pja/1195522169.553

https://doi.org/10.3792/pja/1195522126
https://doi.org/10.4230/LIPIcs.FSCD.2017.11
https://doi.org/10.1007/3-540-44881-0_10
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.4230/LIPIcs.RTA.2015.89
https://doi.org/10.4230/LIPIcs.RTA.2015.89
https://doi.org/10.4230/LIPIcs.RTA.2015.89
https://doi.org/10.1007/s001530100110
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1313.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1313.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1313.html
https://doi.org/10.1007/978-94-017-2422-7_6
https://doi.org/10.1007/978-94-017-2422-7_7
https://ci.nii.ac.jp/naid/10010236889/en/
https://ci.nii.ac.jp/naid/10010236889/en/
https://ci.nii.ac.jp/naid/10010236889/en/
https://doi.org/10.4230/LIPIcs.RTA.2013.174
https://doi.org/10.1017/S0022481200128439
https://doi.org/10.3792/pja/1195522169


V. van Oostrom 23:17

18 K. Iséki. An algebra related with a propositional calculus. Proc. Japan Acad., 42(1):26–29,554

1966. doi:10.3792/pja/1195522171.555

19 S.P. Luttik and V. van Oostrom. Decomposition orders—another generalisation of the556

fundamental theorem of arithmetic. Theoretical Computer Science, 335(2):147–186, 2005.557

doi:https://doi.org/10.1016/j.tcs.2004.11.019.558

20 W. McCune. Prover9 and mace4. http://www.cs.unm.edu/~mccune/prover9/, 2005–2010.559

URL: http://www.cs.unm.edu/~mccune/prover9.560

21 P.-A. Melliès. Axiomatic rewriting theory VI residual theory revisited. In S Tison, editor,561

Rewriting Techniques and Applications, 13th International Conference, RTA 2002, Copenhagen,562

Denmark, July 22–24, 2002, Proceedings, volume 2378 of Lecture Notes in Computer Science,563

pages 24–50. Springer, 2002. doi:10.1007/3-540-45610-4\_4.564

22 M.H.A. Newman. On theories with a combinatorial definition of “equivalence”. Annals of565

Mathematics, 43:223–243, 1942. doi:10.2307/2269299.566

23 V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD thesis, Vrije567

Universiteit, Amsterdam, March 1994. URL: https://research.vu.nl/en/publications/568

confluence-for-abstract-and-higher-order-rewriting.569

24 D. Pous. Untyping typed algebraic structures and colouring proof nets of cyclic linear logic.570

In A. Dawar and H. Veith, editors, Computer Science Logic, 24th International Workshop,571

CSL 2010, 19th Annual Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010.572

Proceedings, volume 6247 of Lecture Notes in Computer Science, pages 484–498. Springer,573

2010. doi:10.1007/978-3-642-15205-4\_37.574

25 E.W. Stark. Concurrent transition systems. Theoretical Computer Science, 64:221–269, 1989.575

26 Terese. Term Rewriting Systems. Cambridge University Press, 2003.576

27 S. Wolfram. A class of models with the potential to represent fundamental physics, April 2020.577

URL: https://www.wolframphysics.org/technical-introduction/.578

A Proofs omitted from the main text579

Proof of Lem. 22. 1. the left equality follows from:580

(b/a) ∧ (c/a) (i)= ((b/a) ∧ (c/a))/((c/b) ∧ (a/b))581

com,def,(4)= ((c/a)/((c/b)/(a/b)))/((c/b) ∧ (a/b))582

(ii)= (c/a)/(c/b)583

where (ii) follows from (a′/(b′/c′))/(b′∧c′) = a′/b′ which holds35 by definition of ∧, (4), (5),584

and (1), and (i) is, after unfolding ∧s, an instance36 of (a′/b′)/c′ = ((a′/b′)/c′)/(d′∧(b′/a′))585

which follows by Prop. 3 from a′/b′ = (a′/b′)/(d′ ∧ (b′/a′)) which holds by586

a′/b′ (ii)= (a′/(b′/d′))/(b′ ∧ d′)587

Prop. 3= ((a′/(b′/d′))/(b′ ∧ d′))/((b′ ∧ d′)/(a′/(b′/d′)))588

(ii)= (a′/b′)/((b′ ∧ d′)/(a′/(b′/d′)))589

def,(4),Prop. 3,com= (a′/b′)/(d′ ∧ (b′/a′))590

The right equality holds by (c/a)/(c/b) = (c/(a∧c))/(c/b) Prop. 3= (c/(c/b))/(a∧c) def,com=591

(b ∧ c)/(a ∧ c);592

35 This can be seen as a consequence of the decomposition law a
.= (a/b) · (a ∧ b), allowing to write any a

as the sum (see below) of its residual and intersection with an arbitrary b.
36 For a′ := b, b′ := a, c′ := (b/a)/(c/a), and d′ := c/b.
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2. under the assumptions, (a · b)/(c · d)
(7).= ((a · b)/c)/d

(8).= ((a/c) · (b/(c/a)))/d
ass,(1).=593

((a/c) · b)/d
com.= (b · (a/c))/d

(8).= (b/d) · ((a/c)/(d/b))
ass,(1).= (a/c)/(d/b);594

3. assuming a · b denotes,595

(a · b) ∧ c
def,(8),(7),(8).= ((a/(a/c)) · (b/((a/c)/a)))/(b/(c/a))596

def,com,(5),(1).= (b · (a ∧ c))/(b/(c/a))597

(8).= (b/(b/(c/a))) · ((a ∧ c)/((b/(c/a))/b))598

def,(5),(1),com.= (a ∧ c) · (b ∧ (c/a))599

4. it suffices to show that (a∨b)∧c satisfies the two conditions for being the join (a∧c)∨(b∧c),600

i.e. for being the product of a ∧ c and (b ∧ c)/(a ∧ c). We check both in turn.601

The first condition a ∧ c ⩽ (a ∨ b) ∧ c holds since, under the assumption, (a ∨ b) ∧ c
.=602

(a · . . .) ∧ c
.= (a ∧ c) · . . . by Lem. 22(3) and (1), (2), and (7).603

The second condition is seen to hold under the assumption, by604

((a ∨ b) ∧ c)/(a ∧ c) def= ((a · (b/a)) ∧ c)/(a ∧ c)605

Lem. 22(3).= ((a ∧ c) · ((b/a) ∧ (c/a)))/(a ∧ c)606

(8),(1),(2).= (b/a) ∧ (c/a)607

Lem. 22(1)= (b ∧ c)/(a ∧ c)608

5. the first absorption law does not need the assumption. For it, verify that a meets the609

conditions for being the join of a and a∧ b, both of which follow trivially from a/a = 1 =610

(a∧ b)/a. For the second absorption law we compute a∧ (a∨ b) = a∧ (a · (b/a)) = a. ◀611

That all items can be shown by ATP is exemplified in App. B for distributivity (item 4).612

Proof of Prop. 44. The if-direction follows immediately from that ϕ/ψ and ψ/ϕ are required613

to have the same target, for steps ϕ, ψ having the same source.614

For the only–if-direction, first note that the diamond property (cf. [26, Lem. 8.7.11]) states615

that for all co-initial steps ϕ, ψ, there exist co-final steps ψ′, ϕ′, such that ϕ is composable616

with ψ′ and ψ with ϕ′. By Skolemisation this is equivalent to the existence of functions f , g617

such that for all co-initial steps ϕ, ψ, the steps g(ϕ, ψ), f(ϕ, ψ) are co-final, ϕ and g(ϕ, ψ)618

are composable, and so are ψ and f(ϕ, ψ).619

Then let R be any asymmetric relation, total on pairs of distinct steps (such relations620

exist, e.g. by the well-ordering theorem), and define ϕ/ψ to be f(ϕ, ψ) if ϕ R ψ and g(ψ, ϕ)621

otherwise. We verify / has the properties required of residuation:622

if ϕ R ψ, then ϕ/ψ = f(ϕ, ψ) and by asymmetry ψ/ϕ = g(ϕ, ψ). By assumption, f(ϕ, ψ)623

is composable to ψ and co-final to g(ϕ, ψ); and624

if not ϕ R ψ, then ϕ/ψ = g(ψ, ϕ) and by totality and asymmetry ψ/ϕ = f(ψ, ϕ). By625

assumption, g(ψ, ϕ) is composable to ψ and co-final to f(ψ, ϕ). ◀626
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B Selected Prover9 proofs of properties of CRA operations627

In this appendix we provide Prover9 [20] proofs of selected results from the main text.37
628

All proofs were generated without further guidance. The proofs provided here should allow629

interested readers to reconstruct the other proofs omitted from the main text by means of630

ATP themselves. To that end, we provide the input-file used as an example for the first,631

trivial, proposition below. For the others, similar representations of the statements were632

used, and only the resulting proofs are given. In each case the initial part of the output633

allows to reconstruct (the assumptions used of) the input. To keep proofs, relatively, short634

we freely add already derived equations to the assumptions.635

To illustrate the Prover9 input and output we make use the following proposition that636

was omitted from the main text, but has a short and easy to understand proof.637

▶ Proposition 48. ⩽ is transitive in BCI algebras.638

Proof. To prove the statement we supplied Prover9 a file with contents:639

formulas(sos).640
641

((x / y) / (x / z)) / (z / y) = 1.642
(x / (x / y)) / y = 1.643
x / x = 1.644
-(x / y = 1) | -(y / x = 1) | x = y.645
-(x / 1 = 1) | x = 1.646
-P(x,y) | x / y = 1.647
-(x / y = 1) | P(x,y).648

649
end_of_list.650

651
formulas(goals).652

653
-P(x,y) | -P(y,z) | P(x,z).654

655
end_of_list.656

upon which Prover9 provided the following proof:38
657

============================== PROOF =================================658
659

% Proof 1 at 0.01 (+ 0.00) seconds.660
% Length of proof is 22.661
% Level of proof is 6.662
% Maximum clause weight is 13.000.663
% Given clauses 32.664

665
1 -P(x,y) | -P(y,z) | P(x,z) # label(non_clause) # label(goal). [goal].666
2 ((x / y) / (x / z)) / (z / y) = 1. [assumption].667
3 (x / (x / y)) / y = 1. [assumption].668
4 x / x = 1. [assumption].669
5 x / y != 1 | y / x != 1 | x = y. [assumption].670
6 x / 1 != 1 | x = 1. [assumption].671
7 x / 1 != 1 | 1 = x. [copy(6),flip(b)].672
8 -P(x,y) | x / y = 1. [assumption].673
9 x / y != 1 | P(x,y). [assumption].674
10 P(c1,c2). [deny(1)].675
11 P(c2,c3). [deny(1)].676
12 -P(c1,c3). [deny(1)].677
24 (x / 1) / x = 1. [para(4(a,1),3(a,1,1,2))].678
27 x / (x / 1) = 1. [hyper(7,a,3,a),flip(a)].679
31 c1 / c2 = 1. [hyper(8,a,10,a)].680
32 c2 / c3 = 1. [hyper(8,a,11,a)].681
33 c1 / c3 != 1. [ur(9,b,12,a)].682
71 ((x / c3) / (x / c2)) / 1 = 1. [para(32(a,1),2(a,1,2))].683
82 x / 1 = x. [para(24(a,1),5(a,1)),rewrite([27(6)]),xx(a),xx(b)].684
85 (x / c3) / (x / c2) = 1. [back_rewrite(71),rewrite([82(7)])].685
173 c1 / c3 = 1. [para(31(a,1),85(a,1,2)),rewrite([82(5)])].686
174 $F. [resolve(173,a,33,a)].687

688
============================== end of proof ==========================689

37 To be precise, we used Prover9 version LADR-2009-11A compiled and run on a 2018 MacBook Pro
with macOS Catalina 10.15.4 with a 2.2 GHz 6-core Intel Core i7 processor and 32GB of memory (but
Prover9 only used 1 core and memory was not an issue).

38 The main operations applied in the proofs here are paramodulation, hyperresolution, and rewriting. See
the literature or the Prover9 documentation for more on these. Positions in expressions are represented
as lists of positive natural numbers; as equality (=) is taken as a binary function symbol, positions in
paramodulation of two equations start with 1 (usually; the lhs) or 2 (the rhs). E.g., in this proof the
identity (x/1)/x = 1 on the line numbered 24 is obtained by unifying the lhs of that at line numbered 4
with the subterm at position 1.2, i.e. the subterm x/y, in the lhs of the identity at line numbered 3.
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◀690

Proof of Lem. 22(4). It is shown meet distributes over join in CRAs.691

============================== PROOF =================================692
693

% -------- Comments from original proof --------694
% Proof 1 at 0.09 (+ 0.00) seconds.695
% Length of proof is 38.696
% Level of proof is 7.697
% Maximum clause weight is 27.698
% Given clauses 43.699

700
1 x ^ (y v z) = (x ^ y) v (x ^ z) # label(non_clause) # label(goal). [goal].701
2 x / 1 = x. [assumption].702
4 x / x = 1. [assumption].703
5 (x / y) / (z / y) = (x / z) / (y / z). [assumption].704
6 (x / y) / x = 1. [assumption].705
7 x ^ y = x / (x / y). [assumption].706
9 x ^ y = y ^ x. [assumption].707
10 x / (x / y) = y / (y / x). [copy(9),rewrite([7(1),7(3)])].708
13 (x ^ y) / z = (x / z) ^ (y / z). [assumption].709
14 (x / (x / y)) / z = (x / z) / ((x / z) / (y / z)). [copy(13),rewrite([7(1),7(6)])].710
15 x v y = x * (y / x). [assumption].711
16 x v x = x. [assumption].712
17 x * 1 = x. [copy(16),rewrite([15(1),4(1)])].713
18 x v y = y v x. [assumption].714
19 x * (y / x) = y * (x / y). [copy(18),rewrite([15(1),15(3)])].715
22 (x * y) / z = (x / z) * (y / (z / x)). [assumption].716
23 (x / y) * (z / (y / x)) = (x * z) / y. [copy(22),flip(a)].717
24 x / (y * z) = (x / y) / z. [assumption].718
25 (x / y) / z = x / (y * z). [copy(24),flip(a)].719
26 (x / y) / z = (x / z) / y. [assumption].720
27 (c1 ^ c2) v (c1 ^ c3) != c1 ^ (c2 v c3). [deny(1)].721
28 (c1 / (c1 / c2)) * ((c1 / (c1 / c3)) / (c1 / (c1 / c2))) != c1 / ((c1 / c2) / (c3 / c2)). [copy(27),rewrite([7(3),7(8),15(11),15(21),7(24),25(25,R)])].722
32 (x / (y / z)) / (y / (y / z)) = x / y. [para(6(a,1),5(a,1,2)),rewrite([2(3)]),flip(a)].723
33 ((x / y) / (z / y)) / (x / z) = 1. [para(5(a,1),6(a,1,1))].724
34 (x / y) / ((x / z) / (y / z)) = (x / y) / ((x / y) / (z / y)). [para(5(a,1),7(a,2,2)),rewrite([7(3)]),flip(a)].725
37 (x / (y / z)) / (z / (z / y)) = x / y. [para(10(a,1),5(a,1,2)),rewrite([6(8),2(8)])].726
39 x / (x / (x / y)) = x / y. [para(6(a,1),10(a,1,2)),rewrite([2(3)]),flip(a)].727
93 (x * y) / y = x. [para(10(a,1),15(a,2,2)),rewrite([15(2),19(4),6(2),17(2),23(4)]),flip(a)].728
121 (x / (x / y)) * z = (x * z) / (x / y). [para(6(a,1),23(a,1,2,2)),rewrite([2(4)])].729
136 (c1 * ((c1 / (c1 / c3)) / (c1 / (c1 / c2)))) / (c1 / c2) != c1 / ((c1 / c2) / (c3 / c2)). [back_rewrite(28),rewrite([121(17)])].730
203 (x / y) / ((x / y) / (z / y)) = (x / y) / (x / z). [para(26(a,1),14(a,1)),flip(a)].731
247 (x / y) / ((x / z) / (y / z)) = (x / y) / (x / z). [back_rewrite(34),rewrite([203(10)])].732
352 (c1 * ((c1 / c2) / (c1 / c3))) / (c1 / c2) != c1 / ((c1 / c2) / (c3 / c2)). [para(26(a,1),136(a,1,1,2)),rewrite([39(8)])].733
353 (c1 * ((c1 / c2) / (c1 / c3))) / (c1 / c2) != c1 / ((c1 / c3) / (c2 / c3)). [para(5(a,1),352(a,2,2))].734
661 (x * (y / z)) / y = x / (y / (y / z)). [para(93(a,1),32(a,1,1)),flip(a)].735
675 c1 / ((c1 / c3) / (c2 / c3)) != c1 / ((c1 / c2) / ((c1 / c2) / (c1 / c3))). [back_rewrite(353),rewrite([661(13)]),flip(a)].736
1150 x / ((y / z) / ((y / z) / (y / u))) = x / ((y / u) / (z / u)). [para(33(a,1),37(a,1,1,2)),rewrite([2(2),247(6)])].737
1151 $F. [resolve(1150,a,675,a(flip))].738

739
============================== end of proof ==========================740

◀741

Proof of Lem. 34. We first show the equivalences in f · g ≡ f ′ · g ≡ f ′ · g′ in turn. In each742

case we only show the CRA equation arising for the left components, from which the CRA743

equation for the right components follows by symmetry.744

============================== PROOF =================================745
746

% Proof 1 at 181.68 (+ 1.21) seconds.747
% Length of proof is 71.748
% Level of proof is 14.749
% Maximum clause weight is 29.000.750
% Given clauses 1229.751

752
1 (a * (e / b)) / (f * (b / e)) = (c * (e / d)) / (f * (d / e)) # label(non_clause) # label(goal). [goal].753
2 x / 1 = x. [assumption].754
3 x / x = 1. [assumption].755
4 1 / x = 1. [assumption].756
5 (x / y) / (z / y) = (x / z) / (y / z). [assumption].757
6 (x / y) / x = 1. [assumption].758
7 x / (x / y) = y / (y / x). [assumption].759
8 (x * y) / x = y. [assumption].760
9 x / (x * y) = 1. [assumption].761
10 a / b = c / d. [assumption].762
11 c / d = a / b. [copy(10),flip(a)].763
12 b / a = d / c. [assumption].764
13 d / c = b / a. [copy(12),flip(a)].765
14 (c * (e / d)) / (f * (d / e)) != (a * (e / b)) / (f * (b / e)). [deny(1)].766
15 ((x / y) / (z / y)) / (u / (y / z)) = ((x / z) / u) / ((y / z) / u). [para(5(a,1),5(a,1,1))].767
16 (x / (y / z)) / ((u / z) / (y / z)) = (x / (u / z)) / ((y / u) / (z / u)). [para(5(a,1),5(a,1,2)),flip(a)].768
17 ((x / y) / z) / (x / z) = 1. [para(6(a,1),5(a,1,1)),rewrite([4(3)]),flip(a)].769
18 (x / (y / z)) / (y / (y / z)) = x / y. [para(6(a,1),5(a,1,2)),rewrite([2(3)]),flip(a)].770
20 (x / (x / y)) / (z / (y / x)) = (y / z) / ((y / x) / z). [para(7(a,1),5(a,1,1))].771
21 (x / (y / z)) / (z / (z / y)) = x / y. [para(7(a,1),5(a,1,2)),rewrite([6(8),2(8)])].772
26 x / (y / (y / x)) = x / y. [para(7(a,1),7(a,1,2)),rewrite([6(6),2(6)])].773
28 ((x * y) / z) / (x / z) = y / (z / x). [para(8(a,1),5(a,1,1)),flip(a)].774
29 (x / y) / z = x / (y * z). [para(8(a,1),5(a,1,2)),rewrite([9(6),2(6)])].775
30 (x * y) / y = x. [para(8(a,1),7(a,1,2)),rewrite([9(4),2(4)])].776
31 ((c * (e / d)) / f) / (d / e) != ((a * (e / b)) / f) / (b / e). [back_rewrite(14),rewrite([29(11,R),29(22,R)])].777
34 (a / b) / c = 1. [para(11(a,1),6(a,1,1))].778
35 d / (b / a) = c / (a / b). [para(11(a,1),7(a,1,2)),rewrite([13(9)]),flip(a)].779
37 (b / a) / d = 1. [para(13(a,1),6(a,1,1))].780
55 (x / y) / z = (x / z) / y. [para(6(a,1),15(a,2,2)),rewrite([21(6),2(6)])].781
91 ((x * y) / z) / (y / z) = x / (z / y). [para(30(a,1),5(a,1,1)),flip(a)].782
92 (x / y) / z = x / (z * y). [para(30(a,1),5(a,1,2)),rewrite([29(6,R),6(6),2(6)])].783
98 (x / (a / b)) / (c / (a / b)) = x / c. [para(34(a,1),5(a,1,2)),rewrite([2(4)]),flip(a)].784
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131 (x / ((y * z) / u)) / ((y / u) / ((y * z) / u)) = (x / (y / u)) / (z / (u / y)). [para(8(a,1),16(a,2,2,1))].785
202 (x / b) / c = (x / a) / d. [para(37(a,1),15(a,2,2)),rewrite([35(11),98(12),2(10)])].786
206 ((x / y) / z) / x = 1. [para(6(a,1),17(a,1,2)),rewrite([2(5)])].787
222 (x / y) / ((x * z) / y) = 1. [para(30(a,1),17(a,1,1,1))].788
234 (x / (y / z)) / (u / (z / y)) = x / ((y * u) / z). [back_rewrite(131),rewrite([222(7),2(5)]),flip(a)].789
240 (x / y) / (x / (y / z)) = 1. [para(7(a,1),206(a,1,1)),rewrite([55(4)])].790
281 (x * (y / z)) / y = x / (y / (y / z)). [para(30(a,1),18(a,1,1)),flip(a)].791
413 (x / y) / (z / y) = x / (z * (y / z)). [para(29(a,1),5(a,1)),flip(a)].792
416 (x / (y * z)) / (x / y) = 1. [para(29(a,1),6(a,1,1))].793
418 (x * y) / ((x * y) / z) = z / ((z / x) / y). [para(29(a,2),7(a,1,2)),flip(a)].794
420 (x * y) / (x * z) = y / z. [para(8(a,1),29(a,1,1)),flip(a)].795
463 (x / (y * z)) / (x / z) = 1. [para(29(a,1),17(a,1,1))].796
502 d / b = c / a. [para(35(a,1),18(a,1,1)),rewrite([7(10),18(11)]),flip(a)].797
505 (x / d) / (b / d) = (x / b) / (c / a). [para(502(a,1),5(a,1,2)),flip(a)].798
588 b / d = a / c. [para(37(a,1),20(a,2,2)),rewrite([35(10),98(11),2(8)]),flip(a)].799
673 (x / d) / (a / c) = (x / b) / (c / a). [back_rewrite(505),rewrite([588(5)])].800
776 ((x * y) / z) / x = y / z. [para(8(a,1),55(a,1,1)),flip(a)].801
1074 (x * y) / (z * y) = x / z. [para(30(a,1),92(a,1,1)),flip(a)].802
1376 (b * x) / (a * d) = x / c. [para(8(a,1),202(a,1,1)),rewrite([29(8)]),flip(a)].803
1532 (a / c) / ((b * x) / d) = 1. [para(588(a,1),222(a,1,1))].804
1593 x / ((x * y) / (y / z)) = 1. [para(30(a,1),240(a,1,1))].805
2040 x / ((x * (y * z)) / y) = 1. [para(30(a,1),416(a,1,1))].806
10409 (x / c) / ((b * x) / d) = 1. [para(1376(a,1),463(a,1,1))].807
13429 x / ((x * y) / (z / (z / y))) = 1. [para(7(a,1),1593(a,1,2,2))].808
20049 x / ((b * (c * x)) / d) = 1. [para(8(a,1),10409(a,1,1))].809
22693 (d * x) / (b * (c * x)) = 1. [para(20049(a,1),28(a,2)),rewrite([29(13,R),502(10),29(13,R),6(12),4(9),2(9)])].810
23285 (x * y) / ((b * (c * y)) / d) = x / (((b * (c * y)) / d) / y). [para(20049(a,1),91(a,1,2)),rewrite([2(10)])].811
23312 d * x = (b * (c * x)) / (((b * (c * x)) / d) / x). [para(22693(a,1),7(a,1,2)),rewrite([2(4),29(13,R)])].812
68851 x / ((y / z) * (u / (z / y))) = x / ((y * u) / z). [para(234(a,1),29(a,1)),flip(a)].813
116832 x / ((b * y) / d) = x / ((a * y) / c). [para(1532(a,1),413(a,1,2)),rewrite([2(7),673(16),8(12),68851(14)])].814
116842 x / ((y * (z * u)) / z) = x / (y * u). [para(2040(a,1),413(a,1,2)),rewrite([2(6),92(8),420(8),8(6)])].815
117453 x / (((b * (c * y)) / d) / y) = x / a. [back_rewrite(23285),rewrite([116832(8),116842(8),1074(4)]),flip(a)].816
118025 d * x = (b * (c * x)) / a. [back_rewrite(23312),rewrite([117453(14)])].817
118050 (b * (c * x)) / (a * x) = d. [para(118025(a,1),30(a,1,1)),rewrite([29(7)])].818
118354 (b * (c * x)) / d = a * x. [para(118050(a,1),7(a,1,2)),rewrite([29(15,R),29(15,R),202(14),8(12),6(11),2(10)])].819
118800 (c * x) / d = (a * x) / b. [para(118354(a,1),776(a,1,1)),flip(a)].820
122513 (x * (y / x)) / (x / y) = y. [para(3(a,1),418(a,2,2)),rewrite([281(5),26(5),2(6)])].821
123399 x * (y / z) = (x * y) / (z / (z / y)). [para(13429(a,1),122513(a,1,2)),rewrite([776(5),26(3),2(4)])].822
123605 $F. [back_rewrite(31),rewrite([123399(5),55(11),55(15),18(15),55(7),118800(5),123399(12),55(18),55(22),18(22),55(14)]),xx(a)].823

824
============================== end of proof ==========================825

and826

============================== PROOF =================================827
828

% Proof 1 at 168.96 (+ 1.07) seconds.829
% Length of proof is 111.830
% Level of proof is 20.831
% Maximum clause weight is 43.000.832
% Given clauses 1433.833

834
1 (e * (a / f)) / (b * (f / a)) = (e * (c / f)) / (d * (f / c)) # label(non_clause) # label(goal). [goal].835
2 x / 1 = x. [assumption].836
3 x / x = 1. [assumption].837
4 1 / x = 1. [assumption].838
5 (x / y) / (z / y) = (x / z) / (y / z). [assumption].839
6 (x / y) / x = 1. [assumption].840
7 x / (x / y) = y / (y / x). [assumption].841
8 (x * y) / x = y. [assumption].842
9 x / (x * y) = 1. [assumption].843
10 a / b = c / d. [assumption].844
11 c / d = a / b. [copy(10),flip(a)].845
12 b / a = d / c. [assumption].846
13 d / c = b / a. [copy(12),flip(a)].847
14 (e * (c / f)) / (d * (f / c)) != (e * (a / f)) / (b * (f / a)). [deny(1)].848
15 ((x / y) / (z / y)) / (u / (y / z)) = ((x / z) / u) / ((y / z) / u). [para(5(a,1),5(a,1,1))].849
16 (x / (y / z)) / ((u / z) / (y / z)) = (x / (u / z)) / ((y / u) / (z / u)). [para(5(a,1),5(a,1,2)),flip(a)].850
17 ((x / y) / z) / (x / z) = 1. [para(6(a,1),5(a,1,1)),rewrite([4(3)]),flip(a)].851
18 (x / (y / z)) / (y / (y / z)) = x / y. [para(6(a,1),5(a,1,2)),rewrite([2(3)]),flip(a)].852
20 (x / (x / y)) / (z / (y / x)) = (y / z) / ((y / x) / z). [para(7(a,1),5(a,1,1))].853
21 (x / (y / z)) / (z / (z / y)) = x / y. [para(7(a,1),5(a,1,2)),rewrite([6(8),2(8)])].854
25 x / (x / (x / y)) = x / y. [para(6(a,1),7(a,1,2)),rewrite([2(3)]),flip(a)].855
26 x / (y / (y / x)) = x / y. [para(7(a,1),7(a,1,2)),rewrite([6(6),2(6)])].856
28 ((x * y) / z) / (x / z) = y / (z / x). [para(8(a,1),5(a,1,1)),flip(a)].857
29 (x / y) / z = x / (y * z). [para(8(a,1),5(a,1,2)),rewrite([9(6),2(6)])].858
30 (x * y) / y = x. [para(8(a,1),7(a,1,2)),rewrite([9(4),2(4)])].859
33 (a / b) / c = 1. [para(11(a,1),6(a,1,1))].860
34 d / (b / a) = c / (a / b). [para(11(a,1),7(a,1,2)),rewrite([13(9)]),flip(a)].861
36 (b / a) / d = 1. [para(13(a,1),6(a,1,1))].862
54 (x / y) / z = (x / z) / y. [para(6(a,1),15(a,2,2)),rewrite([21(6),2(6)])].863
64 ((x / (y / z)) / u) / ((z / (z / y)) / u) = (x / y) / (u / (y / (y / z))). [para(7(a,1),15(a,2,2,1)),rewrite([6(3),2(3)]),flip(a)].864
65 (((x * y) / z) / u) / ((x / z) / u) = (y / (z / x)) / (u / (x / z)). [para(8(a,1),15(a,1,1,1)),flip(a)].865
90 ((x * y) / z) / (y / z) = x / (z / y). [para(30(a,1),5(a,1,1)),flip(a)].866
91 (x / y) / z = x / (z * y). [para(30(a,1),5(a,1,2)),rewrite([29(6,R),6(6),2(6)])].867
97 (x / (a / b)) / (c / (a / b)) = x / c. [para(33(a,1),5(a,1,2)),rewrite([2(4)]),flip(a)].868
130 (x / ((y * z) / u)) / ((y / u) / ((y * z) / u)) = (x / (y / u)) / (z / (u / y)). [para(8(a,1),16(a,2,2,1))].869
173 (x / ((y * z) / u)) / ((z / u) / ((y * z) / u)) = (x / (z / u)) / (y / (u / z)). [para(30(a,1),16(a,2,2,1))].870
201 (x / b) / c = (x / a) / d. [para(36(a,1),15(a,2,2)),rewrite([34(11),97(12),2(10)])].871
205 ((x / y) / z) / x = 1. [para(6(a,1),17(a,1,2)),rewrite([2(5)])].872
209 (x / y) / ((z * x) / y) = 1. [para(8(a,1),17(a,1,1,1))].873
221 (x / y) / ((x * z) / y) = 1. [para(30(a,1),17(a,1,1,1))].874
232 (x / (y / z)) / (u / (z / y)) = x / ((u * y) / z). [back_rewrite(173),rewrite([209(7),2(5)]),flip(a)].875
233 (x / (y / z)) / (u / (z / y)) = x / ((y * u) / z). [back_rewrite(130),rewrite([221(7),2(5)]),flip(a)].876
239 (x / y) / (x / (y / z)) = 1. [para(7(a,1),205(a,1,1)),rewrite([54(4)])].877
240 (x / y) / (z * x) = 1. [para(8(a,1),205(a,1,1,1))].878
271 ((x / y) * z) / x = z / (x / (x / y)). [para(8(a,1),18(a,1,1)),flip(a)].879
280 (x * (y / z)) / y = x / (y / (y / z)). [para(30(a,1),18(a,1,1)),flip(a)].880
295 (x / (y / z)) / ((u * y) / (y / z)) = x / (u * y). [para(240(a,1),5(a,1,2)),rewrite([2(4)]),flip(a)].881
298 (x / (x / y)) / (z * y) = 1. [para(7(a,1),240(a,1,1))].882
412 (x / y) / (z / y) = x / (z * (y / z)). [para(29(a,1),5(a,1)),flip(a)].883
415 (x / (y * z)) / (x / y) = 1. [para(29(a,1),6(a,1,1))].884
417 (x * y) / ((x * y) / z) = z / ((z / x) / y). [para(29(a,2),7(a,1,2)),flip(a)].885
419 (x * y) / (x * z) = y / z. [para(8(a,1),29(a,1,1)),flip(a)].886
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440 (x * y) / (y * z) = x / z. [para(30(a,1),29(a,1,1)),flip(a)].887
462 (x / (y * z)) / (x / z) = 1. [para(29(a,1),17(a,1,1))].888
501 d / b = c / a. [para(34(a,1),18(a,1,1)),rewrite([7(10),18(11)]),flip(a)].889
504 (x / d) / (b / d) = (x / b) / (c / a). [para(501(a,1),5(a,1,2)),flip(a)].890
506 d / (c / a) = b / (b / d). [para(501(a,1),7(a,1,2))].891
514 (x / (b / (b / d))) / (c / a) = x / d. [para(501(a,1),18(a,1,1,2)),rewrite([501(8),506(9),54(10)])].892
587 b / d = a / c. [para(36(a,1),20(a,2,2)),rewrite([34(10),97(11),2(8)]),flip(a)].893
668 (x / (b / (a / c))) / (c / a) = x / d. [back_rewrite(514),rewrite([587(4)])].894
672 (x / d) / (a / c) = (x / b) / (c / a). [back_rewrite(504),rewrite([587(5)])].895
687 ((a / c) / x) / (b / x) = 1. [para(587(a,1),17(a,1,1,1))].896
775 ((x * y) / z) / x = y / z. [para(8(a,1),54(a,1,1)),flip(a)].897
789 ((x * y) / z) / y = x / z. [para(30(a,1),54(a,1,1)),flip(a)].898
1051 ((x * y) * z) / (y * x) = z. [para(91(a,2),8(a,1)),rewrite([29(4)])].899
1052 (x * y) / (z * x) = y / z. [para(8(a,1),91(a,1,1)),flip(a)].900
1073 (x * y) / (z * y) = x / z. [para(30(a,1),91(a,1,1)),flip(a)].901
1372 ((x / b) / y) / (c / y) = ((x / a) / d) / (y / c). [para(201(a,1),5(a,1,1)),flip(a)].902
1375 (b * x) / (a * d) = x / c. [para(8(a,1),201(a,1,1)),rewrite([29(8)]),flip(a)].903
1531 (a / c) / ((b * x) / d) = 1. [para(587(a,1),221(a,1,1))].904
1592 x / ((x * y) / (y / z)) = 1. [para(30(a,1),239(a,1,1))].905
1746 (x / (y / (y / z))) / ((u * z) / (y / (y / z))) = x / (u * z). [para(298(a,1),5(a,1,2)),rewrite([2(4)]),flip(a)].906
2039 x / ((x * (y * z)) / y) = 1. [para(30(a,1),415(a,1,1))].907
5345 (c * x) / (a * d) = x / b. [para(775(a,1),201(a,1)),rewrite([29(8)]),flip(a)].908
8867 x * y = y * x. [para(1051(a,1),7(a,1,2)),rewrite([30(3),29(6,R),440(5),3(3),4(4),2(4)])].909
10408 (x / c) / ((b * x) / d) = 1. [para(1375(a,1),462(a,1,1))].910
13428 x / ((x * y) / (z / (z / y))) = 1. [para(7(a,1),1592(a,1,2,2))].911
14308 (x / (y / (a / c))) / (b / ((a / c) / y)) = (x / y) / (b / (a / c)). [para(687(a,1),64(a,1,2)),rewrite([2(14),21(25)])].912
14799 (x / (b / y)) / (c / (y / b)) = (x / (a / y)) / (d / (y / a)). [para(201(a,1),65(a,1,1)),rewrite([201(9),65(10)]),flip(a)].913
17820 (x / b) / ((c * x) / d) = 1. [para(5345(a,1),462(a,1,1))].914
20048 x / ((b * (c * x)) / d) = 1. [para(8(a,1),10408(a,1,1))].915
21589 x / ((c * (b * x)) / d) = 1. [para(8(a,1),17820(a,1,1))].916
22692 (d * x) / (b * (c * x)) = 1. [para(20048(a,1),28(a,2)),rewrite([29(13,R),501(10),29(13,R),6(12),4(9),2(9)])].917
23284 (x * y) / ((b * (c * y)) / d) = x / (((b * (c * y)) / d) / y). [para(20048(a,1),90(a,1,2)),rewrite([2(10)])].918
23294 (x * d) / (c * (b * x)) = 1. [para(21589(a,1),90(a,2)),rewrite([29(13,R),13(10),29(13,R),6(12),4(9),2(9)])].919
23311 d * x = (b * (c * x)) / (((b * (c * x)) / d) / x). [para(22692(a,1),7(a,1,2)),rewrite([2(4),29(13,R)])].920
23677 (e * (c / f)) / ((b * (c * (f / c))) / (((b * (c * (f / c))) / d) / (f / c))) != (e * (a / f)) / (b * (f / a)).921

[back_rewrite(14),rewrite([23311(10)])].922
23855 (c * (b * x)) / ((c * (b * x)) / (x * d)) = x * d. [para(23294(a,1),7(a,1,2)),rewrite([2(4)]),flip(a)].923
68550 x / ((y / z) * (u / (z / y))) = x / ((y * u) / z). [para(233(a,1),29(a,1)),flip(a)].924
68755 ((e * (c / f)) / ((c * (f / c)) / (a / b))) / (b / (((b * (c * (f / c))) / d) / (f / c))) != (e * (a / f)) / (b * (f / a)).925

[para(233(a,2),23677(a,1)),rewrite([54(41),54(37),8(35),789(37),11(29),54(31)])].926
69343 (((e * (c / f)) / (c / (a / b))) / (f / c)) / (b / (((b * (c * (f / c))) / d) / (f / c))) != (e * (a / f)) / (b * (f / a)).927

[para(233(a,2),68755(a,1,1)),rewrite([201(19),3(17),4(17),2(16)])].928
100851 x / ((b * y) / d) = x / ((a * y) / c). [para(1531(a,1),412(a,1,2)),rewrite([2(7),672(16),8(12),68550(14)])].929
100852 x / ((y * (z * u)) / z) = x / (y * u). [para(2039(a,1),412(a,1,2)),rewrite([2(6),91(8),419(8),8(6)])].930
100971 x / (((b * (c * y)) / d) / y) = x / a. [back_rewrite(23284),rewrite([100851(8),100852(8),1073(4)]),flip(a)].931
101129 (e * (c / f)) / ((b * (c * (f / c))) / a) != (e * (a / f)) / (b * (f / a)).932

[back_rewrite(69343),rewrite([100971(30),54(19),54(15),14799(15),3(8),2(7),3(9),2(8),29(11),23311(10),100971(26)])].933
101286 d * x = (b * (c * x)) / a. [back_rewrite(23311),rewrite([100971(14)])].934
101312 (b * (c * x)) / (a * x) = d. [para(101286(a,1),30(a,1,1)),rewrite([29(7)])].935
101351 (b * (c * x)) / d = a * x. [para(101312(a,1),7(a,1,2)),rewrite([29(15,R),29(15,R),201(14),8(12),6(11),2(10)])].936
101507 (c * x) / d = (a * x) / b. [para(101351(a,1),775(a,1,1)),flip(a)].937
101823 (c * x) / (y * d) = ((a * x) / b) / y. [para(101507(a,1),91(a,1,1)),flip(a)].938
101858 (c * (b * x)) / a = x * d. [back_rewrite(23855),rewrite([101823(11),29(11),30(11)])].939
102173 (c * (b * x)) / (a * x) = d. [para(101858(a,2),8(a,1,1)),rewrite([29(7)])].940
102222 (x * (y / x)) / (x / y) = y. [para(3(a,1),417(a,2,2)),rewrite([280(5),26(5),2(6)])].941
102636 x * (y / z) = (x * y) / (z / (z / y)). [para(13428(a,1),102222(a,1,2)),rewrite([775(5),26(3),2(4)])].942
102638 (x / y) * z = (x * z) / (x / (x / y)). [para(271(a,1),102222(a,1,1,2)),rewrite([102636(4),29(11,R),54(12),18(12)]),flip(a)].943
102639 (b * (c * (a * x))) / a = b * (c * x).944

[para(101312(a,1),102222(a,1,1,2)),rewrite([8867(4),101286(4),29(15,R),29(15,R),201(14),8(12),6(11),2(10)])].945
102644 c * (b * x) = b * (c * x).946

[para(102173(a,1),102222(a,1,1,2)),rewrite([8867(4),101286(4),102639(8),29(11,R),29(11,R),54(10),201(10),8(8),6(7),2(6)]),flip(a)].947
102735 ((c * e) / (c / (c / f))) / ((b * (c * f)) / ((a * c) / (c / f))) != ((a * e) / b) / f.948

[back_rewrite(101129),rewrite([102636(5),8867(3),7(8),102636(15),102636(20),29(28,R),6(26),949
4(22),2(21),54(22),29(22),102636(21),6(25),2(22),102636(28),8867(26),7(31),102636(37),1746(42),29(30,R)])].950

104297 (c * e) / ((b * (c * (c * f))) / (a * c)) != ((a * e) / b) / f.951
[para(29(a,1),102735(a,1)),rewrite([102636(22),102638(14),102644(10),25(17),29(34,R),54(30),952
29(34,R),54(32),201(28),8(26),11(24),54(30),1372(30),3(24),4(24),4(26),2(23),295(22)])].953

104300 ((c * e) / (b / ((a / c) / f))) / ((c * f) / a) != ((a * e) / b) / f.954
[para(232(a,2),104297(a,1)),rewrite([1052(12),29(19,R),30(15),29(15,R),54(17)])].955

104304 $F. [para(233(a,2),104300(a,1)),rewrite([54(15),54(21),14308(21),54(9),54(15),668(15),54(7),101507(5)]),xx(a)].956
957

============================== end of proof ==========================958

Commutativity of product is shown by:959

============================== PROOF =================================960
961

% Proof 1 at 36.46 (+ 0.25) seconds.962
% Length of proof is 51.963
% Level of proof is 15.964
% Maximum clause weight is 27.000.965
% Given clauses 384.966

967
1 (x * (z / y)) / (u * (y / z)) = (z * (x / u)) / (y * (u / x)) # label(non_clause) # label(goal). [goal].968
2 x / 1 = x. [assumption].969
3 x / x = 1. [assumption].970
4 1 / x = 1. [assumption].971
5 (x / y) / (z / y) = (x / z) / (y / z). [assumption].972
6 (x / y) / x = 1. [assumption].973
7 x / (x / y) = y / (y / x). [assumption].974
8 (x * y) / x = y. [assumption].975
9 x / (x * y) = 1. [assumption].976
10 (c2 * (c1 / c4)) / (c3 * (c4 / c1)) != (c1 * (c2 / c3)) / (c4 * (c3 / c2)). [deny(1)].977
11 (c1 * (c2 / c3)) / (c4 * (c3 / c2)) != (c2 * (c1 / c4)) / (c3 * (c4 / c1)). [copy(10),flip(a)].978
12 ((x / y) / (z / y)) / (u / (y / z)) = ((x / z) / u) / ((y / z) / u). [para(5(a,1),5(a,1,1))].979
15 (x / (y / z)) / (y / (y / z)) = x / y. [para(6(a,1),5(a,1,2)),rewrite([2(3)]),flip(a)].980
16 ((x / y) / (z / y)) / (x / z) = 1. [para(5(a,1),6(a,1,1))].981
18 (x / (y / z)) / (z / (z / y)) = x / y. [para(7(a,1),5(a,1,2)),rewrite([6(8),2(8)])].982
23 x / (y / (y / x)) = x / y. [para(7(a,1),7(a,1,2)),rewrite([6(6),2(6)])].983
26 (x / y) / z = x / (y * z). [para(8(a,1),5(a,1,2)),rewrite([9(6),2(6)])].984
27 (x * y) / y = x. [para(8(a,1),7(a,1,2)),rewrite([9(4),2(4)])].985
28 ((c2 * (c1 / c4)) / c3) / (c4 / c1) != ((c1 * (c2 / c3)) / c4) / (c3 / c2).986

[back_rewrite(11),rewrite([26(11,R),26(22,R)]),flip(a)].987
46 (x / y) / z = (x / z) / y. [para(6(a,1),12(a,2,2)),rewrite([18(6),2(6)])].988
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80 (x / y) / z = x / (z * y). [para(27(a,1),5(a,1,2)),rewrite([26(6,R),6(6),2(6)])].989
84 ((x / y) / (z / y)) / u = (x / z) / (u * (y / z)). [para(27(a,1),12(a,1,2)),rewrite([26(12,R),6(12),2(10)])].990
268 ((x / y) * z) / x = z / (x / (x / y)). [para(8(a,1),15(a,1,1)),flip(a)].991
316 (x * y) / (x * z) = y / z. [para(8(a,1),26(a,1,1)),flip(a)].992
337 (x * y) / (y * z) = x / z. [para(27(a,1),26(a,1,1)),flip(a)].993
387 ((x * y) / z) / x = y / z. [para(8(a,1),46(a,1,1)),flip(a)].994
399 ((x * y) / z) / y = x / z. [para(27(a,1),46(a,1,1)),flip(a)].995
444 ((x * y) * z) / (y * x) = z. [para(80(a,2),8(a,1)),rewrite([26(4)])].996
445 (x * y) / (z * x) = y / z. [para(8(a,1),80(a,1,1)),flip(a)].997
558 (x / (y * (z / y))) / (x / z) = 1. [para(26(a,1),16(a,1,1))].998
1405 (((x * y) / z) / u) / (x / u) = (y / z) / (u / x). [para(387(a,1),5(a,1,1)),flip(a)].999
1491 x * y = y * x. [para(444(a,1),7(a,1,2)),rewrite([27(3),26(6,R),337(5),3(3),4(4),2(4)])].1000
9149 (x * y) / (z * ((y * x) / z)) = 1. [para(444(a,1),558(a,1,2)),rewrite([399(7)])].1001
24090 (x * y) / ((y * z) * (x / z)) = 1. [para(316(a,1),9149(a,1,2,2))].1002
24092 (x * y) / ((z * y) * (x / z)) = 1. [para(445(a,1),9149(a,1,2,2))].1003
28378 (x / (y / (y / z))) / (u * (z / y)) = (x / z) / u. [para(23(a,1),84(a,2,2,2)),rewrite([46(4),3(4),2(3)]),flip(a)].1004
34509 ((x * y) * z) / ((z * x) * y) = 1. [para(8(a,1),24090(a,1,2,2))].1005
34562 ((x * y) * z) / ((y * z) * x) = 1. [para(27(a,1),24092(a,1,2,2))].1006
36164 (x * y) * z = (z * x) * y. [para(34509(a,1),7(a,1,2)),rewrite([2(4),34562(9),2(6)])].1007
36219 ((x * y) * z) / y = z * x. [para(36164(a,2),27(a,1,1))].1008
36252 (x * y) * z = x * (y * z). [para(36164(a,1),1491(a,1))].1009
36609 (x * (y * z)) / y = z * x. [back_rewrite(36219),rewrite([36252(2)])].1010
37712 x * (y * z) = y * (x * z). [para(1491(a,1),36252(a,1,1)),rewrite([36252(2)])].1011
37886 (((c2 / c3) * (x * c1)) / (c3 / c2)) / (c4 * x) != ((c2 * (c1 / c4)) / c3) / (c4 / c1).1012

[para(36609(a,2),28(a,2,1,1)),rewrite([80(20),46(24)]),flip(a)].1013
37913 (x * (y * z)) / y = x * z. [para(36609(a,2),1491(a,1))].1014
38342 ((c2 / c3) * (x * c1)) / (c4 * ((c3 / c2) * x)) != ((c2 * (c1 / c4)) / c3) / (c4 / c1). [para(26(a,1),37886(a,1)),rewrite([37712(12)])].1015
39055 ((c2 / c3) * (x * c1)) / (c4 * (x * (c3 / c2))) != ((c2 * (c1 / c4)) / c3) / (c4 / c1). [para(1491(a,1),38342(a,1,2,2))].1016
39728 (x / y) * z = (x * z) / (x / (x / y)). [para(268(a,1),37913(a,1)),flip(a)].1017
39756 (((c2 * (x * c1)) / c3) / c4) / x != ((c2 * (c1 / c4)) / c3) / (c4 / c1).1018

[back_rewrite(39055),rewrite([39728(6),26(17,R),46(12),28378(17),46(8)])].1019
40853 (((c1 * (c2 * x)) / c3) / c4) / x != ((c2 * (c1 / c4)) / c3) / (c4 / c1).1020

[para(1491(a,1),39756(a,1,1,1,1,2)),rewrite([37712(4)])].1021
40854 $F. [resolve(40853,a,1405,a)].1022

1023
============================== end of proof ==========================1024

◀1025

Proof of ≡ = ≡′ as claimed in Remark 36. We first prove that a1
b1

≡ a2
b2

entails a1
b1

≡′ a2
b2

,1026

and then show the reverse implication.1027

Unfolding the definition of ≡ yields that for the former it suffices to show that a
b ≡′ a/b

b/a1028

and that ≡′ is an equivalence relation. The first follows immediately from (5) and (6),1029

whereas for the second only transitivity is non-trivial. It boils down to showing that a1
b1

≡′ a2
b2

1030

and a2
b2

≡′ a3
b3

entail a1
b1

≡′ a3
b3

. Unfolding the definition, we must show a1/a2 = b1/b2,1031

a2/a1 = b2/b1, a2/a3 = b2/b3, and a3/a2 = b3/b2, then a1/a3 = b1/b3 and a3/a1 = b3/b1.1032

The Prover9 proof below shows the first of these two, with the other following by symmetry.1033

============================== PROOF =================================1034
1035

% Proof 1 at 118.06 (+ 1.00) seconds.1036
% Length of proof is 65.1037
% Level of proof is 13.1038
% Maximum clause weight is 49.000.1039
% Given clauses 1126.1040

1041
1 a1 / a3 = b1 / b3 # label(non_clause) # label(goal). [goal].1042
2 x / 1 = x. [assumption].1043
3 x / x = 1. [assumption].1044
4 1 / x = 1. [assumption].1045
5 (x / y) / (z / y) = (x / z) / (y / z). [assumption].1046
6 (x / y) / x = 1. [assumption].1047
7 x / (x / y) = y / (y / x). [assumption].1048
8 a1 / a2 = b1 / b2. [assumption].1049
9 b1 / b2 = a1 / a2. [copy(8),flip(a)].1050
10 a2 / a3 = b2 / b3. [assumption].1051
11 b2 / b3 = a2 / a3. [copy(10),flip(a)].1052
12 a2 / a1 = b2 / b1. [assumption].1053
13 b2 / b1 = a2 / a1. [copy(12),flip(a)].1054
14 a3 / a2 = b3 / b2. [assumption].1055
15 b3 / b2 = a3 / a2. [copy(14),flip(a)].1056
16 b1 / b3 != a1 / a3. [deny(1)].1057
17 ((x / y) / (z / y)) / (u / (y / z)) = ((x / z) / u) / ((y / z) / u). [para(5(a,1),5(a,1,1))].1058
18 (x / (y / z)) / ((u / z) / (y / z)) = (x / (u / z)) / ((y / u) / (z / u)). [para(5(a,1),5(a,1,2)),flip(a)].1059
19 ((x / y) / z) / (x / z) = 1. [para(6(a,1),5(a,1,1)),rewrite([4(3)]),flip(a)].1060
20 (x / (y / z)) / (y / (y / z)) = x / y. [para(6(a,1),5(a,1,2)),rewrite([2(3)]),flip(a)].1061
22 (x / (x / y)) / (z / (y / x)) = (y / z) / ((y / x) / z). [para(7(a,1),5(a,1,1))].1062
23 (x / (y / z)) / (z / (z / y)) = x / y. [para(7(a,1),5(a,1,2)),rewrite([6(8),2(8)])].1063
27 x / (x / (x / y)) = x / y. [para(6(a,1),7(a,1,2)),rewrite([2(3)]),flip(a)].1064
28 x / (y / (y / x)) = x / y. [para(7(a,1),7(a,1,2)),rewrite([6(6),2(6)])].1065
31 (a1 / a2) / b1 = 1. [para(9(a,1),6(a,1,1))].1066
32 b1 / (a1 / a2) = b2 / (a2 / a1). [para(9(a,1),7(a,1,2)),rewrite([13(9)])].1067
36 b3 / (a3 / a2) = b2 / (a2 / a3). [para(11(a,1),7(a,1,2)),rewrite([15(9)]),flip(a)].1068
40 (a3 / a2) / b3 = 1. [para(15(a,1),6(a,1,1))].1069
58 (x / y) / z = (x / z) / y. [para(6(a,1),17(a,2,2)),rewrite([23(6),2(6)])].1070
78 ((x / (y / z)) / ((u / y) / (z / y))) / ((w / (y / z)) / ((u / y) / (z / y))) =1071

((x / w) / ((y / z) / w)) / (((u / z) / w) / ((y / z) / w)). [para(17(a,1),17(a,1,2)),flip(a)].1072
107 ((x / a3) / (a2 / a3)) / (b2 / (a2 / a3)) = (x / a2) / b3. [para(40(a,1),17(a,2,2)),rewrite([36(11),2(18)])].1073
142 (x / (y / (z / u))) / ((z / (z / u)) / (y / (z / u))) = (x / (u / (u / z))) / (y / z). [para(7(a,1),18(a,2,1,2)),rewrite([6(15),2(15)])].1074
145 (x / (y / (y / z))) / (z / y) = x / z. [para(7(a,1),18(a,2,2)),rewrite([20(8),20(12)])].1075
214 ((x / y) / z) / x = 1. [para(6(a,1),19(a,1,2)),rewrite([2(5)])].1076
233 ((a3 / a2) / x) / b3 = 1. [para(40(a,1),19(a,1,2)),rewrite([2(8)])].1077
263 (x / (y / ((z / u) / w))) / ((z / ((z / u) / w)) / (y / ((z / u) / w))) = (x / (z / ((z / u) / w))) / (y / z). [para(214(a,1),18(a,2,2,2)),rewrite([2(19)])].1078
284 ((x / ((a3 / a2) / y)) / z) / ((b3 / ((a3 / a2) / y)) / z) = (x / b3) / (z / (b3 / ((a3 / a2) / y))). [para(233(a,1),17(a,1,1,2)),rewrite([2(4)]),flip(a)].1079
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293 (x / (a2 / a3)) / (b2 / (a2 / a3)) = x / b2. [para(11(a,1),20(a,1,1,2)),rewrite([11(8)])].1080
294 (x / (a2 / a1)) / (b2 / (a2 / a1)) = x / b2. [para(13(a,1),20(a,1,1,2)),rewrite([13(8)])].1081
314 ((x / y) / z) / (x / (y / u)) = 1. [para(20(a,1),214(a,1,1,1))].1082
316 (x / b2) / a3 = (x / a2) / b3. [back_rewrite(107),rewrite([293(12),58(4)])].1083
443 (x / y) / (y / x) = x / y. [para(28(a,1),20(a,1,1)),rewrite([27(4)])].1084
453 b1 / a1 = b2 / a2. [para(32(a,1),20(a,1,1)),rewrite([7(10),20(11)]),flip(a)].1085
458 b1 / (b2 / a2) = a1 / (a1 / b1). [para(453(a,1),7(a,1,2))].1086
511 a1 / b1 = a2 / b2. [para(31(a,1),22(a,2,2)),rewrite([32(10),294(11),2(8)]),flip(a)].1087
514 a3 / b3 = a2 / b2. [para(40(a,1),22(a,2,2)),rewrite([36(10),293(11),2(8)]),flip(a)].1088
622 b1 / (b2 / a2) = a1 / (a2 / b2). [back_rewrite(458),rewrite([511(9)])].1089
706 b3 / a3 = b2 / a2. [para(36(a,1),20(a,1,1)),rewrite([7(10),20(11)]),flip(a)].1090
717 b3 / (b2 / a2) = a3 / (a2 / b2). [para(706(a,1),7(a,1,2)),rewrite([514(9)])].1091
794 (x / y) / ((x / z) / y) = z / (z / (x / y)). [para(58(a,1),7(a,1,2))].1092
798 (b3 / x) / b2 = (a3 / a2) / x. [para(15(a,1),58(a,1,1)),flip(a)].1093
841 (x / (x / y)) / (z / (y / x)) = x / (x / (y / z)). [para(58(a,1),22(a,2)),rewrite([58(9),794(9)])].1094
1595 (x / (y / b2)) / (a3 / (y / b2)) = (x / a3) / ((y / a2) / b3). [para(316(a,1),5(a,1,2)),flip(a)].1095
2372 (x / y) / (z / (z / (y / x))) = x / y. [para(23(a,1),443(a,1,1)),rewrite([841(6),23(10)])].1096
2792 (b1 / x) / (b2 / a2) = (a1 / (a2 / b2)) / x. [para(622(a,1),58(a,1,1)),flip(a)].1097
12559 (x / ((y / z) / u)) / ((y / (z / w)) / ((y / z) / u)) = x / (y / (z / w)). [para(314(a,1),5(a,1,2)),rewrite([2(5)]),flip(a)].1098
27006 (x / y) / ((y / x) / z) = x / y. [para(443(a,1),145(a,2)),rewrite([2372(5)])].1099
34571 ((x / y) / z) / ((y / x) / u) = (x / y) / z. [para(27006(a,1),58(a,1,1)),flip(a)].1100
34654 (x / (x / y)) / (z / (x / y)) = y / (y / (x / z)). [para(27006(a,1),78(a,1,1)),rewrite([6(6),4(7),2(6),794(9),19(14),2(10)])].1101
34669 (x / y) / (z / (z / (u / (y / x)))) = (x / y) / (z / (z / u)). [para(27006(a,1),142(a,1,1)),rewrite([34654(7),34571(13)])].1102
48623 x / (y / ((y / z) / x)) = x / y. [para(28(a,1),263(a,1,1)),rewrite([794(10),34669(8),23(5),6(7),2(7)]),flip(a)].1103
49660 b2 / (b3 / ((a3 / a2) / x)) = a2 / a3. [para(11(a,1),48623(a,2)),rewrite([798(6)])].1104
50238 (b2 / x) / (b3 / ((a3 / a2) / y)) = (a2 / a3) / x. [para(49660(a,1),58(a,1,1)),flip(a)].1105
68845 b1 / b3 = a1 / a3. [para(2792(a,1),284(a,1,1)),rewrite([58(20),717(15),12559(21),1595(11),3(6),4(6),2(5),50238(16),6(11),2(8)]),flip(a)].1106
68846 $F. [resolve(68845,a,16,a)].1107

1108
============================== end of proof ==========================1109

For the reverse implication we must show that a1
b1

≡′ a2
b2

entails a1
b1

≡ a2
b2

. Unfolding1110

definitions, we must show that if a1/a2 = b1/b2 and a2/a1 = b2/b1, then a1/b1 = a2/b2 and1111

b1/a1 = b2/a2. The Prover9 proof below shows the first of these two, with the other following1112

by symmetry.1113

============================== PROOF =================================1114
1115

% Proof 1 at 18.28 (+ 0.10) seconds.1116
% Length of proof is 22.1117
% Level of proof is 7.1118
% Maximum clause weight is 25.000.1119
% Given clauses 265.1120

1121
1 a1 / b1 = a2 / b2 # label(non_clause) # label(goal). [goal].1122
2 x / 1 = x. [assumption].1123
3 x / x = 1. [assumption].1124
4 1 / x = 1. [assumption].1125
5 (x / y) / (z / y) = (x / z) / (y / z). [assumption].1126
6 (x / y) / x = 1. [assumption].1127
7 x / (x / y) = y / (y / x). [assumption].1128
8 a1 / a2 = b1 / b2. [assumption].1129
9 b1 / b2 = a1 / a2. [copy(8),flip(a)].1130
10 a2 / a1 = b2 / b1. [assumption].1131
11 b2 / b1 = a2 / a1. [copy(10),flip(a)].1132
12 a2 / b2 != a1 / b1. [deny(1)].1133
13 ((x / y) / (z / y)) / (u / (y / z)) = ((x / z) / u) / ((y / z) / u). [para(5(a,1),5(a,1,1))].1134
27 (a1 / a2) / b1 = 1. [para(9(a,1),6(a,1,1))].1135
28 b2 / (a2 / a1) = b1 / (a1 / a2). [para(9(a,1),7(a,1,2)),rewrite([11(9)]),flip(a)].1136
30 (a2 / a1) / b2 = 1. [para(11(a,1),6(a,1,1))].1137
80 (x / (a1 / a2)) / (b1 / (a1 / a2)) = x / b1. [para(27(a,1),5(a,1,2)),rewrite([2(4)]),flip(a)].1138
87 (x / (a2 / a1)) / (b1 / (a1 / a2)) = x / b2. [para(30(a,1),5(a,1,2)),rewrite([2(4),28(11)]),flip(a)].1139
92 (x / a2) / b1 = (x / a1) / b2. [para(30(a,1),13(a,2,2)),rewrite([28(11),80(12),2(10)])].1140
544 (x / (y / a2)) / (b1 / (y / a2)) = (x / b1) / ((y / a1) / b2). [para(92(a,1),5(a,1,2)),flip(a)].1141
21342 a2 / b2 = a1 / b1. [para(7(a,1),87(a,1,1)),rewrite([544(11),3(6),4(6),2(5)]),flip(a)].1142
21343 $F. [resolve(21342,a,12,a)].1143

1144
============================== end of proof ==========================1145

◀1146

Proof of ⩽-orderedness in Lem. 37. We first give the proof for the numerators, then that1147

for the denominators.1148

============================== PROOF =================================1149
1150

% Proof 1 at 325.13 (+ 2.60) seconds.1151
% Length of proof is 148.1152
% Level of proof is 14.1153
% Maximum clause weight is 51.000.1154
% Given clauses 2447.1155

1156
1 (a * (e / b)) / (f * (b / e)) = ((a * (e / b)) / (f * (b / e))) ^ ((c * (e / d)) / (f * (d / e)))1157

# label(non_clause) # label(goal). [goal].1158
2 x / 1 = x. [assumption].1159
3 x / x = 1. [assumption].1160
4 1 / x = 1. [assumption].1161
5 (x / y) / (z / y) = (x / z) / (y / z). [assumption].1162
6 (x / y) / x = 1. [assumption].1163
7 x / (x / y) = y / (y / x). [assumption].1164
8 x ^ y = x / (x / y). [assumption].1165
9 x v y = x * (y / x). [assumption].1166
10 (x * y) / x = y. [assumption].1167
11 x / (x * y) = 1. [assumption].1168
12 a ^ b = 1. [assumption].1169
13 a / (a / b) = 1. [copy(12),rewrite([8(3)])].1170
14 c ^ d = 1. [assumption].1171
15 c / (c / d) = 1. [copy(14),rewrite([8(3)])].1172
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16 e ^ f = 1. [assumption].1173
17 e / (e / f) = 1. [copy(16),rewrite([8(3)])].1174
18 a ^ c = a. [assumption].1175
19 a / (a / c) = a. [copy(18),rewrite([8(3)])].1176
20 b v d = b. [assumption].1177
21 b * (d / b) = b. [copy(20),rewrite([9(3)])].1178
22 ((a * (e / b)) / (f * (b / e))) ^ ((c * (e / d)) / (f * (d / e))) != (a * (e / b)) / (f * (b / e)).1179

[deny(1)].1180
23 ((a * (e / b)) / (f * (b / e))) / (((a * (e / b)) / (f * (b / e))) / ((c * (e / d)) / (f * (d / e))))1181

!= (a * (e / b)) / (f * (b / e)). [copy(22),rewrite([8(23)])].1182
24 ((x / y) / (z / y)) / (u / (y / z)) = ((x / z) / u) / ((y / z) / u). [para(5(a,1),5(a,1,1))].1183
25 (x / (y / z)) / ((u / z) / (y / z)) = (x / (u / z)) / ((y / u) / (z / u)). [para(5(a,1),5(a,1,2)),flip(a)].1184
26 ((x / y) / z) / (x / z) = 1. [para(6(a,1),5(a,1,1)),rewrite([4(3)]),flip(a)].1185
27 (x / (y / z)) / (y / (y / z)) = x / y. [para(6(a,1),5(a,1,2)),rewrite([2(3)]),flip(a)].1186
29 (x / (x / y)) / (z / (y / x)) = (y / z) / ((y / x) / z). [para(7(a,1),5(a,1,1))].1187
30 (x / (y / z)) / (z / (z / y)) = x / y. [para(7(a,1),5(a,1,2)),rewrite([6(8),2(8)])].1188
31 (x / (x / y)) / (y / (x / y)) = y / (y / (x / y)). [para(7(a,1),5(a,1)),flip(a)].1189
32 (x / y) / ((x / z) / (y / z)) = (z / y) / ((z / y) / (x / y)). [para(5(a,1),7(a,1,2))].1190
34 x / (x / (x / y)) = x / y. [para(6(a,1),7(a,1,2)),rewrite([2(3)]),flip(a)].1191
35 x / (y / (y / x)) = x / y. [para(7(a,1),7(a,1,2)),rewrite([6(6),2(6)])].1192
40 ((x * y) / z) / (x / z) = y / (z / x). [para(10(a,1),5(a,1,1)),flip(a)].1193
41 (x / y) / z = x / (y * z). [para(10(a,1),5(a,1,2)),rewrite([11(6),2(6)])].1194
42 (x * y) / y = x. [para(10(a,1),7(a,1,2)),rewrite([11(4),2(4)])].1195
43 (((a * (e / b)) / f) / (b / e)) / ((((a * (e / b)) / f) / (b / e)) / (((c * (e / d)) / f) / (d / e)))1196

!= ((a * (e / b)) / f) / (b / e). [back_rewrite(23),rewrite([41(11,R),41(22,R),41(33,R),41(46,R)])].1197
46 a / b = a. [para(13(a,1),7(a,1,2)),rewrite([2(3),6(9),2(6)]),flip(a)].1198
49 c / d = c. [para(15(a,1),7(a,1,2)),rewrite([2(3),6(9),2(6)]),flip(a)].1199
52 e / f = e. [para(17(a,1),7(a,1,2)),rewrite([2(3),6(9),2(6)]),flip(a)].1200
55 a / c = 1. [para(19(a,1),7(a,1,2)),rewrite([3(3),6(9),2(6)]),flip(a)].1201
56 d / b = 1. [para(21(a,1),10(a,1,1)),rewrite([3(3)]),flip(a)].1202
75 (x / y) / z = (x / z) / y. [para(6(a,1),24(a,2,2)),rewrite([30(6),2(6)])].1203
92 ((x / y) / z) / (u / z) = (x / (y * u)) / (z / u). [para(10(a,1),24(a,1,2,2)),rewrite([41(4,R),3(3),4(4),2(4),10(8)]),flip(a)].1204
230 (x / d) / (b / d) = x / b. [para(56(a,1),5(a,1,2)),rewrite([2(4)]),flip(a)].1205
231 b / (b / d) = d. [para(56(a,1),7(a,1,2)),rewrite([2(3)]),flip(a)].1206
234 (x / (d / y)) / ((b / y) / (d / y)) = x / (b / y). [para(56(a,1),25(a,2,2,1)),rewrite([4(16),2(14)])].1207
238 (x / y) / z = x / (z * y). [para(42(a,1),5(a,1,2)),rewrite([41(6,R),6(6),2(6)])].1208
245 (x / ((y * z) / u)) / ((z / u) / ((y * z) / u)) = (x / (z / u)) / (y / (u / z)). [para(42(a,1),25(a,2,2,1))].1209
252 (x / y) / ((z * x) / y) = 1. [para(10(a,1),26(a,1,1,1))].1210
271 (a / x) / c = 1. [para(55(a,1),26(a,1,2)),rewrite([2(6)])].1211
272 (d / x) / b = 1. [para(56(a,1),26(a,1,2)),rewrite([2(6)])].1212
273 (x / y) / ((x * z) / y) = 1. [para(42(a,1),26(a,1,1,1))].1213
275 (x / (y / z)) / (u / (z / y)) = x / ((u * y) / z). [back_rewrite(245),rewrite([252(7),2(5)]),flip(a)].1214
286 (x / c) / (x / a) = 1. [para(7(a,1),271(a,1,1)),rewrite([75(5)])].1215
297 (x / b) / (x / d) = 1. [para(7(a,1),272(a,1,1)),rewrite([75(5)])].1216
307 (x / y) / (x / (y / z)) = 1. [para(27(a,1),6(a,1,1))].1217
436 x / ((x * c) / a) = 1. [para(42(a,1),286(a,1,1))].1218
454 x / ((b * x) / d) = 1. [para(10(a,1),297(a,1,1))].1219
460 a / (a / d) = 1. [para(46(a,1),297(a,1,1))].1220
465 (x * d) / (x * b) = 1. [para(42(a,1),297(a,1,2)),rewrite([238(5)])].1221
470 a / d = a. [para(460(a,1),7(a,1,2)),rewrite([2(3),6(9),2(6)]),flip(a)].1222
693 x / (b / a) = x / b. [para(46(a,1),30(a,1,2,2)),rewrite([3(7),2(6)])].1223
694 x / (d / c) = x / d. [para(49(a,1),30(a,1,2,2)),rewrite([3(7),2(6)])].1224
792 (x / y) / ((y * c) / (y * a)) = x / ((y * c) / a). [para(436(a,1),5(a,1,2)),rewrite([2(7),238(11)]),flip(a)].1225
843 (x / y) / (y / x) = x / y. [para(31(a,1),29(a,2,2)),rewrite([6(3),2(3),27(6),27(10)])].1226
881 (x / y) / ((b * x) / d) = 1. [para(454(a,1),26(a,1,2)),rewrite([2(8)])].1227
1099 x * d = (x * b) / (b / d). [para(465(a,1),7(a,1,2)),rewrite([2(4),41(9,R),10(7)])].1228
1189 b / a = b. [para(693(a,1),34(a,1,2)),rewrite([3(4),2(3)]),flip(a)].1229
1196 (b / x) / (a / x) = b / (x / a). [para(1189(a,1),5(a,1,1)),flip(a)].1230
1219 d / c = d. [para(694(a,1),34(a,1,2)),rewrite([3(4),2(3)]),flip(a)].1231
1226 (d / x) / (c / x) = d / (x / c). [para(1219(a,1),5(a,1,1)),flip(a)].1232
1253 f / e = f. [para(52(a,1),35(a,1,2,2)),rewrite([3(4),2(3)]),flip(a)].1233
1268 d / a = d. [para(470(a,1),35(a,1,2,2)),rewrite([3(4),2(3)]),flip(a)].1234
1273 (f / x) / (e / x) = f / (x / e). [para(1253(a,1),5(a,1,1)),flip(a)].1235
1519 (x * y) / (x * z) = y / z. [para(10(a,1),40(a,2,2)),rewrite([41(5,R),3(4),4(5),2(5)])].1236
1543 ((x * y) * z) / (y * x) = z. [para(42(a,1),40(a,1,2)),rewrite([41(4),41(6,R),6(6),2(6)])].1237
1544 (x * y) / (z * x) = y / z. [para(42(a,1),40(a,2,2)),rewrite([41(5,R),6(5),2(5)])].1238
1552 ((x * y) / z) / x = y / z. [para(40(a,1),27(a,1,1)),rewrite([30(5)]),flip(a)].1239
1572 ((x * y) / (x / z)) / (y / (z / x)) = z / (z / (x * y)). [para(40(a,1),29(a,2,2)),rewrite([273(7),2(5)]),flip(a)].1240
1587 (a * x) / (x * c) = 1. [para(436(a,1),40(a,2)),rewrite([41(9,R),271(9),2(7)])].1241
1601 (x / (y / z)) / ((x / (y / z)) / (u / (z / y))) = (u / (z / y)) / (u / ((z * x) / y)).1242

[para(40(a,1),32(a,2,1)),rewrite([273(9),2(7),40(12)]),flip(a)].1243
1631 (x / y) / (c / a) = x / ((y * c) / a). [back_rewrite(792),rewrite([1519(6)])].1244
1643 (x * c) / (c / a) = a * x. [para(1587(a,1),7(a,1,2)),rewrite([2(4),1544(9)]),flip(a)].1245
1708 (x * y) / (y * z) = x / z. [para(42(a,1),41(a,1,1)),flip(a)].1246
1710 (x / (y * z)) / (x / z) = 1. [para(41(a,1),26(a,1,1))].1247
1960 (x / y) / ((x / z) / y) = z / (z / (x / y)). [para(75(a,1),7(a,1,2))].1248
1973 (a / x) / b = a / x. [para(46(a,1),75(a,1,1)),flip(a)].1249
1974 (c / x) / d = c / x. [para(49(a,1),75(a,1,1)),flip(a)].1250
1975 (e / x) / f = e / x. [para(52(a,1),75(a,1,1)),flip(a)].1251
1986 ((x * y) / z) / y = x / z. [para(42(a,1),75(a,1,1)),flip(a)].1252
1988 (b / x) / (b / d) = d / x. [para(231(a,1),75(a,1,1)),flip(a)].1253
2025 (b / x) / a = b / x. [para(1189(a,1),75(a,1,1)),flip(a)].1254
2026 (d / x) / c = d / x. [para(1219(a,1),75(a,1,1)),flip(a)].1255
2029 (d / x) / a = d / x. [para(1268(a,1),75(a,1,1)),flip(a)].1256
2040 x / ((y / z) / u) = x / ((y / u) / z). [para(75(a,1),40(a,2,2)),rewrite([40(6)])].1257
2323 b / (a / x) = b. [para(1973(a,1),35(a,1,2,2)),rewrite([3(6),2(3)]),flip(a)].1258
2726 b / (x / (x / a)) = b. [para(7(a,1),2323(a,1,2))].1259
2732 (b / x) / (a / y) = b / x. [para(2323(a,1),75(a,1,1)),flip(a)].1260
2734 b / (x / a) = b / x. [back_rewrite(1196),rewrite([2732(5)]),flip(a)].1261
2752 d / (c / x) = d. [para(1974(a,1),35(a,1,2,2)),rewrite([3(6),2(3)]),flip(a)].1262
2762 d / (x / (x / c)) = d. [para(7(a,1),2752(a,1,2))].1263
2769 (d / x) / (c / y) = d / x. [para(2752(a,1),75(a,1,1)),flip(a)].1264
2771 d / (x / c) = d / x. [back_rewrite(1226),rewrite([2769(5)]),flip(a)].1265
2790 f / (e / x) = f. [para(1975(a,1),35(a,1,2,2)),rewrite([3(6),2(3)]),flip(a)].1266
3174 (f / x) / (e / y) = f / x. [para(2790(a,1),75(a,1,1)),flip(a)].1267
3178 f / (x / e) = f / x. [back_rewrite(1273),rewrite([3174(5)]),flip(a)].1268
3760 c / (d / x) = c. [para(2026(a,1),35(a,1,2,2)),rewrite([3(6),2(3)]),flip(a)].1269
3772 c / (x / (x / d)) = c. [para(7(a,1),3760(a,1,2))].1270
3778 (c / x) / (d / y) = c / x. [para(3760(a,1),75(a,1,1)),flip(a)].1271
4292 a / (d / x) = a. [para(2029(a,1),35(a,1,2,2)),rewrite([3(6),2(3)]),flip(a)].1272
4305 (a / x) / ((d / y) / x) = a / (x / (d / y)). [para(4292(a,1),5(a,1,1)),flip(a)].1273
4311 a / ((d / x) / y) = a. [para(41(a,2),4292(a,1,2))].1274
4329 b / (x / (y / a)) = b / (x / y). [para(2726(a,1),25(a,1,1)),rewrite([27(8),1960(13),2732(14)]),flip(a)].1275
4948 d / (x / (y / c)) = d / (x / y). [para(2762(a,1),25(a,1,1)),rewrite([27(8),1960(13),2769(14)]),flip(a)].1276
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7457 c / (x / (y / d)) = c / (x / y). [para(3772(a,1),25(a,1,1)),rewrite([27(8),1960(13),3778(14)]),flip(a)].1277
8424 (a / x) / ((d / y) / z) = a / x. [para(4311(a,1),75(a,1,1)),flip(a)].1278
8451 a / (x / (d / y)) = a / x. [back_rewrite(4305),rewrite([8424(6)]),flip(a)].1279
9223 b / (x / (a * y)) = b / (x / y). [para(238(a,1),2734(a,1,2))].1280
9250 d / (x / (c * y)) = d / (x / y). [para(238(a,1),2771(a,1,2))].1281
10330 x / ((x * y) / (y / z)) = 1. [para(42(a,1),307(a,1,1))].1282
16959 x * y = y * x. [para(1543(a,1),7(a,1,2)),rewrite([42(3),41(6,R),1708(5),3(3),4(4),2(4)])].1283
17705 (((a * (e / b)) / f) / (b / e)) / (((((c * (e / b)) / f) / (b / e)) / (c / a)) / (((c * (e / d)) / f) / (d / e)))1284

!= ((a * (e / b)) / f) / (b / e). [para(1643(a,2),43(a,1,2,1,1,1)),rewrite([16959(16),75(22),75(26)])].1285
17833 (a * x) / ((b * (x * c)) / d) = 1. [para(1643(a,1),881(a,1,1))].1286
17863 (c * x) / (c / a) = a * x. [para(16959(a,1),1643(a,1,1))].1287
18962 x / ((x * (y * z)) / z) = 1. [para(42(a,1),1710(a,1,1))].1288
20581 f / ((x * e) / y) = f / (x / y). [para(1986(a,1),3178(a,1,2)),flip(a)].1289
20687 d / (b / (b / x)) = d / x. [para(34(a,1),1988(a,1,1)),rewrite([1988(6)]),flip(a)].1290
20995 (b / x) / (y / a) = (b / x) / y. [para(2732(a,1),92(a,2)),rewrite([2025(4),41(8,R)])].1291
25756 x / ((x * y) / (z / (z / y))) = 1. [para(7(a,1),10330(a,1,2,2))].1292
30626 (d / x) / y = d / (b / ((b / x) / y)). [para(41(a,2),20687(a,1,2,2)),rewrite([41(10,R)]),flip(a)].1293
43520 b / (x / ((a * y) / z)) = b / (x / (y / z)). [para(1552(a,1),4329(a,1,2,2)),flip(a)].1294
47774 x / (b / (d / x)) = x / b. [para(35(a,1),234(a,1,1)),rewrite([27(11),230(6)]),flip(a)].1295
48034 (a * x) / (b / (b / x)) = (a * x) / b. [para(9223(a,1),35(a,1,2))].1296
48078 (a * x) / (b / (d / x)) = (a * x) / b. [para(9223(a,1),47774(a,1,2))].1297
48214 (c * x) / (d / (d / x)) = (c * x) / d. [para(9250(a,1),35(a,1,2))].1298
65562 b / ((x * b) / d) = d / x. [para(231(a,1),275(a,1,1)),rewrite([56(4),2(3)]),flip(a)].1299
78759 ((a * x) / b) / ((x * c) / d) = 1. [para(17833(a,1),275(a,2)),rewrite([41(12,R),30626(12),4948(16),20687(14),75(12),48078(7)])].1300
245607 (x * (y / x)) / (x / y) = y. [para(3(a,1),1572(a,1,2)),rewrite([2(6),41(7,R),3(7),2(6)])].1301
246535 (x * (y * z)) / z = x * y. [para(18962(a,1),245607(a,1,2)),rewrite([238(4),1519(4),42(2),2(3)]),flip(a)].1302
246678 x * (y / z) = (x * y) / (z / (z / y)). [para(25756(a,1),245607(a,1,2)),rewrite([1552(5),35(3),2(4)])].1303
248267 ((((a * e) / b) / f) / (b / e)) / ((((a * e) / b) / f) / ((((c * e) / d) / f) / (d / e)))1304

!= (((a * e) / b) / f) / (b / e). [back_rewrite(17705),rewrite([246678(5),48034(9),246678(16),75(22),75(26),27(26),75(18),41(18),1305
75(22),17863(18),41(18,R),246678(23),48214(27),246678(36),48034(40)])].1306

250480 ((a * x) / b) / (x / d) = a.1307
[para(78759(a,1),1601(a,2,2)),rewrite([3760(4),3760(5),7457(10),1986(7),46(5),7(5),55(4),2(3),2(10)]),flip(a)].1308

250518 ((a * x) / b) / ((y * x) / d) = a / y. [para(250480(a,1),275(a,1,1)),rewrite([8451(5)]),flip(a)].1309
251447 b / ((c * (x * b)) / d) = d / x.1310

[para(65562(a,1),1631(a,1,1)),rewrite([30626(6),20995(8),4948(8),20687(6),16959(9),246678(9),1311
41(12,R),30626(12),6(14),2(12),56(11),2(10),75(11),41(11),1099(10),43520(16),231(12)]),flip(a)].1312

252566 ((c * x) / d) / (d / x) = (c * x) / d. [para(251447(a,1),843(a,1,2)),rewrite([75(8),246535(6),75(15),246535(13)])].1313
253954 ((((a * e) / b) / f) / (b / e)) / ((((a * e) / b) / f) / (((c * e) / d) / f)) != (((a * e) / b) / f) / (b / e).1314

[para(2040(a,1),248267(a,1,2)),rewrite([252566(27)])].1315
254740 $F. [para(5(a,1),253954(a,1,2)),rewrite([250518(22),55(14),20581(19),49(16),4(16),2(13)]),xx(a)].1316

1317
============================== end of proof ==========================1318

and1319

============================== PROOF =================================1320
1321

% Proof 1 at 90.22 (+ 0.51) seconds.1322
% Length of proof is 70.1323
% Level of proof is 9.1324
% Maximum clause weight is 47.000.1325
% Given clauses 716.1326

1327
1 (f * (b / e)) / (a * (e / b)) = ((f * (b / e)) / (a * (e / b))) v ((f * (d / e)) / (c * (e / d)))1328

# label(non_clause) # label(goal). [goal].1329
2 x / 1 = x. [assumption].1330
3 x / x = 1. [assumption].1331
4 1 / x = 1. [assumption].1332
5 (x / y) / (z / y) = (x / z) / (y / z). [assumption].1333
6 (x / y) / x = 1. [assumption].1334
7 x / (x / y) = y / (y / x). [assumption].1335
8 x ^ y = x / (x / y). [assumption].1336
9 x v y = x * (y / x). [assumption].1337
10 (x * y) / x = y. [assumption].1338
11 x / (x * y) = 1. [assumption].1339
12 a ^ b = 1. [assumption].1340
13 a / (a / b) = 1. [copy(12),rewrite([8(3)])].1341
16 e ^ f = 1. [assumption].1342
17 e / (e / f) = 1. [copy(16),rewrite([8(3)])].1343
18 a ^ c = a. [assumption].1344
19 a / (a / c) = a. [copy(18),rewrite([8(3)])].1345
20 b v d = b. [assumption].1346
21 b * (d / b) = b. [copy(20),rewrite([9(3)])].1347
22 ((f * (b / e)) / (a * (e / b))) v ((f * (d / e)) / (c * (e / d))) != (f * (b / e)) / (a * (e / b)). [deny(1)].1348
23 ((f * (b / e)) / (a * (e / b))) * (((f * (d / e)) / (c * (e / d))) / ((f * (b / e)) / (a * (e / b))))1349

!= (f * (b / e)) / (a * (e / b)). [copy(22),rewrite([9(23)])].1350
24 ((x / y) / (z / y)) / (u / (y / z)) = ((x / z) / u) / ((y / z) / u). [para(5(a,1),5(a,1,1))].1351
25 (x / (y / z)) / ((u / z) / (y / z)) = (x / (u / z)) / ((y / u) / (z / u)). [para(5(a,1),5(a,1,2)),flip(a)].1352
26 ((x / y) / z) / (x / z) = 1. [para(6(a,1),5(a,1,1)),rewrite([4(3)]),flip(a)].1353
27 (x / (y / z)) / (y / (y / z)) = x / y. [para(6(a,1),5(a,1,2)),rewrite([2(3)]),flip(a)].1354
29 (x / (x / y)) / (z / (y / x)) = (y / z) / ((y / x) / z). [para(7(a,1),5(a,1,1))].1355
30 (x / (y / z)) / (z / (z / y)) = x / y. [para(7(a,1),5(a,1,2)),rewrite([6(8),2(8)])].1356
31 (x / (x / y)) / (y / (x / y)) = y / (y / (x / y)). [para(7(a,1),5(a,1)),flip(a)].1357
34 x / (x / (x / y)) = x / y. [para(6(a,1),7(a,1,2)),rewrite([2(3)]),flip(a)].1358
35 x / (y / (y / x)) = x / y. [para(7(a,1),7(a,1,2)),rewrite([6(6),2(6)])].1359
39 1 * x = x. [para(10(a,1),2(a,1)),flip(a)].1360
40 ((x * y) / z) / (x / z) = y / (z / x). [para(10(a,1),5(a,1,1)),flip(a)].1361
41 (x / y) / z = x / (y * z). [para(10(a,1),5(a,1,2)),rewrite([11(6),2(6)])].1362
42 (x * y) / y = x. [para(10(a,1),7(a,1,2)),rewrite([11(4),2(4)])].1363
45 a / b = a. [para(13(a,1),7(a,1,2)),rewrite([2(3),6(9),2(6)]),flip(a)].1364
51 e / f = e. [para(17(a,1),7(a,1,2)),rewrite([2(3),6(9),2(6)]),flip(a)].1365
54 a / c = 1. [para(19(a,1),7(a,1,2)),rewrite([3(3),6(9),2(6)]),flip(a)].1366
55 d / b = 1. [para(21(a,1),10(a,1,1)),rewrite([3(3)]),flip(a)].1367
74 (x / y) / z = (x / z) / y. [para(6(a,1),24(a,2,2)),rewrite([30(6),2(6)])].1368
233 (x / (d / y)) / ((b / y) / (d / y)) = x / (b / y). [para(55(a,1),25(a,2,2,1)),rewrite([4(16),2(14)])].1369
244 (x / ((y * z) / u)) / ((z / u) / ((y * z) / u)) = (x / (z / u)) / (y / (u / z)). [para(42(a,1),25(a,2,2,1))].1370
251 (x / y) / ((z * x) / y) = 1. [para(10(a,1),26(a,1,1,1))].1371
270 (a / x) / c = 1. [para(54(a,1),26(a,1,2)),rewrite([2(6)])].1372
274 (x / (y / z)) / (u / (z / y)) = x / ((u * y) / z). [back_rewrite(244),rewrite([251(7),2(5)]),flip(a)].1373
285 (x / c) / (x / a) = 1. [para(7(a,1),270(a,1,1)),rewrite([74(5)])].1374
437 ((x / c) / y) / (x / a) = 1. [para(285(a,1),26(a,1,2)),rewrite([2(8)])].1375
692 x / (b / a) = x / b. [para(45(a,1),30(a,1,2,2)),rewrite([3(7),2(6)])].1376
842 (x / y) / (y / x) = x / y. [para(31(a,1),29(a,2,2)),rewrite([6(3),2(3),27(6),27(10)])].1377
1188 b / a = b. [para(692(a,1),34(a,1,2)),rewrite([3(4),2(3)]),flip(a)].1378
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1252 f / e = f. [para(51(a,1),35(a,1,2,2)),rewrite([3(4),2(3)]),flip(a)].1379
1272 (f / x) / (e / x) = f / (x / e). [para(1252(a,1),5(a,1,1)),flip(a)].1380
1542 ((x * y) * z) / (y * x) = z. [para(42(a,1),40(a,1,2)),rewrite([41(4),41(6,R),6(6),2(6)])].1381
1707 (x * y) / (y * z) = x / z. [para(42(a,1),41(a,1,1)),flip(a)].1382
1959 (x / y) / ((x / z) / y) = z / (z / (x / y)). [para(74(a,1),7(a,1,2))].1383
1974 (e / x) / f = e / x. [para(51(a,1),74(a,1,1)),flip(a)].1384
1985 ((x * y) / z) / y = x / z. [para(42(a,1),74(a,1,1)),flip(a)].1385
2789 f / (e / x) = f. [para(1974(a,1),35(a,1,2,2)),rewrite([3(6),2(3)]),flip(a)].1386
3166 (f / x) / ((e / y) / x) = f / (x / (e / y)). [para(2789(a,1),5(a,1,1)),flip(a)].1387
3167 f / (x / (x / e)) = f. [para(7(a,1),2789(a,1,2))].1388
3172 f / ((e / x) / y) = f. [para(41(a,2),2789(a,1,2))].1389
3173 (f / x) / (e / y) = f / x. [para(2789(a,1),74(a,1,1)),flip(a)].1390
3177 f / (x / e) = f / x. [back_rewrite(1272),rewrite([3173(5)]),flip(a)].1391
5613 f / (x / (y / e)) = f / (x / y). [para(3167(a,1),25(a,1,1)),rewrite([27(8),1959(13),3173(14)]),flip(a)].1392
5667 (f / x) / ((e / y) / z) = f / x. [para(3172(a,1),74(a,1,1)),flip(a)].1393
5688 f / (x / (e / y)) = f / x. [back_rewrite(3166),rewrite([5667(6)]),flip(a)].1394
16958 x * y = y * x. [para(1542(a,1),7(a,1,2)),rewrite([42(3),41(6,R),1707(5),3(3),4(4),2(4)])].1395
21396 ((f / x) / y) / (e / z) = (f / x) / y. [para(41(a,2),3173(a,1,1)),rewrite([41(9,R)])].1396
22637 f / ((x * (e / y)) / z) = f / (x / z). [para(1985(a,1),5688(a,1,2)),flip(a)].1397
48489 (x * (d / y)) / (b / y) = x / ((b / y) / (d / y)). [para(42(a,1),233(a,1,1)),flip(a)].1398
66357 $F. [para(274(a,2),23(a,1,2)),rewrite([41(31,R),74(27),1188(25),842(29),74(26),48489(20),5613(20),74(17),1399

3177(18),41(22,R),74(18),21396(22),5613(29),22637(27),45(22),437(22),16958(13),39(13)]),xx(a)].1400
1401

============================== end of proof ==========================1402

◀1403

Proof of Thm. 42. It was left open to show that if equations (16)–(20) hold, each CRA1404

equation is satisfied.1405

(1) is the same as (17);1406

(5) follows from (18) and (16) and using 1/a = 1, which is easily derived;1407

(6) is the same as (19);1408

(4) follows from:1409
============================== PROOF =================================1410

1411
% Proof 1 at 9.37 (+ 0.08) seconds.1412
% Length of proof is 54.1413
% Level of proof is 13.1414
% Maximum clause weight is 23.000.1415
% Given clauses 182.1416

1417
1 (x / y) / (z / y) = (x / z) / (y / z) # label(non_clause) # label(goal). [goal].1418
2 x / x = 1. [assumption].1419
3 x ^ y = x / (x / y). [assumption].1420
4 x ^ y = y ^ x. [assumption].1421
5 x / (x / y) = y / (y / x). [copy(4),rewrite([3(1),3(3)])].1422
6 (x / y) / z = (x / z) / y. [assumption].1423
7 x / 1 = x. [assumption].1424
8 (x / y) / (y / x) = x / y. [assumption].1425
9 (c1 / c3) / (c2 / c3) != (c1 / c2) / (c3 / c2). [deny(1)].1426
10 x / (y / (y / x)) = x / (x / (x / y)). [para(5(a,1),3(a,2,2)),rewrite([3(2)]),flip(a)].1427
11 (x / y) / x = 1 / y. [para(2(a,1),6(a,1,1)),flip(a)].1428
13 (x / y) / ((x / z) / y) = z / (z / (x / y)). [para(6(a,1),5(a,1,2))].1429
14 (x / (x / y)) / z = (y / z) / (y / x). [para(5(a,1),6(a,1,1))].1430
15 ((x / y) / z) / u = ((x / u) / y) / z. [para(6(a,1),6(a,1,1)),flip(a)].1431
20 ((x / y) / z) / (y / x) = (x / y) / z. [para(8(a,1),6(a,1,1)),flip(a)].1432
28 (x / y) / (1 / y) = x / (y / (y / x)). [para(10(a,2),5(a,1)),rewrite([11(6)]),flip(a)].1433
31 (x / (y / (y / x))) / z = (x / z) / (x / (x / y)). [para(10(a,2),6(a,1,1))].1434
39 1 / (x / y) = 1. [para(5(a,1),11(a,1,1)),rewrite([6(3),2(3)]),flip(a)].1435
40 ((x / y) / z) / x = (1 / y) / z. [para(11(a,1),6(a,1,1)),flip(a)].1436
46 1 / x = 1. [para(7(a,1),39(a,1,2))].1437
48 ((x / y) / z) / x = 1. [back_rewrite(40),rewrite([46(5),46(5)])].1438
49 x / (y / (y / x)) = x / y. [back_rewrite(28),rewrite([46(3),7(3)]),flip(a)].1439
50 (x / y) / x = 1. [back_rewrite(11),rewrite([46(4)])].1440
52 (x / y) / (x / (x / z)) = (x / z) / y. [back_rewrite(31),rewrite([49(3)]),flip(a)].1441
55 x / (x / (x / y)) = x / y. [back_rewrite(10),rewrite([49(3)]),flip(a)].1442
58 (x / (x / y)) / ((y / z) / (y / x)) = z / (z / (y / (y / x))). [para(5(a,1),13(a,1,1))].1443
59 (x / y) / ((z / (z / x)) / y) = (x / z) / ((x / z) / (x / y)). [para(5(a,1),13(a,1,2,1))].1444
71 x / (x / ((x / y) / z)) = (x / y) / z. [para(50(a,1),13(a,1,2,1)),rewrite([46(4),7(4)]),flip(a)].1445
73 (x / y) / (x / (y / z)) = 1. [para(5(a,1),48(a,1,1)),rewrite([6(4)])].1446
92 (x / y) / (x / z) = (z / y) / (z / x). [para(14(a,1),6(a,1))].1447
94 (x / (x / y)) / z = (y / (y / x)) / z. [para(14(a,2),6(a,1))].1448
115 (x / y) / (x / ((y / z) / u)) = 1. [para(48(a,1),14(a,2,1)),rewrite([6(5),46(10)])].1449
182 ((x / y) / z) / u = ((x / u) / z) / y. [para(15(a,2),6(a,1))].1450
187 ((x / y) / z) / (z / x) = (x / z) / y. [para(8(a,1),15(a,1,1)),flip(a)].1451
347 (x / y) / ((y / x) / z) = x / y. [para(20(a,1),49(a,1,2,2)),rewrite([2(6),7(3)]),flip(a)].1452
747 (x / y) / (x / (x / z)) = (x / y) / z. [para(52(a,2),6(a,1))].1453
838 (x / y) / ((y / z) / x) = x / y. [para(6(a,1),347(a,1,2))].1454
926 (x / (y / (y / (z / (z / x))))) / ((z / y) / (z / x)) = x / z. [para(58(a,1),13(a,1,2)),rewrite([6(9),115(16),7(12)])].1455
945 (x / (x / y)) / ((x / (x / y)) / z) = y / (y / (x / (x / z))). [para(55(a,1),58(a,1,2,1)),rewrite([58(6),747(11)]),flip(a)].1456
1254 (x / (y / z)) / ((z / (z / y)) / (y / x)) = x / y. [para(14(a,2),59(a,1,2)),rewrite([73(12),7(10)])].1457
1262 (x / (y / (y / z))) / ((y / (y / x)) / z) = x / y. [para(55(a,1),59(a,1,2)),rewrite([945(6),55(5),945(15),55(14),73(13),7(10)])].1458
1267 x / (y / ((y / x) / z)) = x / y. [para(73(a,1),59(a,1,2)),rewrite([7(6),73(11),7(7)])].1459
1484 x / (y / ((z / x) / (z / y))) = x / y. [para(92(a,1),1267(a,1,2,2))].1460
1548 (x / (x / y)) / ((y / (y / x)) / z) = y / (y / (x / (x / z))). [para(94(a,1),3(a,2,2)),rewrite([3(3),945(6)]),flip(a)].1461
1559 x / (y / (y / (z / (z / x)))) = x / (y / (y / z)). [para(94(a,1),49(a,1,2)),rewrite([1548(6)])].1462
1630 (x / (y / (y / z))) / ((z / y) / (z / x)) = x / z. [back_rewrite(926),rewrite([1559(5)])].1463
2872 (((x / y) / z) / u) / (u / x) = (x / u) / (x / ((x / y) / z)). [para(71(a,1),187(a,1,1,1))].1464
2897 ((x / y) / z) / u = (x / y) / (x / ((x / z) / u)). [para(187(a,1),182(a,1,1)),rewrite([6(8),2872(8)])].1465
5634 (x / y) / (z / (y / x)) = (x / y) / z. [para(8(a,1),1484(a,1,2,2,1)),rewrite([49(6)])].1466
5839 (x / y) / (z / ((y / u) / x)) = (x / y) / z. [para(838(a,1),5634(a,1,1)),rewrite([2897(5),8(5),747(5),838(9)])].1467
17428 (x / y) / (z / (y / (y / x))) = (x / y) / (z / y). [para(1262(a,1),5839(a,1,2)),flip(a)].1468
19369 (x / (y / (y / z))) / (z / y) = x / z. [para(1630(a,1),1254(a,1,1)),rewrite([17428(11),2897(10),347(13)]),flip(a)].1469
19647 (x / y) / (z / y) = (x / z) / (y / z). [para(19369(a,1),19369(a,1,1)),rewrite([50(6),7(6),6(6)])].1470
19648 $F. [resolve(19647,a,9,a)].1471

1472
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============================== end of proof ==========================1473

For completeness sake we also used Prover9 to reprove the result of [13, 12] that commutat-1474

ive BCK algebras with relative cancellation are equivalent to algebras satisying (16)–(20). We1475

proceeded by first showing that commutative BCK algebras with relative cancellation make1476

each of (16)–(20) hold. To keep proofs, relatively, short we add already derived equations to1477

the assumptions.1478

(16) holds for BCI algebras as it is the same as (11);1479

(17) holds for BCI algebras:1480
============================== PROOF =================================1481

1482
% Proof 1 at 0.01 (+ 0.00) seconds.1483
% Length of proof is 10.1484
% Level of proof is 3.1485
% Maximum clause weight is 13.000.1486
% Given clauses 9.1487

1488
1 x / 1 = x # label(non_clause) # label(goal). [goal].1489
5 (x / (x / y)) / y = 1. [assumption].1490
6 x / x = 1. [assumption].1491
7 x / y != 1 | y / x != 1 | x = y. [assumption].1492
8 x / 1 != 1 | x = 1. [assumption].1493
9 x / 1 != 1 | 1 = x. [copy(8),flip(b)].1494
11 c1 / 1 != c1. [deny(1)].1495
23 (x / 1) / x = 1. [para(6(a,1),5(a,1,1,2))].1496
26 x / (x / 1) = 1. [hyper(9,a,5,a),flip(a)].1497
48 $F. [ur(7,b,23,a,c,11,a(flip)),rewrite([26(5)]),xx(a)].1498

1499
============================== end of proof ==========================1500

(18) holds for BCI algebras:1501
============================== PROOF =================================1502

1503
% Proof 1 at 0.05 (+ 0.01) seconds.1504
% Length of proof is 11.1505
% Level of proof is 4.1506
% Maximum clause weight is 17.000.1507
% Given clauses 34.1508

1509
1 (x / y) / z = (x / z) / y # label(non_clause) # label(goal). [goal].1510
4 ((x / y) / (x / z)) / (z / y) = 1. [assumption].1511
5 (x / (x / y)) / y = 1. [assumption].1512
7 x / y != 1 | y / x != 1 | x = y. [assumption].1513
10 x / 1 = x. [assumption].1514
12 (c1 / c3) / c2 != (c1 / c2) / c3. [deny(1)].1515
16 (x / (y / z)) / (x / ((u / z) / (u / y))) = 1. [para(4(a,1),4(a,1,2)),rewrite([10(9)])].1516
19 (x / y) / (x / (z / (z / y))) = 1. [para(5(a,1),4(a,1,2)),rewrite([10(7)])].1517
236 ((x / y) / z) / ((x / z) / y) = 1. [para(19(a,1),16(a,1,2)),rewrite([10(7)])].1518
647 (x / y) / z = (x / z) / y. [hyper(7,a,236,a,b,236,a)].1519
648 $F. [resolve(647,a,12,a)].1520

1521
============================== end of proof ==========================1522

(19) holds for cBCK algebras as it is the same as (14);1523

(20) is the only non-trivial equation; only it requires also relative cancellation to hold. It1524

took Prover9 a bit more than one and a half hour to come up with a proof:1525
============================== PROOF =================================1526

1527
% Proof 1 at 5810.83 (+ 33.71) seconds.1528
% Length of proof is 43.1529
% Level of proof is 10.1530
% Maximum clause weight is 36.000.1531
% Given clauses 2350.1532

1533
1 (x / y) / (y / x) = x / y # label(non_clause) # label(goal). [goal].1534
2 x / x = 1. [assumption].1535
3 1 / x = 1. [assumption].1536
4 x ^ y = x / (x / y). [assumption].1537
5 x ^ y = y ^ x. [assumption].1538
6 x / (x / y) = y / (y / x). [copy(5),rewrite([4(1),4(3)])].1539
7 (x / y) / z = (x / z) / y. [assumption].1540
8 x / y != 1 | x / z != 1 | y / x != z / x | y = z. [assumption].1541
9 x / 1 = x. [assumption].1542
10 (c1 / c2) / (c2 / c1) != c1 / c2. [deny(1)].1543
11 x / (y / (y / x)) = x / (x / (x / y)). [para(6(a,1),4(a,2,2)),rewrite([4(2)]),flip(a)].1544
12 (x / y) / x = 1. [para(2(a,1),7(a,1,1)),rewrite([3(2)]),flip(a)].1545
14 (x / y) / ((x / z) / y) = z / (z / (x / y)). [para(7(a,1),6(a,1,2))].1546
15 (x / (x / y)) / z = (y / z) / (y / x). [para(6(a,1),7(a,1,1))].1547
16 ((x / y) / z) / u = ((x / u) / y) / z. [para(7(a,1),7(a,1,1)),flip(a)].1548
24 x / (y / z) != 1 | x / u != 1 | (y / x) / z != u / x | y / z = u. [para(7(a,1),8(c,1))].1549
28 x / (y / (y / x)) = x / y. [para(11(a,2),6(a,1)),rewrite([12(6),9(6)])].1550
32 x / (x / (x / (y / z))) = x / (y / z). [para(7(a,1),11(a,1,2)),rewrite([7(4),28(5)]),flip(a)].1551
40 x / (x / (x / y)) = x / y. [para(11(a,1),11(a,2,2,2)),rewrite([7(5),2(5),9(4),28(3),32(5)]),flip(a)].1552
46 ((x / y) / z) / x = 1. [para(12(a,1),7(a,1,1)),rewrite([3(2)]),flip(a)].1553
47 ((x / y) / z) / (x / z) = 1. [para(7(a,1),12(a,1,1))].1554
52 x / (x / ((x / y) / z)) = (x / y) / z. [para(46(a,1),6(a,1,2)),rewrite([9(4)]),flip(a)].1555
53 ((x / (x / y)) / z) / y = 1. [para(6(a,1),46(a,1,1,1))].1556
54 (x / y) / (x / (y / z)) = 1. [para(6(a,1),46(a,1,1)),rewrite([7(4)])].1557
90 ((x / (x / y)) / z) / (y / z) = 1. [para(6(a,1),47(a,1,1,1))].1558
113 (x / y) / (x / (z / (z / y))) = 1. [para(6(a,1),53(a,1,1)),rewrite([7(5)])].1559
124 (x / (x / y)) / (y / ((y / x) / z)) = 1. [para(6(a,1),54(a,1,1))].1560
213 (x / (x / (y / z))) / (y / (z / u)) = 1. [para(54(a,1),15(a,2,1)),rewrite([3(10)])].1561
531 ((x / (x / (y / z))) / u) / ((y / u) / z) = 1. [para(7(a,1),90(a,1,2))].1562
551 ((x / (x / y)) / (y / z)) / (z / (y / x)) = 1. [para(15(a,2),90(a,1,1))].1563
557 ((x / y) / (z / y)) / (x / z) = 1. [para(90(a,1),16(a,2))].1564
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583 (x / (x / (y / z))) / (y / (u / (u / z))) = 1. [para(113(a,1),15(a,2,1)),rewrite([3(11)])].1565
2967 x / (y / ((y / x) / z)) != 1 | x / u != 1 | z / (z / (y / x)) != u / x | y / ((y / x) / z) = u. [para(6(a,1),24(c,1))].1566
3237 x / (y / ((y / x) / z)) = x / y. [para(124(a,1),14(a,1,2)),rewrite([9(6),54(11),9(7)])].1567
3280 x / y != 1 | x / z != 1 | u / (u / (y / x)) != z / x | y / ((y / x) / u) = z. [back_rewrite(2967),rewrite([3237(4)])].1568
5206 ((x / y) / (z / y)) / (x / (z / u)) = 1. [para(557(a,1),213(a,1,1,2)),rewrite([9(5)])].1569
21101 (x / (y / (z / u))) / (x / ((y / w) / (z / w))) = 1. [para(5206(a,1),113(a,1,2,2,2)),rewrite([9(8)])].1570
27486 (x / (y / z)) / (x / ((u / (u / y)) / (z / (y / u)))) = 1. [para(551(a,1),531(a,1,2)),rewrite([7(9),9(11)])].1571
28777 (x / (x / (y / (z / u)))) / (y / ((z / w) / (u / w))) = 1. [para(557(a,1),583(a,1,2,2,2)),rewrite([9(9)])].1572
75243 (x / (x / ((y / (y / z)) / (u / z)))) / (z / (u / y)) = 1. [para(28777(a,1),27486(a,1,2)),rewrite([9(11)])].1573
81865 x / ((x / y) / (y / x)) = y / ((y / x) / (x / y). [hyper(3280,a,75243,a,b,21101,a,c,7,a),rewrite([2(1),9(2),2(1),9(2),1574

2(1),9(2),2(1),9(2),28(3),2(2),9(3),2(2),9(3),40(4),2(5),9(6),2(5),9(6),40(7),2(6),9(7),2(6),9(7),2(6),9(7),28(8)])].1575
81872 (x / y) / (y / x) = x / y. [para(81865(a,1),4(a,2,2)),rewrite([4(4),52(5),3237(8)])].1576
81873 $F. [resolve(81872,a,10,a)].1577

1578
============================== end of proof ==========================1579

Finally, we show that (16)–(20) entail each of the conditions of cBCK algebras with1580

relative cancellation. We show the latter in a convenient order.1581

(11) holds as it is the same as (16);1582

(14) holds as it is the same as (19);1583

(13) follows from (16)–(19) by:1584
============================== PROOF =================================1585

1586
% Proof 1 at 0.01 (+ 0.00) seconds.1587
% Length of proof is 10.1588
% Level of proof is 4.1589
% Maximum clause weight is 11.000.1590
% Given clauses 9.1591

1592
1 1 / x = 1 # label(non_clause) # label(goal). [goal].1593
2 x / x = 1. [assumption].1594
3 x / 1 = x. [assumption].1595
4 (x / y) / z = (x / z) / y. [assumption].1596
5 x / (x / y) = y / (y / x). [assumption].1597
7 1 / c1 != 1. [deny(1)].1598
8 (x / y) / x = 1 / y. [para(2(a,1),4(a,1,1)),flip(a)].1599
25 1 / (x / y) = 1. [para(5(a,1),8(a,1,1)),rewrite([4(3),2(3)]),flip(a)].1600
29 1 / x = 1. [para(3(a,1),25(a,1,2))].1601
30 $F. [resolve(29,a,7,a)].1602

1603
============================== end of proof ==========================1604

(12) follows from (17) and (19);1605

(10) follows from (16) and (18);1606

(9) follows from (16)–(19) by:1607
============================== PROOF =================================1608

1609
% Proof 1 at 0.01 (+ 0.00) seconds.1610
% Length of proof is 11.1611
% Level of proof is 4.1612
% Maximum clause weight is 15.000.1613
% Given clauses 19.1614

1615
1 ((x / y) / (x / z)) / (z / y) = 1 # label(non_clause) # label(goal). [goal].1616
2 x / x = 1. [assumption].1617
4 (x / y) / z = (x / z) / y. [assumption].1618
5 x / (x / y) = y / (y / x). [assumption].1619
7 1 / x = 1. [assumption].1620
11 ((c1 / c2) / (c1 / c3)) / (c3 / c2) != 1. [deny(1)].1621
12 (x / y) / x = 1. [para(2(a,1),4(a,1,1)),rewrite([7(2)]),flip(a)].1622
14 (x / (x / y)) / z = (y / z) / (y / x). [para(5(a,1),4(a,1,1))].1623
24 ((x / y) / z) / (x / z) = 1. [para(4(a,1),12(a,1,1))].1624
165 ((x / y) / (x / z)) / (z / y) = 1. [para(14(a,1),24(a,1,1))].1625
166 $F. [resolve(165,a,11,a)].1626

1627
============================== end of proof ==========================1628

(15) is the only non-trivial condition; only it requires also (20) to hold:1629
============================== PROOF =================================1630

1631
% Proof 1 at 0.20 (+ 0.01) seconds.1632
% Length of proof is 27.1633
% Level of proof is 8.1634
% Maximum clause weight is 17.000.1635
% Given clauses 122.1636

1637
1 x / y != 1 | x / z != 1 | y / x != z / x | y = z # label(non_clause) # label(goal). [goal].1638
2 x / x = 1. [assumption].1639
3 x / 1 = x. [assumption].1640
4 (x / y) / z = (x / z) / y. [assumption].1641
5 x / (x / y) = y / (y / x). [assumption].1642
6 (x / y) / (y / x) = x / y. [assumption].1643
7 1 / x = 1. [assumption].1644
8 x / y != 1 | y / x != 1 | x = y. [assumption].1645
11 ((x / y) / (x / z)) / (z / y) = 1. [assumption].1646
12 c1 / c2 = 1. [deny(1)].1647
13 c1 / c3 = 1. [deny(1)].1648
14 c3 / c1 = c2 / c1. [deny(1)].1649
15 c3 != c2. [deny(1)].1650
16 (x / y) / x = 1. [para(2(a,1),4(a,1,1)),rewrite([7(2)]),flip(a)].1651
18 (x / (x / y)) / z = (y / z) / (y / x). [para(5(a,1),4(a,1,1))].1652
19 (x / y) / ((x / z) / y) = z / (z / (x / y)). [para(4(a,1),5(a,1,2))].1653
34 ((x / (x / y)) / (y / z)) / (z / (y / x)) = 1. [para(5(a,1),11(a,1,1,1))].1654
47 c3 / (c2 / c1) = c1. [para(13(a,1),5(a,1,2)),rewrite([3(3),14(5)]),flip(a)].1655
60 (c2 / c1) / c3 = 1. [para(14(a,1),16(a,1,1))].1656
71 (c3 / x) / (c2 / c1) = c1 / x. [para(47(a,1),4(a,1,1)),flip(a)].1657
265 c1 / (c1 / (c2 / c3)) = c2 / c3. [para(60(a,1),19(a,1,2)),rewrite([3(5)]),flip(a)].1658
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2476 c2 / c3 = 1. [para(71(a,1),34(a,1,1)),rewrite([4(11),265(7),6(7)])].1659
2595 c3 / c2 != 1. [ur(8,b,2476,a,c,15,a)].1660
2600 (c3 / x) / (c3 / c2) = c2 / x. [para(2476(a,1),18(a,1,1,2)),rewrite([3(3)]),flip(a)].1661
3220 c1 / (c3 / c2) = c1. [para(47(a,1),2600(a,1,1)),rewrite([5(10),12(9),3(8)])].1662
3268 c3 / c2 = 1. [para(3220(a,1),5(a,1,2)),rewrite([2(3),4(9),14(7),16(9),3(6)]),flip(a)].1663
3269 $F. [resolve(3268,a,2595,a)].1664

1665
============================== end of proof ==========================1666

◀1667
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