Confluence via Critical Valleys

Vincent van Oostrom

Department of Philosophy, Utrecht University, The Netherlands Vincent.vanOostrom@phil.uu.nl

A recent result due to Hirokawa and Middeldorp expresses that a left-linear first-order term rewriting systems is confluent, if its critical pairs are joinable and its *critical pair* system, comprising the steps of the critical peaks as rules, is relatively terminating with respect to the original term rewriting system. That result captures both confluence of orthogonal first-order term rewriting systems and of terminating left-linear first-order term rewritings having joinable critical pairs. Here we extend it in three ways:

- we generalise the result from first- to higher-order rewriting;
- we show that instead of the critical pair system, it suffices to consider only a *critical valley* system, comprising as rules reductions from the source of a critical peak to the targets of the first multisteps (if these exist) of the valley completing the peak; and
- we show that *development closed* critical pairs, where the target of the inner step of a critical peak reduces in a multistep to the target of the outer step of the peak, need not be considered when constructing the critical valley system.

1 Confluence via Critical Valleys

Let a *critical valley* system for a locally confluent term rewriting system \mathscr{R} be a system \mathscr{S} over the same signature comprising for *each* critical peak $\underline{s}_0 \leftarrow_{\mathscr{R}, \text{root}} \underline{t} \rightarrow_{\mathscr{R}} \underline{r}_0$ such that not $\underline{s}_0 \leftarrow_{\mathscr{R}} \underline{r}_0$, and *some* valley $\underline{s}_0 \xrightarrow{\bullet}_{\mathscr{R}} \underline{s}_n = \underline{r}_m \xleftarrow{\bullet}_{\mathscr{R}} \underline{r}_0$ completing it, rules $\underline{t} \rightarrow \underline{s}_1$ if $n \ge 1$ and $\underline{t} \rightarrow \underline{r}_1$ if $m \ge 1$. Referring the reader to [2] for no(ta)tions and results used, we generalize [1, Thm. 16 and p. 497]:

Theorem (Critical Valley). A left-linear locally confluent first- or higher-order term rewriting system \mathscr{R} is confluent if \mathscr{S}/\mathscr{R} is terminating for some critical valley system \mathscr{S} for \mathscr{R} .

Proof. Since $\rightarrow_{\mathscr{R}} \subseteq \rightarrow_{\mathscr{R}} \subseteq \rightarrow_{\mathscr{R}}$ holds for all term rewriting systems, it suffices [4, Proposition 1.1.11 and Lemma 11.6.24] to show confluence of $\rightarrow_{\mathscr{R}}$, for which in turn it suffices [3, Theorem 3] to show that its labelling defined by $t \triangleright_{\hat{i}} s$ if $\hat{t} \rightarrow_{\mathscr{R}} t \rightarrow_{\mathscr{R}} s$, is decreasing with respect to the order $(\mathscr{S}/\mathscr{R})^+$. In particular, we show that for given \hat{t}_i , a peak $t_0 \blacktriangleleft_{\hat{t}_0} t \triangleright_{\hat{t}_1} t_1$ contracting the multi-redexes U_0, U_1 , can be completed into a decreasing diagram by a conversion of shape $\triangleright_{\hat{t}_1} \cdot \bigstar^* \cdot \blacktriangleleft_{\hat{t}_0}$, where all steps in the conversion \bigstar^* have labels \mathscr{S}/\mathscr{R} -smaller than a \hat{t}_i , by induction on the amount of overlap between the patterns of redexes in U_0, U_1 :

(0) Then $U_0 \cup U_1$ is a set of non-overlapping redexes and contracting them in t yields a common \Leftrightarrow -reduct t' of the t_i by the Triangle Theorem 10 of [2], so $t_0 \triangleright_{\hat{t}_1} t' \blacktriangleleft_{\hat{t}_0} t_1$, since $\hat{t}_i \twoheadrightarrow_{\mathscr{R}} t \twoheadrightarrow_{\mathscr{R}} t_{1-i}$.

(>0) Let $u_i \in U_i$ with $s_0 \leftarrow_{u_0} t \rightarrow_{u_1} r_0$ be induced by a critical peak $\underline{s}_0 \leftarrow_{\mathscr{R}} \underline{t} \rightarrow_{\mathscr{R}} \underline{r}_0$ with, w.l.o.g., u_1 innermost, and distinguish cases on whether $\underline{s}_0 \leftrightarrow_{\mathscr{R}} \underline{r}_0$ or not:

(\top) By Claim 23 of [2] there exists a peak $t_0 \blacktriangleleft_{\hat{t}_0} r_0 \triangleright_{\hat{t}_1} t_1$ contracting multi-redexes U'_0, U'_1 having a smaller amount of overlap than U_0, U_1 had, and we conclude by the induction hypothesis.

(\perp) There is a valley $\underline{s}_0 \xrightarrow{\rightarrow} {}^n_{\mathscr{R}} \underline{s}_n = \underline{r}_m \xleftarrow{\rightarrow} {}^m_{\mathscr{R}} \underline{r}_0$ such that $\underline{t} \xrightarrow{} \underline{s}_1$ if $n \ge 1$ and $\underline{t} \xrightarrow{} \underline{r}_1$ if $m \ge 1$.

Submitted to: HOR 2012 © V. van Oostrom This work is licensed under the Creative Commons Attribution License. If $n \ge 1$, the induction hypothesis can be applied to $t_0 \blacktriangleleft_{\hat{t}_0} s_0 \triangleright_{\hat{t}_1} s_1$ as \underline{t} and $U_0 - \{u_0\}$ do not overlap in t by innermostness of u_1 and the tree-structure of terms so neither do their descendants in s_1 after u_0 , yielding a decreasing diagram $t_0 \triangleright_{\hat{t}_1} \cdot \bullet^* \cdot \blacktriangleleft_{\hat{t}_0} s_1$ hence, relabeling its last step, also $t_0 \triangleright_{\hat{t}_1} \cdot \bullet^* \cdot \blacktriangleleft_{s_1} s_1$, where all steps except the first have labels \mathscr{S}/\mathscr{R} -smaller than a \hat{t}_i .

If $m \ge 1$ the induction hypothesis can be applied to $r_1 \blacktriangleleft_{\hat{t}_0} r_0 \blacktriangleright_{\hat{t}_1} t_1$ as \underline{t} and V_0 overlap more in t than \underline{r}_0 and the residuals of V_0 after v_0 do in r_0 by innermostness of t and the tree-structure of terms, yielding a decreasing diagram $r_1 \blacktriangleright_{\hat{t}_1} \cdot \textcircled{\bullet}^* \cdot \blacktriangleleft_{\hat{t}_0} t_1$ hence, relabeling its first step, also $r_1 \triangleright_{r_1} \cdot \textcircled{\bullet}^* \cdot \blacktriangleleft_{\hat{t}_0} t_1$ where all steps except the last have labels \mathscr{S}/\mathscr{R} -smaller than a \hat{t}_i .

- If $n, m \ge 1$ then we may join the above conversions by the following labelling induced by a suffix of the local confluence valley $s_1 \triangleright_{s_1}^{n-1} s_n = r_m \blacktriangleleft_{r_1}^{m-1} r_1$;
- If n = 0 and $m \ge 1$, then we may join $t_0 \blacktriangleleft_{r_1} r_1$ and the second conversion above;
- If $n \ge 1$ and m = 0, then we may join the first conversion above and $s_1 \implies_{s_1} t_0$; and
- The case that n = 0 = m cannot occur as then $\underline{s}_0 \leftrightarrow \mathbb{R} \underline{r}_0$.

References

- Nao Hirokawa & Aart Middeldorp (2010): Decreasing diagrams and relative termination. In: Proceedings of IJCAR 2010, Lecture Notes in Computer Science 6173, Springer, pp. 487–501. doi:10.1007/978-3-642-14203-1_41.
- [2] Vincent van Oostrom (1997): Developing developments. Theoretical Computer Science 175(1), pp. 159–181. doi:10.1016/S0304-3975(96)00173-9.
- [3] Vincent van Oostrom (2008): Confluence by Decreasing Diagrams, Converted. In Andrei Voronkov, editor: Rewriting Techniques and Applications, 19th International Conference, RTA 2008, Hagenberg, Austria, July 2007. Proceedings, Lecture Notes in Computer Science 5117, Springer, pp. 306–320. (doi:10.1007/978-3-540-70590-1_21).
- [4] Terese (2003): *Term Rewriting Systems*. Cambridge Tracts in Theoretical Computer Science 55, Cambridge University Press.