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Abstract. The decreasing diagrams technique is a complete method to
reduce confluence of a rewrite relation to local confluence. Whereas pre-
vious presentations have focussed on the proof the technique is correct,
here we focus on applicability. We present a simple but powerful general-
isation of the technique, requiring peaks to be closed only by conversions
instead of valleys, which is demonstrated to further ease applicability.

1 Introduction

The decreasing diagrams technique [1,2] is a method to reduce the problem
of showing confluence of a rewrite relation to showing its local confluence. In
exchange for localisation, the confluence diagrams need to be decreasing with
respect to some labelling. The method is complete in the sense that any (count-
able) confluent rewrite relation can be equipped with such a labelling. But by
undecidability of confluence completeness also entails that finding such a la-
belling is hard. The goal of this paper is to ease the latter, thus enhancing
applicability of the technique. We try to achieve this in two ways.

First, in Sect. 3, we relax the local confluence constraint. Instead of requiring
that for every pair of diverging steps a pair of reductions exists such that the
resulting diagram is decreasing, we show it suffices that a conversion exists such
that the resulting diagram is decreasing, by analogy with the way in which
Winkler & Buchberger’s confluence criterion [3, Lemma 3.1] relaxes Newman’s
Lemma [4, Theorem 3].

Next, in Sect. 4, we provide heuristics for finding appropriate labellings,
illustrated by many examples from the literature, ranging from abstract rewriting
via term rewriting and λ-calculi to process algebra.

In the examples we use results from the literature. Other than that, we
assume only basic rewriting knowledge, which is recapitulated in Sect. 2. That
section serves also to recapitulate from [1,2] the core of the decreasing diagrams
technique. Those not yet familiar with that technique are advised to consult one
of its textbook accounts [5,6] first.
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2 Preliminaries

A rewrite relation is a binary relation on a set of objects. To stress we are
interested in the direction of rewrite relations we use arrow-like notations like
→, �, ., and I to denote them. For a rewrite relation →, we inductively define
an object a to be terminating, if for all objects b such that a→ b, b is terminating.
The rewrite relation→ is terminating if all its objects are. For a rewrite relation
denoted by an arrow-like notation →, its converse is denoted by the converse ←
of the notation. We denote the union of two rewrite relations by the union of
their notations, e.g. /I denotes / ∪ I, and ↔ denotes ← ∪→, the symmetric
closure of →. We use → · . to denote the composition of → and ., and →=

and →+ to denote respectively the reflexive and transitive closure of →. To
denote the reflexive–transitive closure of →, i.e. its ‘repetition’, we employ the
‘repetition’ � of its notation. When both .,I are defined, we abbreviate . ∪I
to →. Further notions and notations will be introduced on a by-need basis. We
now state the decreasing diagrams theorem, illustrating it by means of a running
example.

Definition 1. A pair (.,I) of rewrite relations commutes if // · II ⊆ II · //,
and commutes locally if / · I ⊆ II · //. A rewrite relation → is confluent if
(→,→) commutes, and locally confluent if (→,→) commutes locally.

Example 1. A rewrite relation is confluent if locally confluent and terminating.

The decreasing diagrams technique generalises this example, that is, Newman’s
Lemma, by weakening the termination assumption to decreasingness.

Definition 2. A pair ((.`)`∈L, (Im)m∈M ) of families of rewrite relations is de-
creasing if the union L ∪M of their sets L,M of labels comes equipped with a
terminating and transitive rewrite relation �. A pair of rewrite relations (.,I) is
decreasing, if . =

⋃
`∈L .`, I =

⋃
m∈M Im for such a decreasing pair of families,

such that for all `∈L,m∈M , /` ·Im ⊆ IIg` ·I=
m ·IIg{`,m} ·//g{`,m} ·/=

` ·//gm

(see Fig. 1), where gN = {n∈L∪M | ∃k∈N k � n}, and gn abbreviates g{n}.

==

m`

g`

g{`,m} g{`,m}

`m

gm

Fig. 1. Decreasingness

A family (→`)`∈L of rewrite relations is decreasing if ((→`)`∈L, (→`)`∈L) is.
A rewrite relation → is decreasing, if (→,→) is.



Example 2. A rewrite relation → on A as in Example 1 is decreasing: The fam-
ily (→a)a∈A, with →a defined as → with domain restricted to {a}, and with
the set of labels A ordered by →+, is decreasing by the assumption that → is
terminating. Clearly → =

⋃
a∈A→a, and as for any peak b←a a→a c, there is

a valley between b and c by local confluence and since for any object, i.e. label,
d in this valley it trivially holds a→+ d, we conclude to decreasingness of →.

Theorem 1 ([1]). A pair of rewrite relations commutes if it is decreasing. A
rewrite relation is confluent if it is decreasing.

Proof. We recapitulate the core of the proof in [1] for easy adaptation later on.
Instead of proving commutation one proves the stronger property:

(∗) Every peak b //σ ·IIτ c can be completed by a valley b IIτ ′ · //σ′ c, into
a so-called decreasing diagram, i.e. such that |στ ′| �mul |σ| ] |τ | �mul |τσ′|.

where |σ| is the lexicographic maximum measure of the string of labels σ, i.e. the
multiset inductively defined by: |ε| = ∅ and |`σ| = [`]] |σ|−g`, and �mul is the
(terminating) multiset extension of the (terminating) relation � on the labels.

For such a peak, completability into a decreasing diagram is proved by �mul -
induction on its measure |σ| ] |τ |. The proof being trivial in case either of the
reductions in the assumption is empty, the interesting cases are seen to be of
shape //σ · /` · Im · IIτ , for which one concludes by the following three steps
corresponding to the three components of Fig. 2:

τ ′′

& (Local)

σ′
τ ′

` m

σ τ

(Decrease) & IH

(Compose) &
(Decrease) & IH

Assumption

Fig. 2. Decreasing ⇒ Commutes

1. by the decreasingness assumption on (.,I) the local peak /` · Im can be
completed by a valley IIτ ′ · //σ′ yielding a decreasing diagram by (Local);



2. by the induction hypothesis, which applies by (Decrease) and (1), the peak
//σ′ ·IIτ can be completed by a valley IIτ ′′ ·//σ′′ into a decreasing diagram;

3. by the induction hypothesis, which applies by (Decrease) and (Compose) ap-
plied to (1),(2), the peak //σ ·IIτ ′ ·IIτ ′′ , can be completed into a decreasing
diagram, which by another application of (Compose) proves the result;

where the following facts haven been used for diagrams Di with i∈{1, 2}, where
a diagram Di consists of a peak //σi

·IIτi
completed by a valley IIτ ′

i
· //σ′

i
:

(Local) If D1 is a local diagram, i.e. if its peak is of shape /` · Im for some
labels `,m, then D1 is decreasing if and only if its valley is of shape IIg` ·
I=
m ·IIg{`,m} · //g{`,m} · /=

` · //gm [1, Proposition 2.3.16].
(Decrease) If D1 is a non-empty decreasing diagram, i.e. if its reduction IIτ1
is not empty, then filling the peak //σ1 · IIτ1 · IIτ2 with D1 decreases the
measure, i.e. |σ1| ] |τ1τ2| �mul |σ′1| ] |τ2| [1, Lemma 2.3.19].

(Compose) If diagrams D1,D2 are decreasing and can be composed, i.e. if
their respective reductions //σ′

1
and //σ2 coincide, then this composition,

consisting of the peak //σ1 ·IIτ1 ·IIτ2 completed by the valleyIIτ ′
1
·IIτ ′

2
·//σ′

2
,

is decreasing again [1, Lemma 2.3.17]. ut

Example 3. Theorem 1 applied to Example 2 yields a proof of Example 1.

Remark 1. Conversely, any countable confluent relation is decreasing [1, Corol-
lary 2.3.30]. It is an open problem whether countability can be dropped, and
also whether any pair of commuting relations, countable or not, is decreasing.

Theorem 1 provides a method to prove properties stronger than commutation.

Theorem 2. Let P be a property of diagrams which is closed under composition
(defined as in the proof of Theorem 1). If (.,I) is a decreasing pair of rewrite
relations such that every local peak can be completed into a decreasing diagram
having property P , then every peak can be so completed.

Proof. Require the diagram in (∗) in the proof of Theorem 1 to satisfy P . ut

Example 4. Consider the property P expressing that in a diagram D with peak
b � a � c and valley b � d � c, its ‘left-reduction’ a � b � d is not longer
than its ‘right-reduction’ a � b � d. As P is preserved under composition of
diagrams, it suffices under the assumptions of Newman’s Lemma to check that P
holds for all local diagrams. If it does, then all maximal reductions from a given
object end in the same normal form, reached in the same number of steps [7].

Example 5. The strict commutation property expressing that in a diagram with
peak b // a II c and valley b II d // c, if a II c is non-empty then so is b II d,
is easily seen to be preserved under composition. Hence, it suffices to verify that
local decreasing diagrams are strict.



3 Conversion

We generalise the decreasing diagrams technique as presented in the previous
section, by allowing local peaks to be completed by conversions instead of valleys.

Definition 3. A pair of rewrite relations (.,I) is decreasing with respect to
conversions, if . =

⋃
`∈L .`, I =

⋃
m∈M Im for a decreasing pair of families

((.`)`∈L, (.m)m∈M ) such that for all `∈L,m∈M , /` ·Im ⊆ /I∗g` ·I=
m · /I∗g{`,m} ·

/=
` · /I∗gm. A rewrite relation → is decreasing with respect to conversions, if

(→,→) is.

=

` m

g`

g{`,m}

gm
m `=

Fig. 3. Decreasingness with respect to conversions

Decreasingness is illustrated in Fig. 3, where, to avoid clutter, arrowheads in the
conversions have been elided. We will henceforth refer to decreasingness in the
sense of Definition 2 as decreasing with respect to valleys, abbreviated to ♦, and
we abbreviate decreasingness in the present sense of Definition 3 to 4.

Example 6. Let → be a terminating rewrite relation such that for every local
peak b ← a → c the objects b and c are convertible below a, i.e. b = a1 ↔
. . . ↔ an = c with a →+ ai for all 1 ≤ i ≤ n. From Example 2 we already
know that labelling steps by their source and ordering the labels by →+ yields
a decreasing labelling, and it is easy to see that the requirement that every local
peak b ← a → c be convertible below a, entails that the rewrite relation → is
decreasing with respect to conversions for this labelling.

Theorem 3. A pair of rewrite relations commutes if it is decreasing with respect
to conversions, and idem for confluence of a single rewrite relation.

Proof. We adapt the proof of Theorem 1, keeping the same invariant and in-
duction. Observe that the only difference arises in case the peak is of shape
b JJσ b′ J` · .m c′ ..τ c for some ` ∈ L,m ∈M . By the assumption that (.,I)
is decreasing with respect to conversions, the local peak b′ J` · .m c′ can be
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Fig. 4. Decreasing with respect to conversions ⇒ Commutes

transformed into b′ /I∗g` ·I=
m · /I∗g{`,m} · /

=
` · /I∗gm c′, see (1) in Fig. 4. We

show decreasingness with respect to valleys, by transforming the conversion into
a valley of shape b′ IIg` ·I=

m ·IIg{`,m} · //g{`,m} · /=
` · //gm c′, and conclude.

First observe that if the peak of a decreasing diagram consists only of labels in
gM then so does its valley. Thus by repeatedly applying the induction hypoth-
esis, the peaks in the conversions /I∗g`,/I

∗
gm can be transformed into valleys

smaller than `,m, yielding b′ IIg` · //g` ·I=
m · /I∗g{`,m} · /

=
` ·IIgm · //gm c′,

see (2) in Fig. 4. Applying the induction hypothesis to the peaks //g` · I=
m

and /=
` · IIgm gives by analogous reasoning, valleys of shapes IIg` · I=

m ·
IIg{`,m} · //g{`,m} and IIg{`,m} · //g{`,m} · ·/=

` · //gm, see (3) in Fig. 4, giving
b′ IIg` ·I=

m · /I∗g{`,m} · /
=
` · //gm c′. Finally, repeatedly applying the induction

hypothesis to the peaks in the conversion /I∗g{`,m} transforms it into a valley
IIg{`,m} d //g{`,m}, see (4) in Fig. 4, resulting in a decreasing diagram with
respect to valleys. ut

Example 7. Theorem 3 applied to Example 6 yields Winkler & Buchberger’s
result [3, Lemma 3.1] stating that any terminating rewrite relation such that the
targets of any local peak are convertible below its source, is confluent.

Remark 2. It would be interesting to see whether the proofs of confluence by
decreasing diagrams as presented in [8,9] can be adapted in a similar way.

Observe that from the proof of Theorem 3 it follows that, for any given labelling,
decreasingness with respect to valleys is equivalent to decreasingness with respect
to conversions, Although equivalent, the latter is in principle easier to check: one
‘just’ has to find an appropriate conversion instead of an appropriate valley for
each local peak←` ·→m. Of course, the ‘search space’ for conversions is in general
much larger than for valleys. To keep searching feasible nonetheless, observe first
that one only needs to search (forward or backward) rewrite steps having labels



smaller than or equal to ` or m, and second that one may opt to linearly bound
the amount of time spent on searching decreasing conversions by that spent on
valleys, where the latter restriction is complete by the observation above. That
searching for conversions instead of valleys can be advantageous is witnessed by
the following example, where searching conversions for all local peaks takes time
linear in n whereas searching for valleys takes quadratic time.

Example 8. Consider for every natural number n, the confluent rewrite relation
given by bi ← ai → ci, bi → bi+1, and ci → ci+1, for 1 ≤ i ≤ n, with bn+1 = cn+1.
Completing a local peak bi ← ai → ci by a valley takes time n − i, whereas
completing it by a conversion takes constant time, say 4. This proves our claim
since

∑n
i=1 n− i is quadratic in n and

∑n
i=1 4 is linear.

Remark 3. In his dissertation Geser argues [10, p. 38] that checking for valleys is
less complex than checking for conversions. The above shows on the contrary that
both can be combined fruitfully without changing the worst case O-behaviour.
Whether such combinations are useful, i.e. less complex on average, in practice
or in theory, for all or some labellings, remains to be investigated.

Like Theorem 1, also Theorem 3 provides a method to prove properties stronger
than commutation. However, compared to Theorem 2, the property now has to
apply to all conversion diagrams, i.e. diagrams consisting of a peak completed
by a conversion instead of a valley, and be closed not only under composition,
but also under filling a peak of the conversion by another conversion diagram.

Theorem 4. Let P be a property of conversion diagrams which is closed. If
(.,I) is a decreasing pair of rewrite relations such that every local peak can be
completed into a decreasing diagram with respect to conversions, having property
P , then every peak can be completed into a decreasing diagram with respect to
valleys, having property P .

Proof. Load the induction hypothesis in the proof of Theorem 3 with P . ut

We generalise Examples 4 and 5 to conversion diagrams.

Example 9. Consider the property P expressing that the distance d(D) of the
diagram D with peak b � a � c and conversion b ↔∗ c, is not positive, where
d(D) is the integer defined as the number of forward steps (→) minus the number
of backward steps (←) on the cycle a � b ↔∗ c � a. The property P is
closed, since the distance of a conversion diagram obtained by ‘glueing’ two such
diagrams together is the sum of their distances (note that shared steps contribute
oppositely). Hence under the assumptions of Winkler & Buchberger’s Lemma it
suffices to verify that P holds for local conversion diagrams. If it does, then all
maximal reductions from a given object end in the same normal form, reached
in the same number of steps, generalizing Example 4.

Example 10. Strictness as in Example 5 can easily be extended to a closed prop-
erty of conversion diagrams, by requiring in a diagram with peak b // a II c and
conversion b /I∗ c, if a II c is non-empty then b /I∗ c contains some I-step.
Again, it suffices to verify that local decreasing conversion diagrams are strict.



4 Application

We apply the results of the previous section, providing heuristics for finding
decreasing labellings along the way. First, we present the ‘self-labelling’ heuristic
and show that it can be used to deal with several known commutation and
confluence results for abstract rewrite relations. More generally, we cover and
systematise all such results in [6, Chapter 1] and [11]. Finally, we present the
‘rule-labelling’ and ‘self-duplication’ heuristics and show they can be used to
deal with commutation and confluence problems in term rewriting.

4.1 Abstract rewriting

The labelling employed in case of Newman’s Lemma and Winkler & Buchberger’s
Lemma (Examples 2 and 6) may seem like sorcery, but is in fact an instance of
a general idea: self-labelling. Let us try to explain this by showing what fails
if one would try to devise a decreasing labelling in case of Kleene’s standard
counterexample to the implication ‘local-confluence ⇒ confluence’.

Fig. 5. Failure of local confuence (commutation) ⇒ confluence (commutation)

Example 11. Consider the rewrite relation → given by b ← a � a′ → c. Since
every local peak can be completed by means of a valley, e.g. b ← a → a′ can
be completed by means of b ← a ← a′, the rewrite relation is locally confluent.
However it is not confluent, as e.g. the peak b ← a → a′ → c cannot be com-
pleted. Fig. 5 (left) illustrates what goes wrong when trying a proof of confluence
for this peak by means of tiling: the tiling process never terminates so does not
lead to a completed confluence diagram. The (green) curved downward arrow,
intersecting steps all of shape a ↔ a′, shows how such an infinite regress must
transfer to an infinitely decreasing sequence of labels, preventing the construc-
tion of a decreasing labelling. Vice versa, in case of Newman’s Lemma such an
infinite decreasing sequence of labels cannot occur since it would, by concate-
nating the a ↔ a′-steps intersected by the arrow, immediately transfer into an
infinite →-reduction, contradicting the assumed termination of →.



Remark 4. In [12] it is noted that the commuting version of Kleene’s counterex-
ample, Fig. 5 (right), plays a similar obstructive rôle in process algebra in proving
similarity: Taking . as reduction, 0 / a /

I τ.a I 0 witnesses that despite I being
a weak simulation modulo transitivity, it is not contained in weak similarity.

The example suggests one may transfer termination of a (rewrite) relation on
the objects, to a decreasing labelling by means of the following heuristic:

(H1: Self-labelling) Given a terminating relation on the objects, try using steps
(or objects) themselves as labels, ordered by the transitive closure of the
relation, and label a step a→ b by itself (or its source a or target b).

One may think that this heuristic is so much geared towards Newman’s Lemma
that it doesn’t apply to any other interesting cases. But in fact it was inspired
by self-labelling as used in proving termination by means of monotone algebras,
and below we will see several other important instances of this heuristic.

We proceed by systematically treating all the abstract confluence and com-
mutation results by analysis of local peaks as found in [6, Chapter 1] and [11]
and some more. On the one hand, the systematisation is based on relating re-
sults based on decreasing valleys and conversions (the rows in Fig. 6) for a given
labelling. On the other hand, it is based on the different trace patterns which
arise when labelling the diagrams (the columns in Fig. 6). On the gripping hand,
we relate commutation to confluence results (the tables below).

Unqualified references in tables are to [6, Chapter 1].

4(v)

♦(i) ♦(ii) ♦(iii)

4(i) 4(ii) 4(iii) 4(iv)

♦(iv) ♦(v)

Fig. 6. Valleys (top) vs. conversions (bottom) for various trace patterns

Trace patterns [8,9,6] as displayed in Fig. 6 are the patterns obtained by
tracing each label in the conclusion of a decreasing (valley or conversion) dia-
gram back to a label in its hypothesis (the peak), which is either the same (the



thick arrows in the figure) or greater (the thin lines) in concordance with the
requirements imposed by decreasingness. E.g. Fig. 6 4(i) displays the general
trace pattern for decreasing conversions of Theorem 3, and the patterns to its
right are special cases of interest to us.

Example 12. Consider the labelling src which labels each step a → b by its
source as a →a b. Then, if → is terminating, we may order the labels via the
transitive closure →+, giving rise to a decreasing labelling. The trace pattern
corresponding to the commutation version of Newman’s Lemma (Example 2) is
Fig. 6 ♦(ii), and the one corresponding to the commutation version of Winkler
& Buchberger’s Lemma (Examples 6) is Fig. 6 4(ii). This, together with cor-
responding references to [6], is summarised in Table 1. Note that →+ could be

src confluence commutation

♦ (Theorem 1.2.1) Newman (Exercise 1.3.2) folklore

4 (Exercise 1.3.12) Winkler & Buchberger new?

Table 1. Source self-labelling with termination of →

replaced by any transitive and terminating relation � such that → ⊆ �, as in
the usual presentation of Winkler & Buchberger’s result.

Example 13. Any family can be made decreasing simply by equipping it with
the empty order. However, a local peak /` ·Im can then only be turned into a
decreasing diagrams by means of I=

m · /=
` , so decreasing valleys (Fig. 6 ♦(iii))

and conversions (Fig. 6 4(iii)) coincide, yielding Table 2. For a singleton set of
labels the result (subcommutativity implies confluence) goes back to [4].

∅ confluence commutation

♦ = 4 (Theorem 1.2.2(iii)) Hindley & Rosen folklore

Table 2. The empty order ∅

Based on the previous two examples one could be led to believe the decreasing
diagrams technique is just the ‘sum of Newman’s Lemma and the Lemma of
Hindley–Rosen’. The following examples show it is much more powerful than a
simple ‘sum’; it is also our second instance of the self-labelling heuristic.

Example 14. Consider the labelling tgt which labels each step a→ b by its tar-
get as a →b b. If the relation I relative to /, defined by I// = // · I · //, is
terminating, then ordering the labels via the transitive closure (I//)+ gives a
decreasing labelling. If we also require that only smaller labels be used, then to



have decreasing valleys coincides with strict commutation (see Example 5), to
have decreasing conversions with quasi-commutation, i.e. / · I ⊆ I · /I∗, and
trace patterns are as in Fig. 6(iv), since labelling b / a I c yields b /b a Ic c.
Since b I// c, if c is greater than some label, b is so as well. Although the re-

tgt commutation

♦ (Exercise 1.3.15) Geser

4 [10, Sect. 3.3] Geser

Table 3. Target self-labelling with termination of I//

quirement that labels be smaller allows to reduce ([6, Exercise 1.3.19] Bachmair
& Dershowitz) termination of I// to that of I as in the usual presentation of
these results, cf. Table 3, it is not a necessary requirement. To wit, b / a I c . b
is decreasing although c .b b is equal to not smaller than a .b b, with trace
pattern as in Fig. 6 ♦(v). For confluence this result is not interesting as →/←
is never terminating, for non-empty →.

Example 15. Extending Example 13, a pair (.,I) can be made decreasing by
letting . be stronger than I, i.e. by ordering . above I. A local peak / ·I can
be completed into a decreasing valley or conversion (only) by means of II · /=,
its trace pattern being a special case of Fig. 6 ♦(v). Interestingly, of the ensuing

. � I confluence commutation

♦ = 4 (Exercise 1.3.11) Huet (Exercise 1.3.6) Hindley

Table 4. The stronger-than order . � I

results in Table 4, Huet’s result that strong confluence, i.e. ← · → ⊆ � · ←=,
implies confluence, is more recent than Hindley’s that strong commutation, i.e.
/ · I ⊆ II · /=, implies commutation, despite being an instance. In fact, also
Staples’ later result [6, Exercise 1.3.7] that // ·I ⊆ II · // implies commutation
is seen to be an instance of Hindley’s result, noting that ..∗ = ..= = ...

Whereas stronger-than as in the previous example orders one family above an-
other, requests as in the next example orders within families.

Example 16. If both .,I are {1, 2}-labelled families and all diagrams are decreas-
ing with respect to 1 � 2, then 1 requests 2. The reason for this terminology
becomes clear when considering the most general shapes concrete decreasing di-
agrams, say for decreasing valleys, may have: /1 ·I1 ⊆ II2 ·I=

1 ·II2 ·//2 ·/=
1 ·//2

with trace pattern ♦(i), or /1 · I2 ⊆ II2 · //2 · /=
1 or its symmetric version

/2 ·I1 ⊆ I=
1 ·II2 · //2 both with trace pattern ♦(v), or /2 ·I2 ⊆ I2 · /2 with



trace pattern ♦(iii); for commutation a 1-step may request 2-steps to find the
common reduct, but not the other way around. This generalises the classical
notion of request as employed in the results of Table 5, strengthening these.

1 � 2 confluence commutation

♦ (Exercise 1.3.8) Rosen & Staples new?

4 (Exercise 1.3.10) van Oostrom new?

Table 5. Requests for ordering 1 � 2 within a family {1, 2}

A third instance of the self-labelling heuristic is obtained by noting that in the
commuting version of Example 12, it is in fact not necessary to have termination
of . ∪ I, but termination of .+ · I+ suffices; translated to Fig. 5 (right) this
reads: It suffices that there’s no infinite zigzag, alternating . and I reductions.

Example 17. If (.,I) commutes locally and .+ ·I+ is terminating, then (.,I)
commutes [12, Corollary 4.6]. To see this, consider the stp-labelling which labels
a step of either type, say, a . b, by itself as a .a.b b, which is ordered above a
step of the other type c IcId d if b� c. Note that the stp-labelling is decreasing
since an infinite decreasing sequence of labels would entail an infinitely zigzagging
reduction, contradicting termination of .+ ·I+. As a local peak b /a.b a IaIc c
can by assumption be completed by a commuting valley the steps of which are
either reachable by a zig from b or a zag from c, we conclude.

Variations on this example like e.g. [12, Lemma 4.5] are easily accomodated by
our techniques as well, and even in a modular way by choosing an appropriate
property to load the induction in Theorem 2.

The above examples cover the results in [6, Chapter 1], which in turn subsume
those in [11], except for [11, Exercise 2.0.8(11)] which we deal with now.

Example 18. Let→ = .∪I and consider the labelling pred which may label any
step a→ b as a→c,i b, where c is any predecessor of a, i.e. c� a, and i is set to
1 for a backward step and to 2 for a forward step. If ./I is terminating, then
the lexicographic product of (./I)+ and 1 � 2 gives a decreasing labelling. We
verify by case analysis that then the combination of . being locally confluent
and I being non-splitting, i.e. ← ·I ⊆� · ←=, results in decreasing diagrams:

for a peak /a,1 · .b,2, local confluence of . yields a valley .. · // the steps of
which can be labelled simply by their sources to result in a decreasing diagram;

for a peak /a,1 · Ib,2, non-splittingness of I yields a valley � · ←=, which
after labelling the steps in � by their source and the ←-step as ←a,1, results in
a decreasing diagram;

a peak Ja,1 · .b,2 is dealt with symmetric to the previous case;
for a peak Ja,1 · Ib,2 non-splittingness of I yields a valley � · ←=, which

after labelling as in the second item except for labelling the steps of � up to
and including the first .-step (if any) as →a,2, results in a decreasing diagram.



Although a bit more involved this labelling and case analysis directly cover
the Full Localisation Lemma, the most complex (p.71–73) confluence result
in [10], stating → = . ∪ I is confluent, if ./I is terminating and → is lo-
cally confluent, with the condition that in case a local peak b← a I c needs to
be completed by a valley of shape b� d←+ a′ J c then a (./I)+ a′.

Remark 5. The final two examples both are covered by the original decreasing
diagrams technique. It would be interesting to consider their conversion versions.

4.2 Term rewriting

We show the usefulness of the rule-labelling heuristic in first- or higher-order
term rewriting systems.

(H2: Rule-labelling) Try labelling steps by the rule applied.

Example 19. Consider the TRS with rules [13, Example 2]: (1) nats→0:inc(nats),
(2) inc(x : y)→ s(x) : inc(y), (3) hd(x : y)→ x, (4) tl(x : y)→ y, (5) inc(tl(nats))→
tl(inc(nats)). The rule-labelling heuristic which labels every step by the rule
applied, yields, by left- and right-linearity of the rules, that ←i ·→j ⊆ →=

j ·←=
i

for all i, j∈{1, . . . , 5} and non-overlapping steps. The only critical pair arises from
the local peak tl(inc(nats))←5 inc(tl(nats))→1 inc(tl(0 : inc(nats))) which can be
completed by tl(inc(nats))→1 tl(inc(0 : inc(nats)))→2 tl(s(0) : inc(inc(nats)))→4

inc(inc(nats))←4 inc(tl(0 : inc(nats))). As the latter diagram can be easily made
decreasing, e.g. by ordering 5 � 1, 2, 4, we conclude confluence.

More generally, for any finite left- and right-linear term rewriting system, it is
decidable whether the rule-labelling entails decreasingness, simply by trying all
possible orderings of the rules,1 refuting the claim of [13, Footnote 1] that this
requires ‘careful and smart design choices’. Of course, this does not allow to deal
with non-right-linear rules:

Example 20. Consider the TRS with rules [13, Example 1]: (1) g(a)→ f(g(a)),
(2) g(b)→ c, (3) a→ b, (4) f(x)→ h(x, x), (5) h(x, y)→ c. Since the TRS is
not right-linear, the above observation does not apply. In particular, the rule-
labelling cannot work as rule 4 can self-duplicate, consider e.g. the term f(f(c))!
Still, it is easy to find a decreasing labelling noting the duplicated variable has on
the right-hand side less f -symbols above it than on its left-hand side: labelling
steps by first the number of f -symbols above it and then the rule, and ordering
these lexicographically by first > and then � given by 3 � 2, 4, 5 does the job.

The trick in the example fails if variables occur ‘deeper’ in the right-hand side
than in the left-hand side of a rule. Even in such cases the heuristic might be
applicable, by solving the problem of self-duplication by brute force:

1 This is analogous to the way one may proceed when checking whether a TRS is
terminating via recursive path orders



(H3: Self-duplication) First try to separate out self-duplicating rules, and then
switch for these to ‘multi’ steps in which an arbitrary number of redexes for
that rule may be contracted.

This technique may be applied to prove confluence of orthogonal term rewriting
systems, but also of some term rewriting systems with critical pairs, as is nicely
illustrated in the following example.

Extending Bloo and Rose’s λx-calculus with explicit substitutions, with a
rule encoding the substitution lemma of the λ-calculus, yields the λxc-calculus.
Theorem 5. The following CRS [6, Chapter 11]) for λxc-calculus is confluent.

(λy.X(y))Y → X(y)[y:=Y ]
X[y:=Y ]→ X

y[y:=Y ]→ Y

(X1(y)X2(y))[y:=Y ]→ (X1(y)[y:=Y ])(X2(y)[y:=Y ])
(λx.X(y))[y:=Y ]→ λx.X(y)[y:=Y ]

X(y, z)[y:=Y (z)][z:=Z]→ X(y, z)[z:=Z][y:=Y (z)[z:=Z]]

Proof. It will turn out handy to split the set of rules as follows. The first rule is
the Beta-rule, the next four are the x-rules, and the final rule is the c-rule.

Let ◦→Beta denote the contraction of any number of Beta-redexes, let →x

denote contracting an arbitrary (possibly garbage collecting) x-redex, and let
◦→c denote a c-reduction which is a prefix of contracting all c-redexes in the
term (see [14]). To show confluence of λxc, it then suffices to prove confluence of
these relations, since →λxc ⊆ ◦→Beta ∪→x ∪ ◦→c ⊆�λxc. In the rest of the proof,
the three types of rules are referred to simply as Beta, x, and c. It suffices to
show that they are decreasing with respect to the order � given by Beta � c � x,
using the src-labelling with respect to (terminating) x-reduction to order x-steps
among each other. Distinguish cases on the types of the rules in a local peak.
– If both are Beta, then the result follows from Beta being linear orthogonal,

in the sense that a common reduct is found in either zero or one Beta-steps
on both sides.

– If s←x t ◦→Beta r, then s→x · ◦→Beta q and r ◦→c q in case the x-step overlaps
one of the Beta-redexes, and s ◦→Beta q �x r otherwise.

– Beta is orthogonal to c, and they commute in a single step on either side.
– If both are x, a common reduct is found in at most two further x-steps having

smaller sources.
– If s ←x t ◦→c r, then s �x · ◦→c q �x r in case the x-step overlaps one of

the c-redexes (needing a number of garbage collection steps). Otherwise the
steps simply commute (c may duplicate x, but not vice versa).

– If both rules are c, a common reduct is found in at most one further c-step,
which holds since the c-rule is an instance of self-distributivity [14]. ut

Note that a common reduct is found in an amount of work which is linear in
the diverging steps, measuring each step by the number of steps performed by
it. This is not that good, but still better than always reducing to x-normal form
as is done in proofs relying on the so-called interpretation method.



5 Conclusion

We have improved upon our earlier decreasing diagrams technique. It was shown
that in many cases it is not difficult to find a labelling showing decreasingness.
The heuristics presented could be a stepping stone for constructing an automatic
confluence prover.

We conclude by noting that the generalization does straightforwardly extend
to Ohlebusch’s confluence by decreasing diagrams modulo an equivalence relation
results [5, Chapter 2].
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