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Abstract

We introduce the decreasing proof order. It orders a conversion above another
conversion if the latter is obtained by filling any peak in the former by a de-
creasing diagram. The result is developed in the setting of involutive monoids.
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1. Introduction

Consider the problem of deciding whether two objects are equivalent with
respect to the equivalence relation generated by some rewrite relation. From
that perspective, a conversion between two objects in the rewrite relation is a
proof that the objects are equivalent. Confluence of the rewrite relation is a
desirable property as then such proofs may be assumed to be rewrite proofs,
which are conversions having the shape of a valley: a number of forward rewrite
steps followed by a number of backward rewrite steps.

Referring the reader to [3, 11] for the study of properties of rewrite relations
in general and confluence in particular, we focus in this short paper on con-
tributing to the proof theory of confluence. In particular, we present a novel
proof order [4], i.e. a well-founded order on conversions. We dub it the decreas-
ing proof order as it is compatible with the decreasing diagrams technique of
proving confluence [10] in the sense that filling a peak in a conversion by a de-
creasing diagram yields a conversion that is smaller with respect to this proof
order.

We develop our results in the setting of involutive monoids, see e.g. [6],
observing that conversions can not only be composed to yield monoidal struc-
ture, but that they can also be mirrored to yield involutive structure. Involutive
monoids thus being natural for interpreting conversions, but largely absent from
the rewriting literature, we devote in Section 2 considerable attention to develop-
ing such interpretations. In particular, we give an interpretation of conversions
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into what we call French terms, a set of terms over the free involutive monoid
that itself has a (free) involutive monoidal structure.

The decreasing proof order on conversions is defined in Section 3, via the
interpretation of conversions into French terms and a certain lexicographic path
order [3, 11, 8] on the latter. We show that the decreasing proof order is com-
patible with the decreasing diagrams technique in the sense mentioned above.

The decreasing proof order has the following features distinguishing it from
the first, and thusfar only other, published proof order compatible with the
decreasing diagrams technique, as developed by Jouannaud in [7]:

- The interpretation gives insight. It shows a decreasing diagram to be
a ‘lexicographic combination’ of ‘square’ diagrams as in the Lemma of
Hindley–Rosen and ‘splitting’ diagrams as in Newman’s Lemma;

- Interpretations are small. The interpretation of a conversion (French term)
is linear in the size of the conversion;

- The proof order is flexible. Well/better-behaved interesting subrelations,
e.g. monotonic proof orders, can be easily ‘carved out’ from it;

- The set-up is flexible. Rewriting–modulo conversions are naturally repre-
sented by elements of a non-free involutive monoid, and, more generally,
interpretations into other involutive monoids are easily accommodated.

We will illustrate each of these points in the rest of the paper, except for the
last. We decided to concentrate here on establishing the basic set-up, and to
present variations on it such as rewriting modulo, later and elsewhere.

We assume knowledge of rewriting [3, 11], in particular of the confluence by
decreasing diagrams technique [10, 11] and of lexicographic path orders [3, 11, 8].

Throughout we illustrate our notions and constructions by means of the
following running example.
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Figure 1: Decomposing a rewrite relation (left) into a family of such (right)

Example 1. The rewrite relation → on objects {a, . . . , j} as presented on the
left in Figure 1 is the union of the family of rewrite relations (→i)i∈L on its

2



right, indexed by labels L = {`,m,κ} and having individual rewrite relations:

→κ = {(b, c), (j, i)}
→` = {(d, c), (f, a), (f, h), (g, e), (h, a), (e, j)}
→m = {(b, a), (d, e), (c, f), (c, g), (g, i), (a, i), (h, i)}

We will show how each of the transformation steps, indicated by the numbers,
leading from the initial conversion a ←m b →κ c ←` d →m e to the final valley
a→m i←κ j ←` e entails a decrease in the proof order.

2. Interpreting conversions in involutive monoids

We present an interpretation of the conversions of a given family of rewrite
relations index by a set of labels into, what we call, French terms. Both the
interpretation as well as, in the next section, the proof order on French terms are
naturally expressed by means of homomorphisms on the free involutive monoid
over the set of labels. Therefore, we first recapitulate and illustrate involutive
monoids, see e.g. [6].

Definition 2. A monoid is a (carrier) set endowed with an associative binary
operation (⋅) and an identity element (e). An involutive monoid is a monoid
endowed with an involutive anti-automorphism (−1), see Table 1.

(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c) (associative)

a ⋅ e = a (right identity)

e ⋅ a = a (left identity)

(a−1)−1 = a (involutive)

(a ⋅ b)−1 = b−1 ⋅ a−1 (anti-automorphic)

Table 1: Involutive monoid laws

Note e−1 = e derives from e−1 = e ⋅e−1 = (e−1)−1 ⋅e−1 = (e ⋅ e−1)−1 = (e−1)−1 = e.
We first illustrate involutive monoids by means of examples from algebra.

Example 3. (i) The trivial involutive monoid comprises a singleton set en-
dowed with the binary, nullary, and unary constant maps;

(ii) The integers with addition, zero, and unary minus (Z,+,0,−) constitute
an involutive monoid as do the positive rationals with multiplication, one,
and inverse (Q+, ⋅,1, −1). Groups constitute involutive monoids;

(iii) The monoid of natural numbers with addition and zero (N,+,0) constitute
an involutive monoid when endowed with the identity map, as do the
multisets over L with multiset sum and the empty multiset ([L],⊎, []).
Commutative monoids gives rise to involutive monoids in this way;
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(iv) Strings over an alphabet L of labels or letters `, endowed with juxtaposi-
tion, the empty string ε, and reversal constitute an involutive monoid.

After these general examples, we turn to involutive monoids on which both
our interpretation of conversions and our proof order will be based.

Example 4. (i) For a given alphabet L, let a French letter be an accented

(grave `̀ or acute ´̀) letter.1 We will use the circumflex as in ˆ̀ to denote
a French letter having ` as label and carrying either a grave or acute
accent. The set L̂ of French strings over L, i.e. strings of French letters,
endowed with juxtaposition, the empty string, and mirroring −1 given
by `̀−1 = ´̀ and ´̀−1 = `̀, constitute an involutive monoid.2 For instance,
mirroring the French string ḿκ̀´̀m̀ over the alphabet of Example 1 yields
ḿ `̀́κm̀. In case the alphabet is a singleton set, the French letters over
the alphabet are identified with the accents, denoted by Ó,Ò. French
strings (of accents) can be given a geometric interpretation as diagrams,
as illustrated in Figure 2 left (middle).

(ii) Natural number pairs with pointwise addition, the pair (0,0), and swap-
ping constitute an involutive monoid. In fact, any monoid (A, ⋅, e) gives
rise to an involutive monoid on A×A by endowing it with pointwise com-
position, the pair (e, e), and swapping;

(iii) Natural number triples endowed with ⋅ defined by

(n1,m1, k1) ⋅ (n2,m2, k2) = (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2)

zero (0,0,0), and (n,m,k)−1 = (k,m,n), constitute an involutive monoid.
For instance, associativity is established by computing

((n1,m1, k1) ⋅ (n2,m2, k2)) ⋅ (n3,m3, k3)
= (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2) ⋅ (n3,m3, k3)
= (n1 + n2 + n3,m1 + k1 ⋅ n2 +m2 + (k1 + k2) ⋅ n3 +m3, k1 + k2 + k3)
= (n1 + n2 + n3,m1 + k1 ⋅ (n2 + n3) +m2 + k2 ⋅ n3 +m3, k1 + k2 + k3)
= (n1,m1, k1) ⋅ (n2 + n3,m2 + k2 ⋅ n3 +m3, k2 + k3)
= (n1,m1, k1) ⋅ ((n2,m2, k2) ⋅ (n3,m3, k3))

1 Meta-footnote: Our naming is tentative. We are open to any suggestion that clearly
distinguishes what we call French letters/strings/terms from ordinary ones. We do however
insist on using accents because of their intuitive relationship to the geometric representation of
conversions as standard in rewriting since the 1930s (Church–Rosser,Newman), see Figure 2.

2 As a historical aside note that boustrophedon texts as found in ancient manuscripts
can be linearly represented as French strings by interpreting the accents as instructions for
writing letters either forward or backward . The representation is natural in the same way
strings represent ordinary text naturally; composition of (boustrophedon) texts is represented
by composition of (French) strings, so length, prefixes, and suffixes are all preserved. The
obvious map from boustrophedon texts to ordinary texts is also natural in the technical sense
of being a homomorphism of involutive monoids, cf. Example 8(ii).
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In fact, we will only employ triples such that the middle component does
not exceed the product of the other components. Such triples can be given
a geometric interpretation as diagrams, as illustrated in Figure 2 right.

Conversions can be interpreted naturally into the French strings.

Definition 5. The interpretation of a conversion for an L-indexed family of
rewrite relations, is the the French string over L that is the stepwise juxtaposi-
tion of the labels in the conversion, where a label carries a grave (acute) accent
in case the corresponding step in the conversion is a forward (backward) step.

Example 6. The successive conversions of Example 1 are interpreted as the
successive French strings in the following transformation, where we have under-
lined in each step the substring being replaced:

ḿκ̀´̀m̀ =≻¬
´̀ḿ´̀m̀ =≻­

´̀ḿm̀`̀=≻®
´̀̀̀ m̀ḿ`̀=≻¯

´̀m̀ḿ`̀=≻°
´̀m̀κ́´̀=≻± m̀κ́´̀

The proof order we define in the next section will be based on an isomorphism
between the French strings and a certain class of terms, that we therefore call
French terms, based on a well-founded order, i.e. a transitive and terminating
relation, ≻ on the set L of labels. As usual, an isomorphism is a homomorphism
having an inverse, with a homomorphism being a structure preserving map.

Definition 7. A homomorphism from the involutive monoid (A, ⋅, e,−1) to the
involutive monoid (B, ⋅′, e′,−1′) is a map h from A to B such that for all a, b, c

in A, h(a ⋅ b) = h(a) ⋅′ h(b), h(e) = e′, and h(a−1) = h(a)−1
′

. The homomorphism
is an isomorphism if there exists a homomorphism that is inverse to it.

The identity is a homomorphism and homomorphisms are closed under com-
position. Before presenting the isomorphism mentioned, we give some examples
of homomorphisms linking up the various involutive monoids presented above.
These homomorphisms will be auxiliary to the construction of both our isomor-
phism and, in the next section, the decreasing proof order.

Example 8. (i) Mapping a French string over L to the natural number pair
of grave, acute accents in it, is a homomorphism. In turn, mapping a
natural number pair to its sum is also a homomorphism. Their composition
maps a French string to its length, e.g. ´̀̀̀ m̀ḿ`̀↦ (3,2) ↦ 5.

(ii) Mapping a French string over L to an ordinary string over L by forgetting
accents, is a homomorphism. In turn, mapping a string over L to the
multiset of letters in it is also a homomorphism. Their composition maps
a French string to its multiset, e.g. ´̀̀̀ m̀ḿ`̀↦ ``mm`↦ [`, `, `,m,m].

(iii) Mapping a French string over L to the French string of its accents by
forgetting the letters is a homomorphism. In turn, mapping the accent
Ó to the triple (1,0,0) induces a (unique) homomorphism from French
strings over accents to triples. Their composition maps a French string to
its area, e.g. ´̀̀̀ m̀ḿ`̀↦ÒÓÓÒÓ↦ (3,4,2), see Figure 2.
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Figure 2: Mapping French strings via strings of accents into triples

The involutive monoid on French strings L̂ is of special interest in that it is
free: any map from L into the carrier of some involutive monoid, extends, via
the map `↦ `̀, uniquely to an involutive monoid homomorphism on L̂.

Proposition 9 ([6, Proposition 2]). The involutive monoid on French strings
L̂ is the free involutive monoid over L.

Proof. For a ‘rewriting’ proof of this fact, consider the result of completing the
term rewrite system obtained by orienting the identities of Table 1 from left to
right into term rewrite rules, with the last rule being adjoined by completion:

c(c(x, y), z) → c(x, c(y, z))
c(x, e) → x

c(e, x) → x

i(i(x)) → x

i(c(x, y)) → c(i(y), i(x))
i(e) → e

This term rewriting system is confluent and terminating, as tools nowadays can
show automatically, and has as closed normal forms the set N given by:

N ∶∶= e ∣ ` ∣ i(`) ∣ c(`,N) ∣ c(i(`),N)

Therefore, endowing N with operations c, e, and i, in each case followed by
taking normal forms, constitutes a free involutive monoid. This monoid is easily
seen to be isomorphic to the one on French strings via the bijection between N
and L̂ induced by `↦ `̀.

We conclude this section by introducing French terms, an involutive monoid
on terms isomorphic to French strings, on which our proof order introduced in
the next section will be based. The intuition for this term representation is that
the proof order should compare conversions first with respect to their maximal
labels (the head of the term; with respect to both their multiset and area), and
recursively (the direct subterms) with respect to the the remaining labels next.
To single out the maximal labels

we assume ≻ is a well-founded partial order on L.
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Definition 10. The French term signature over L is denoted by L♯
≻

and com-
prises the French strings over L having ≻-incomparable letters, assigning arity
zero to ε and to other strings their length plus one. A French term over L is a
term over L♯

≻
such that each function symbol s occurring in it is related to its

ancestor function symbol, say r, by the Hoare order for ≻, i.e. for each French
letter ˆ̀ in s, there exists a French letter m̂ in r such that m ≻ `.

The height of French terms is bounded by the longest path in ≻. If ≻ is the
empty relation then the signature comprises all French strings and terms are
flat. If on the other hand ≻ is total then the signature comprises strings over a
single label and the height of a term is the number of distinct labels in it.

Example 11. Well-foundedly ordering the set L of labels of Example 1 as
m ≻ `, κ, some examples of French terms over L are

ḿm̀(ε, κ̀´̀(ε, ε, ε), ε)

m̀ḿ( ´̀̀̀ (ε, ε, ε), ε, `̀(ε, ε))

m̀(ε, κ́´̀(ε, ε, ε))

Lemma 12. The inorder-traversal map ♭ flattening French terms over L into
French strings over L is a bijection.

Proof. Let the stratification map from French strings over L to French terms
over L be inductively be defined by:3

ε♯ = ε
(s0 ˆ̀

1 . . . ˆ̀
nsn)♯ = ˆ̀

1 . . . ˆ̀
n(s♯0, . . . , s♯n)

with n > 0 and the ˆ̀
i all occurrences of ≻-maximal French letters in the string.

We claim that flattening ♭ and stratification ♯ are each other’s inverse.
That ♭○♯ is the identity is shown by induction on the length of French strings.
That ♯ ○ ♭ is the identity is shown by induction on French terms, using that

all function symbols in the direct subterms of a French term are related in the
Hoare order to the head symbol of the term.

Flattening and stratification are easily computed and are linear in the size.

Example 13. Stratifying the French strings ḿκ̀´̀m̀, ´̀̀̀ m̀ḿ`̀, and m̀κ́´̀ with
respect to ≻ as given in Example 11 yields the French terms given there.

Corollary 14. The French terms over L give the free involutive monoid over
L, when endowed with the operations on French strings, via the flattening and
stratification maps, e.g. t ⋅ u = (t♭u♭)♯,

3 The idea of the stratification map ♯ is a special case of that of the maxsplit method/func-
tion found in programming languages such as Java/Python.
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By the corollary we might as well think of the interpretation of conversions
(Definition 5) as yielding French terms instead of French strings.

Example 15. The three French terms in Example 11 are the respective inter-
pretations of the first, fourth, and last conversion in Example 1 (see Figure 1).

3. A proof order for decreasing diagrams

We introduce the decreasing proof order on conversions based on comparing
their interpretation as French terms (see Corollary 14 and the text below it)
with respect to some lexicographic path order. This is in concordance with the
intuition provided above: in the lexicographic path order the head symbols of
terms are compared first, which corresponds to comparing the ≻-maximal labels
of the corresponding conversions first, as desired.

After that we will justify naming it the decreasing proof order by showing
that it is compatible with the decreasing diagrams technique, in the sense that
filling a local peak in a conversion by a decreasing diagram yields a conversion
that is smaller with respect to the proof order.

Definition 16. Let » be relation on the French term signature L♯
≻

defined by
interpreting each function symbol, i.e. French string, in L♯

≻
as the pair consisting

of its multiset and the middle component of the area (see Example 8), relating
these by the lexicographic product of the multiset-extension ≻mul of ≻ and the
greater-than relation >.

The decreasing proof order on French terms is the iterative lexicographic
path order [8, Definition 2]4 induced by the relation », where argument places
are ordered lexicographically by choosing an arbitrary but fixed total order on
them compatible with the accents: if the i+1st label has a grave (acute) accent,
then the ith argument place comes before (after) the i + 1st .

The decreasing proof order »ilpo is extended to French strings via their strat-
ification and to conversions via their interpretation.

By [8, Theorem 1] »ilpo is a well-founded order, since » is terminating as the
lexicographic product of the terminating relations ≻mul and >. It is easy to see
that the head symbol of a French term is »-related to each symbol occurring
in its proper subterms, by comparing their respective multisets of labels. Note
that one way to order the argument places of a given function symbol totally is
to successively take the leftmost argument place as allowed by the accents.

Example 17. We have κ̀´̀ » `̀ since the multiset [`, κ] of the former is ≻mul -

related to the multiset [`] of the latter; we have ´̀̀̀ » `̀̀́ since although both
have the same multiset [`, `], the middle component of the area of the former
(1) is greater than that of the latter (0).

4We prefer this presentation of the lexicographic path order since it does not assume the
relation on the signature to be an order.
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There are two possible ways to order the argument places of the ternary
function symbol κ̀´̀ but the accents dictate that in either case argument place
1 should come after argument places 0 and 2; the leftmost way to order them
mentioned above would yield 0,2,1. Similarly, there are two possible ways to
order the argument places of ´̀̀̀ but now 1 should come before the others; the
leftmost way of ordering them yields 1,0,2.

The sequence of transformation steps of Example 6 yields a »ilpo-sequence:

ḿm̀(ε, κ̀´̀(ε, ε, ε), ε)
¾ilpo ¬ decrease of multiset at position 1

ḿm̀(´̀(ε, ε), ´̀(ε, ε), ε)
¾ilpo ­ decrease of multiset at position 1

ḿm̀(´̀(ε, ε), ε, `̀(ε, ε))
¾ilpo ® decrease of area at the root

m̀ḿ( ´̀̀̀ (ε, ε, ε), ε, `̀(ε, ε))
¾ilpo ¯ decrease of multiset at position 0

m̀ḿ(´̀(ε, ε), ε, `̀(ε, ε))
¾ilpo ° decrease of multiset at the root

m̀(´̀(ε, ε), κ́´̀(ε, ε, ε))
¾ilpo ± decrease of multiset at position 0

m̀(ε, κ́´̀(ε, ε, ε))

Note that in the »ilpo¬-step the subterm at position 0 increases, but this is not
harmful since it comes lexicographically after the subterm at position 1.

Remark 18. On [10, p. 315] we wrote:

. . . one could be led to believe the decreasing diagrams technique is
just the sum of Newmans Lemma and the Lemma of Hindley–Rosen.
The following examples show it is much more powerful . . .

The intuition for interpreting conversions as French terms and the function
symbols in L♯

≻
as pairs as in Definition 16, is that the decreasing diagrams

technique combines the essential ingredients of both lemmas, the multiset of
labels respectively the area, in a lexicographic and hierarchical way. To be a
bit more precies, the idea captured by taking the subsequence of a conversion
comprising its ≻-maximal (within the conversion) steps as head of the French
term, is that this subsequence of maximal step is the first approximation to
the conversion. Then filling in a locally decreasing diagrams in a conversion
for a peak of such ≻-maximal steps corresponds at first approximation to fill-
ing in square diagrams, i.e. at first approximation confluence is obtained by the
Lemma of Hindley–Rosen; the area decreases by filling in. The idea captured by
letting the remaining non-maximal steps in the conversion (recursively) deter-
mine the subterms of the French term of the conversion, is that these correspond
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to deeper levels of approximation to the conversion, and taking the path order
then captures that changes at the first approximation outweigh those at deeper
levels, i.e. at deeper levels of approximation confluence is obtained by Newman’s
Lemma; the paths through multisets decrease by filling in. Finally, taking the
lexicographic path order captures the interaction allowed between maximal and
non-maximal steps. Filling in a peak between such steps with a locally decreas-
ing diagram does not change the first approximation to the conversion, but it
does lead to a decrease at the deeper approximations; filling in decreases the
subterms with which the maximal step still has to interact, lexicographically, as
determined by its accent.

Lemma 19. for all labels `,m in L and all French strings s,r over L:

- sˆ̀r »ilpo s{`≻}r; and

- s´̀m̀r »ilpo s{`≻}[m̀]{`,m≻}[´̀]{m≻}r

employing the EBNF notations [ ] and {} to express option and arbitrary rep-
etition respectively, and using ⃗̀≻ to denote a French letter to which (at least)
one letter in the vector ⃗̀ ≻-relates. For instance, [m̀] denotes either ε or m̀, and
{`≻} denotes an arbitrary French string of letters to which ` ≻-relates.

Proof. Both items are proven by induction on the length of sr.

- We distinguish cases on whether or not ` is ≻-maximal in sˆ̀r:

(yes) then the head symbol of the lhs »-relates to the head symbol of the
rhs, because the multiset has become smaller, hence the head symbol
of the lhs »-relates to the other function symbols in the rhs as well;

(no) then we conclude by the induction hypothesis for the substring/term

the displayed ˆ̀ is in.

- We distinguish cases on whether or not `,m are ≻-maximal in s´̀m̀r, il-
lustrated in Figures 3–5, where ≻-maximal labels are coloured blue and
non-≻-maximal labels are coloured red:

(both are) then the head symbol of the lhs »-relates to the head symbol
of the rhs, because the multiset (or else the area) has become smaller,
and we conclude as in the (yes)-case above, see Figure 3;

(only ´̀ is) then the substring/term to the right of ´̀ in the lhs »ilpo-relates

to the substring/term to the right of ´̀ in the rhs, using the first item
of this lemma, see Figure 4;

(only m̀ is) as in the previous item but for the substrings/terms to the
left of m̀;

(neither is) then we conclude by the induction hypothesis for the sub-

string/term the displayed ´̀m̀ is in, see Figure 5;
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Theorem 20. The decreasing proof order is compatible with the decreasing
diagrams technique [10, Definition 3] in the sense that if a peak ←` ⋅ →m in a
conversion is replaced by a conversion of shape↔∗

`≻ ⋅ →=

m ⋅ ↔∗

`,m≻
⋅ ←=

` ⋅ ↔∗

m≻
(see

Figure 6 left) forming a so-called decreasing diagram, then the interpretation of
the former is »ilpo-related to the interpretation of the latter (see Figure 6 right).

Proof. Immediate by the second item of Lemma 19.

Recall from [10] that a rewrite relation → is said to be decreasing if → =
⋃`∈L→` for some family of rewrite relations (→`)`∈L and well-founded order ≻
on L, every peak can be replaced by a conversion forming a decreasing diagram.

Corollary 21 ([10, Theorem 3]). A decreasing rewrite relation is confluent.

Proof. Given a conversion, choose any L-labelling of it. As long as it contains
peak, the conversion can be tranformed another one to which it »ilpo-relates.
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Figure 6: Compatibility of decreasing proof order with decreasing diagrams

Since »ilpo is terminating, this process must terminate, yielding a conversion
without peaks, i.e. a valley.

Example 22. The rewrite relation of Example 1 is decreasing as one easily
checks by verifying all peaks in Figure 1 (right). Hence the rewrite relation is
confluent by Corollary 21.

4. Well-behaved subrelations of the decreasing proof order

We investigate whether the decreasing proof order »ilpo has good properties
other than termination, and if not, whether it has subrelations that do have
such good properties.

The first observation is that »ilpo is technically not a proof order, cf. [11,
Definition 7.5.2] as it is not monotonic with respect to composition with French
strings.
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Example 23. Composition ofÓ to the right reverses the way in whichÓÒÒÒÓ
and ÒÓÓÓÓ are ordered by the decreasing proof order.

The problem witnessed by the example is that although the first string of
accents has a smaller area than the latter, the number of grave accents in it is
greater leading to a greater increase of its area when extended on the right with
an acute accent.

A second observation, due to [5] is that the decreasing proof order »ilpo is
not monotonic with respect to extending ≻.

Example 24. Extending the empty order to m ≻ `, κ reverses the way in which
´̀́κḿ and ḿκ́ are ordered by the decreasing proof order.

The problem witnessed by the example is that when ≻-incomparable the
(left-to-right) order of elements in a French strings does not matter, something
which may change when made ≻-comparable.

Neither phenomenon occurs when filling in local peaks by decreasing dia-
grams. Filling in decreasing diagrams is obviously monotonic with respect to
relation extension [12] and composition with French strings. Hence one may
wonder whether a well-hehaved order may be ‘carved out’ from »ilpo , well-
behaved in the sense that it is monotonic in both senses. More generally, one
may ask the same question for other good properties, such as e.g. decidability.
That we can easily accommodate these desiderata within our set-up, as we show
now, which is an indication that that set-up is flexible.

The main idea is that the monotonicity properties can be created by universal
quantification. Concretely, one may define French strings s,r to be related if for
all well-founded orders ≻′ extending ≻, and for all French strings p1,p2, it holds
p1sp2 »′ilpo p1rp2. By this definition via universal quantification the relation
is clearly ‘carved out’ from »ilpo , in the sense that it is a subrelation of »ilpo .
Apart from that it inherits the good property of »ilpo being a well-founded order,
both monotonicity with respect to composition and relation extension of it are
properties created by the definition via universal quantification. However, for
automation it is also needed that the proof order (or a good approximation to
it) be decidabe. To address decidability, which is not clear for the relation just
defined, we propose the following adaptation of it, still based on the same idea.

Definition 25. Define the order »≻ on the French term signature L♯
≻

analogous
to how » was defined in Definition 16, but taking as second component the whole
area triple (instead of just its middle component), and comparing these area
triples lexicographically on first the pair comprising its first,last component,
and then the middle component, with respect to the greater-than (product)
order > on the natural numbers. We then define s ≻≻ r to hold if for all well-
orders ≻′ extending ≻, i.e. for all total terminating transitive relations ≻′ such
that ≻ ⊆ ≻′, it holds s »≻′ilpo r, where »≻′ilpo is the iterative lexicographic path

order induced by the order »≻′ on L♯
≻
′ , which is in turn induced by the extension

≻′ of ≻. Apart from that the lexicographic order on the argument places should
respect the accents as in Definition 16, we now require it to be preserved under
concatenation/composition of French strings as well.

13



Note that the above leftmost (as permitted by the accents) way of ordering
argument places not only respects the accents as illustrated in Example 17, but
also is preserved under concatenation.

Theorem 26. The relation ≻≻ is a decidable well-founded order closed under
relation extension and composition with French strings (on both sides), is com-
patible with the decreasing diagrams technique.

Proof. We verify each of the properties the relation ≻≻ is claimed to have sepa-
rately.

Decidability of ≻≻ follows from that there are only finitely many labels in
any given pair of French strings, that there are (restricted to those labels) only
finitely many relations ≻′ extending ≻ and well-ordering the labels, and that
comparing two strings with respect to the iterative lexicographic path order
»≻′ilpo , as induced by ≻′ via »≻′, is decidable.

That ≻≻ is well-founded follows from the fact that for each ≻′ it’s a subrelation
of »≻′ilpo , each of which is well-founded as the iterative lexicographic path order
induced by »≻′, which in turn is well-founded because it is induced by a well-
order ≻′ extending ≻.

Transitivity of ≻≻ follows from transitivity of each of the »≻′ilpo , which holds
since the iterative lexicographic path order creates transitive relations.

That ≻≻ is closed under relation extension follows by its definition via all well-
orders ≻′ extending ≻; the well-orders extending an extension of ≻ are contained
in the well-orders extending ≻.

Compatibility with the decreasing diagrams technique follows from Lemma 19
and the fact [12] that decreasing diagrams are preserved under relation exten-
sion. Observe that the universal quantification over s,r in the statement of the
lemma is not needed anymore, because ≻≻ is monotonic with respect to French
string composition, as we show now.

Note that taking the whole area triple into account in »≻ (so including the
numbers of grave and acute accents instead of just the middle component as in
»), makes the order »≻ on the alphabet L♯

≻
closed under composition (in case

concatenation yields an element of L♯
≻

again). We show by induction on the
length of strings that this extends to monotonocity of composition of each »≻′ilpo
induced by a well-order ≻′ extending ≻. By ≻′ being total, the corresponding
alphabet L♯

≻
′ of French strings of ≻′-incomparable letters in fact consists of

French strings on a single label only. Therefore, concatenating a single French
letter, say ˆ̀, to French strings s,r such that s »≻′ilpo r splits into cases depending
on how ` relates to the ≻′-maximal labels m and κ of which the head symbols
s′ and r′ of s and r are composed.

- if m ≻′ κ then observe that s′ is »≻′-related to each symbol in the French
term corresponding to r.

– if ` ≻′ m then the French terms corresponding to sˆ̀ and r ˆ̀ are ob-
tained from those of s and r by putting the binary function symbol ˆ̀

on top of both (having these as left arguments and the empty French
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string as right argument), and we conclude to sˆ̀»≻′ilpo r ˆ̀ by closure
of the lexicographic path order under contexts;

– if ` =m then the French term corresponding to sˆ̀has s′ ˆ̀as head sym-
bol which we claim is »≻′-related to each symbol in the French term
corresponding to r ˆ̀. For its head symbol this amounts to s′ ˆ̀»≻′ ˆ̀,
which obviously holds. For the other symbols this follows by tran-
sitivity of »≻′ from s′ ˆ̀ »≻′ s′ and the observation above, since these
symbols are the symbols of the French term corresponding to r;

– If m ≻′ ` then s′ is the head symbol of the French string corresponding
to sˆ̀ as well, and we conclude noting that s′ is »≻′-related to each of
the function symbols in the French term corresponding to r ˆ̀, as for
each symbol in the latter there is a symbol in s′ that is ≻′-related to
it. For ` this holds since m ≻′ ` and for the other labels this holds by
the observation above.

- if m = κ then

– if ` ≻′ m then we proceed as above in the corresponding case;

– if ` = m then s′ ˆ̀ and r′ ˆ̀ are the head symbols of the French terms
corresponding to sˆ̀ respectively r ˆ̀, and we further split cases on
whether or not s′ »≻′ r′.
If s′ »≻′ r′ then s′ ˆ̀»≻′ r′ ˆ̀ follows by monotonicity of »≻′. From this
we conclude as above in the corresponding case.

If s′ = r′ then the French terms corresponding to sˆ̀ and r ˆ̀ have the
same subterms as the ones corresponding to s respectively r, except
for an extra empty string subterm in both cases. Because the order
on the arguments was assumed to be preserved under concatenation,
these subterms are compared lexicographically in the same order as
before, hence comparing them yields the same result as before, that
is, sˆ̀»≻′ilpo r ˆ̀;

– if m ≻′ ` then s′ and r′ are the head symbols of the French terms
corresponding to sˆ̀ respectively r ˆ̀, and we further split cases on
whether or not s′ »≻′ r′.
If s′ »≻′ r′ then s′ is »≻′-related to all function symbols in the French
term corresponding to r ˆ̀ from which we conclude.

If s′ = r′ then s »≻′ilpo r must hold because there is a lexicographically
first argument of the head symbol s′ such that the corresponding sub-
terms are »≻′ilpo-related (the earlier ones being equal). If this is not
the last argument, then we conclude immediately; Otherwise, we con-
clude by the induction hypothesis for that argument and monotonoc-
ity of the lexicographic path order for it.

Although the above shows already the flexibility of our set-up by ‘carv-
ing out’ a decidable monotonic proof order from the decreasing proof order,
it remains to be investigated whether the same can be done to yield decision
procedures having low complexity.
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5. Conclusion

We have presented a novel proof order, the decreasing proof order, that ‘lex-
icographically combines’ the main ingredients of standard proofs of Newman’s
Lemma (multisets) and of the Lemma of Hindley–Rosen (area). This resulted in
a proof order that is compatible with the decreasing diagrams technique, which
it extends in the sense that the proof of confluence for the latter can be seen as
establishing termination of a particular strategy for filling peaks in conversions
by decreasing diagrams. Termination of the decreasing proof order entails that
any strategy for filling peaks would work, i.e. is guaranteed to end in a valley,
i.e. in a rewrite proof.

We have developed our results in the setting of involutive monoids. Indeed,
the fact that the decreasing proof order is well-founded can be viewed as showing
how to lift (in an interesting novel way!) a well-founded order on a set of labels
to a well-founded order on the free involutive monoid over that set of labels.
We have given two presentations of the latter monoid, with the set of French
strings respectively terms as carriers, and this isomorphism was put to good
use, devising an order on conversions/French strings via a lexicographic path
order on the French terms.

We have focussed attention on giving the foundations of our approach via
involutive monoids, but already note here that our set-up is flexible. Two points
in case are confluence modulo or up to an equivalence relation, and factorisation
of rewrite sequences. One idea in the former case is to let the interpretation
of conversion also contain symmetric letters ˙̀, i.e. for which ˙̀−1 = ˙̀, the dot
suggesting the geometric interpretation (cf. Figure 2 and also the intuition for
the proof order based on approximations, provided above) of symmetric letters
as points (so that they do not contribute to the area of a French string). In the
latter case the main, standard, idea is to employ that factorisation of →1,→2

corresponds to commutation for ←1,→2. Although we claim that extant results
as e.g. in [9, 2] and [1] respectively, can be easily accommated in our set-up, we
will present substantiation of this claim elsewhere.
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