A simple rewrite proof of the equational interpolation theorem

Theorem 1 ([1]) $\Gamma \models l=r \Longrightarrow \exists I \Gamma \models I$ \& $I \models l=r$, with $\Sigma(I) \subseteq \Sigma(\Gamma) \cap \Sigma(l=r)$.
Example 2 Let $\Gamma=\left\{a_{i}=b, b=c_{i}, f(x, x)=g(x, x) \mid i \in\{1,2\}\right\}, l=f\left(H\left(a_{1}\right), H\left(a_{2}\right)\right)$ and let $r=g\left(H\left(c_{1}\right), H\left(c_{2}\right)\right)$. Then we have $\Gamma \models l=r$ and choosing the interpolant $I=\left\{a_{1}=a_{2}, c_{1}=\right.$ $\left.c_{2}, a_{1}=c_{1}, f(x, x)=g(x, x)\right\}$ yields $\Gamma \models I \& I \models l=r$. Note that $\Sigma(I) \subseteq \Sigma(\Gamma) \cap \Sigma(l=r)$ holds, since $\Sigma(l=r)=\Sigma(I) \cup\{H\}, \Sigma(\Gamma)=\Sigma(I) \cup\{b\}$ and $\Sigma(I)=\left\{a_{i}, c_{i}, f, g \mid i \in\{1,2\}\right\}$.
Symbols in $\Sigma(l=r)-\Sigma(\Gamma)$ are said to be alien and ranged over by capitals, and the other symbols are native and ranged over by ordinary letters. For convenience we will treat variables in l and r as nullary function symbols. Our proof is based on the equivalence between equality in the equational logic for Γ and convertibility w.r.t. the rewrite relation \rightarrow_{Γ} generated by Γ : $\Gamma \models l=r \Longleftrightarrow l \leftrightarrow_{\Gamma}^{*} r$. Applied to the example:

$$
l \leftrightarrow f\left(H(b), H\left(a_{2}\right)\right) \leftrightarrow f(H(b), H(b)) \leftrightarrow g(H(b), H(b)) \leftrightarrow g\left(H(b), H\left(c_{2}\right)\right) \leftrightarrow r
$$

Our proof of the theorem formalises the idea that aliens partition l and r into native parts, such that equality of l and r can be reduced to a number of equalities on those parts. The next lemma establishes this for the top part. It employs the fact that any term s can be uniquely partitioned into a maximal (possibly empty) native context part and a vector of aliens, i.e. terms with alien symbols as heads. This will be indicated by writing a term s as $C \llbracket \vec{s} \rrbracket$. For instance, l is written as $C \llbracket l_{1}, l_{2} \rrbracket$, with maximal native context $C=f(\square, \square)$, and aliens $l_{1}=H\left(a_{1}\right)$ and $l_{2}=H\left(a_{2}\right)$.

Lemma 3 If $C \llbracket \vec{s} \rrbracket \leftrightarrow_{\Gamma}^{*} D \llbracket \vec{t} \rrbracket$, then $C[\vec{x}] \leftrightarrow_{\Gamma}^{*} D[\vec{y}]$ holds for some \vec{x} and \vec{y}, such that identity of variables in the latter conversion implies convertibility-without-head-steps of the corresponding aliens in the former.
Proof A first application of [2, Lemma 3.2.1.4] yields \vec{x} and \vec{y} such that convertibility holds. Another application of the lemma shows that convertibility can be strengthened to convertibility-without-head-steps. (A proof by induction on the length of the conversion is easy as well.)
Proof (of Theorem 1) Suppose $l \leftrightarrow_{\Gamma}^{*} r$. The proof is by induction on the maximal number of alien symbols on any path from the root to a leaf in $l=C \llbracket \vec{l} \rrbracket$ or $r=D \llbracket \vec{r} \rrbracket$. By the lemma $C[\vec{x}] \leftrightarrow_{\Gamma}^{*} D[\vec{y}]$ holds, for some \vec{x} and \vec{y} such that occurrences of the same variable in this conversion implies convertibility-without-head-steps of the corresponding aliens in $l \leftrightarrow{ }_{\Gamma}^{*} r$. By the IH this implies that we can find an interpolant for each of these conversions. We conclude by taking the union of all these interpolants and the single equation $C[\vec{x}]=D[\vec{y}]$.
This establishes a property stronger than ordinary interpolation: all equations in the interpolant are only between (variable substitution instances of) the maximal native parts of l and r.

Interpolation trivially holds for higher-order equational logic, but fails for rewrite logic.
Example 4 In higher-order equational logic, take $I=\{\lambda \vec{x} \cdot l[\vec{X}:=\vec{x}]=\lambda \vec{x} \cdot r[\vec{X}:=\vec{x}]\}$, where \vec{X} is the vector of alien symbols occurring in l or r.
Counterexample 5 Consider Example 2, replacing all $=s$ by $\geq s$. Then no interpolant can be found. The problem is that we can put assumptions like $a_{i} \geq c_{j}$ for $i, j \in\{1,2\}$ in the interpolant, but this only allows us to derive such things as $f\left(H\left(a_{1}\right), H\left(a_{2}\right)\right) \geq g\left(H\left(c_{i}\right), H\left(c_{i}\right)\right)$ (for the same index $i \in\{1,2\}$ in the rhs) since $f(x, x)=g(x, x)$ forces 'synchronisation' between the two arguments of f : in the absence of b and in the presence of H, synchronisation forces identity either of a_{1} and a_{2} or of c_{1} and c_{2}.

References

[1] P.H. Rodenburg and R.J. van Glabbeek. An interpolation theorem in equational logic. Talk presented at PAM, CWI, 11th December 2002.
[2] E. Tidén. First-Order Unification in Combinations of Equational Theories. PhD thesis, The Royal Institute of Technology, Department of Numerical Analysis and Computer Science, Stockholm, Sweden, August 1986. TRITA-NA-8604.

