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Typical Result

Theorem
The needed strategy is normalising for combinatory logic.

(K · x) · y → x

((S · x) · y) · z → (x · z) · (y · z)

Example

(K · I ) · Ω I

I = (S · K ) · K

Ω = ((S · I ) · I ) · ((S · I ) · I )
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Normalisation

Definition
Strategy is normalising if terminating on normalisable objects

Example

◮ innermost strategy need not be normalising
f (a) w.r.t. a → a, f (x) → b

◮ outermost strategy need not be normalising
f (a, a) w.r.t. a → a, f (x , a) → b
Indeed, it’s not fair



Needed Normalisation

Theorem
Needed strategy is normalising (for ortho fe HRS)

Proof.
all reductions to normal form are permutation equivalent
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only finitely many steps contribute to the head



Needed hyper-normalisation

Definition
Strategy is hyper-normalising if terminating on normalisable objects
allowing (finitely sequences) of other steps in-between

Theorem
Needed strategy is hyper-normalising (for ortho fe HRS)

Proof.
Same
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Definition
Full substitution: contract all redexes
(Gross-Knuth, Complete Development, Takahashi ‘star’)

Theorem
Full-substitution strategy is normalising

Proof.
One of redexes is external, so needed
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Definition
Outermost fair: treat outermost-redexes fairly
eventually they must be eliminated

{a → b, f (x , b) → f (x , a)}

f f

aa a b



Normalisation of outermost-fair strategy

Definition
Outermost fair: treat outermost-redexes fairly
eventually they must be eliminated

Theorem
Outermost-fair strategy is normalising

Proof.
One of outermost redexes is external, so needed
Eventually contracted because of fairness
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Normalisation for non-erasing systems

Definition
non-erasing if all redexes persist until contracted
(may be duplicated, not erased)

((S · x) · y) · z → (x · z) · (y · z) duplicating anything inside z
(K · x) · y → x erasing anything inside y

Example (of non-erasing rewrite systems)

◮ S-terms

◮ λI -terms: for λx .M, x in free variables of M

Theorem
Normalising terms are terminating in non-erasing system

Proof.
In non-erasing system every redex is needed
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Head-normalisation

Definition
head normal form if cannot reduce to a redex

Definition
Strategy is head-normalising if eventually reaches head-normal
form on head-normalisable objects

important for approximation (productive)

Example

◮ computation of infinite list of prime numbers

◮ computing Böhm trees (λ-calculus)

◮ . . .
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Head-needed is head-normalising

Definition
Head-needed, if needed to reach head-normal form

Theorem
Head-needed strategy is (hyper-)head-normalising (for ortho fe
HRS)

Proof.
s
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Applications of head-neededness

Lemma
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Weakly orthogonal systems?

Some things work some things don’t

Theorem
Outermost-fair reduction is normalising

Outermost-fair reduction is not head-normalising

Example

Term s = f (g(a, a)) in

a → b

f (g(a, x)) → f (g(b, x))

g(b, x) → g(x , x)

Reduction to head-normal form:

s → f (g(a, b)) → f (g(b, b))

Outermost-fair reduction not reaching a head-normal form:

s → f (g(b, a)) → s → · · ·



Co-finality

Definition
Strategy co-final if target of any finite reduction reduces to some
object on strategy

Theorem
Full-substitution is co-final



Co-finality

Definition
Strategy co-final if target of any finite reduction reduces to some
object on strategy

Theorem
Full-substitution is co-final

Parallel-outermost is not co-final

Example

f (x) → f (x), a → b



Perpetuality

Definition
Strategy perpetual if non-normalising on non-terminating objects

Theorem
internal needed strategy is perpetual
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Summary

◮ Strategies via intensional ARSs

◮ Theorems shown by working with proof terms

◮ Standard results proven using neededness
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