
Properties of Needed Strategies

Vincent van Oostrom

Theoretical Philosophy

Utrecht University

The Netherlands

July 5, 2006



Literature

Term Rewriting Systems
Terese
Cambridge University Press, 2003



Abstract Rewriting Strategies

Term Rewriting Strategies

Structured Rewriting Strategies



Motivation for Strategies

Controlling non-determinism



Typical Result

Theorem
The needed strategy is normalising for combinatory logic.

(K · x) · y → x

((S · x) · y) · z → (x · z) · (y · z)



Typical Result

Theorem
The needed strategy is normalising for combinatory logic.

(K · x) · y → x

((S · x) · y) · z → (x · z) · (y · z)

Example

(K · I ) · Ω I

I = (S · K ) · K

Ω = ((S · I ) · I ) · ((S · I ) · I )



ARS strategy

Definition
Strategy is sub-ARS having same objects and normal forms.



sub-ARS example

b

c

a



sub-ARS example

a

b

c



sub-ARS example

b

c

a



sub-ARS example

b

c

a



sub-ARS example

b

c

a



sub-ARS example

b

c



sub-ARS example

b

c

a



sub-ARS example

c

a



sub-ARS example

b

c

a



sub-ARS example



ARS strategy example

b

c

a



ARS strategy example

a

b

c



ARS strategy example

b

c

a



ARS strategy example

b

c

a



Examples of strategies

◮ Innermost (‘call by value’)



Examples of strategies

◮ Innermost (‘call by value’)

◮ Outermost (‘call by name’)



Examples of strategies

◮ Innermost (‘call by value’)

◮ Outermost (‘call by name’)

◮ Needed (‘call by need’)



Examples of strategies

◮ Innermost (‘call by value’)

◮ Outermost (‘call by name’)

◮ Needed (‘call by need’)

◮ . . .



Non-examples of strategies

◮ Loop three times and then exit (‘history aware’)



Non-examples of strategies

◮ Loop three times and then exit (‘history aware’)

◮ Reduce to (weak) head-normal form (‘semantics change’)



Non-examples of strategies

◮ Loop three times and then exit (‘history aware’)

◮ Reduce to (weak) head-normal form (‘semantics change’)

◮ Contract innermost redexes (‘many step’)



Non-examples of strategies

◮ Loop three times and then exit (‘history aware’)

◮ Reduce to (weak) head-normal form (‘semantics change’)

◮ Contract innermost redexes (‘many step’)

◮ . . .



Inadequacy of relations for strategies

Syntactic accident:



Inadequacy of relations for strategies

Syntactic accident:

I · t

outer inner

I · (I · t)

I · x → x



Inadequacy of relations for strategies

Syntactic accident:

I · t

outer inner

I · (I · t)

I · x → x

Want steps



Abstract Rewriting Systems

Definition
ARS is a binary relation on a set.



Abstract Rewriting Systems

Definition
ARS is a binary relation on a set.

extensional (existence of steps)



Abstract Rewriting Systems redefined

Definition
ARS is 〈A,Φ, src, tgt〉

◮ A set of objects

◮ Φ set of steps

◮ src, tgt : Φ → A
source and target functions



Abstract Rewriting Systems redefined

Definition
ARS is 〈A,Φ, src, tgt〉

◮ A set of objects

◮ Φ set of steps

◮ src, tgt : Φ → A
source and target functions

intensional (steps φ, ψ, χ, . . .)



Abstract Rewriting Systems redefined

Definition
ARS is 〈A,Φ, src, tgt〉

◮ A set of objects

◮ Φ set of steps

◮ src, tgt : Φ → A
source and target functions

intensional (steps φ, ψ, χ, . . .)
φ : a → b denotes
φ is step with source a and target b



Abstract Rewriting Systems redefined?



Abstract Rewriting Systems redefined?

Equivalently

◮ Directed graph

◮ Category without composition (no monoid laws)



Deterministic ARS/strategy

Definition
Deterministic if object source of at most one step



Deterministic ARS/strategy

Definition
Deterministic if object source of at most one step

no forks

(possibly b = c)

a

b c



Deterministic ARS/strategy

Definition
Deterministic if object source of at most one step

no forks

(possibly b = c)

a

b c

Lemma
a deterministic strategy always exists
(simply choose one step from each source)



Facts on strategies

◮ strategy for strategy is strategy



Facts on strategies

◮ strategy for strategy is strategy

◮ deterministic strategy has only one strategy



Facts on strategies

◮ strategy for strategy is strategy

◮ deterministic strategy has only one strategy

◮ termination preserved, not reflected



Facts on strategies

◮ strategy for strategy is strategy

◮ deterministic strategy has only one strategy

◮ termination preserved, not reflected

◮ normalising reflected, not preserved



Facts on strategies

◮ strategy for strategy is strategy

◮ deterministic strategy has only one strategy

◮ termination preserved, not reflected

◮ normalising reflected, not preserved

◮ confluence neither preserved nor reflected



Reduction sequences

Many-step ARS →+:

◮ Objects: objects of →

◮ Steps: non-empty reduction sequences of →

◮ source of sequence is source of first step
target of sequence is target of last step



Reduction sequences

Many-step ARS →+:

◮ Objects: objects of →

◮ Steps: non-empty reduction sequences of →

◮ source of sequence is source of first step
target of sequence is target of last step

reduction sequences can be composed (associative)



Many-step strategy

Definition
Many-step strategy for → is strategy for →+



Many-step strategy

Definition
Many-step strategy for → is strategy for →+

(Non-)examples:

◮ Loop three times and then exit (‘not single-step’)



Many-step strategy

Definition
Many-step strategy for → is strategy for →+

(Non-)examples:

◮ Loop three times and then exit (‘not single-step’)

◮ Reduce to (weak) head-normal form (‘semantics change’)



Many-step strategy

Definition
Many-step strategy for → is strategy for →+

(Non-)examples:

◮ Loop three times and then exit (‘not single-step’)

◮ Reduce to (weak) head-normal form (‘semantics change’)

◮ Contract innermost redexes



ARS as term rewriting strategy?



ARS as term rewriting strategy?

No, not in general: ARSs lack structure to express

◮ Parallel strategies

◮ Multi-step strategies



ARS as term rewriting strategy?

No, not in general: ARSs lack structure to express

◮ Parallel strategies

◮ Multi-step strategies

Need structured objects
terms, graphs, . . .



ARS underlying a TRS

I · t

outer inner

I · (I · t)



ARS underlying a TRS

I · t

outer inner

I · (I · t)

Want to prevent syntactic accidents systematically
(instead of ad hoc)



Equational logic inference system

s → t
(rule)

s = t

s = t
(substitution)

sσ = tσ

s1 = t1 . . . sn = tn
(congruence)

f (s1, . . . , sn) = f (t1, . . . , tn)

(reflexive)
s = s

s = t
(symmetric)

t = s

s = t t = u
(transitive)

s = u



Equational logic inference system

s → t
(rule)

s = t

s = t
(substitution)

sσ = tσ

s1 = t1 . . . sn = tn
(congruence)

f (s1, . . . , sn) = f (t1, . . . , tn)

(reflexive)
s = s

s = t
(symmetric)

t = s

s = t t = u
(transitive)

s = u

Theorem
t ≈ s ⇐⇒ t ↔∗ s ⇐⇒ t = s



Equational logic inference example

Inference of I · (I · t) = I · t?



Equational logic inference example

Inference of I · (I · t) = I · t?

I · x → x
(rule)

I · x = x
(subst)

I · (I · t) = I · t



Equational logic inference example

Inference of I · (I · t) = I · t?

I · x → x
(rule)

I · x = x
(subst)

I · (I · t) = I · t

(reflexive)
I = I

I · x → x
(rule)

I · x = x
(subst)

I · t = t
(congruence)

I · (I · t) = I · t



Equational logic inference example

Inference of I · (I · t) = I · t?

I · x → x
(rule)

I · x = x
(subst)

I · (I · t) = I · t

(reflexive)
I = I

I · x → x
(rule)

I · x = x
(subst)

I · t = t
(congruence)

I · (I · t) = I · t
Distinct proofs!
Idea: Proofs as steps



Equational logic inference example

Inference of I · (I · t) = I · t?

I · x → x
(rule)

I · x = x
(subst)

I · (I · t) = I · t

(reflexive)
I = I

I · x → x
(rule)

I · x = x
(subst)

I · t = t
(congruence)

I · (I · t) = I · t
Distinct proofs!
Idea: Proofs as steps
Symmetry never needed in rewriting



Rewriting logic inference system

Equational logic inference system without (symmetric)

s → t
(rule)

s ≥ t

s ≥ t
(substitution)

sσ ≥ tσ

s1 ≥ t1 . . . sn ≥ tn
(precongruence)

f (s1, . . . , sn) ≥ f (t1, . . . , tn)

(reflexive)
s ≥ s

s ≥ t t ≥ u
(transitive)

s ≥ u



Rewriting logic inference system

Equational logic inference system without (symmetric)

s → t
(rule)

s ≥ t

s ≥ t
(substitution)

sσ ≥ tσ

s1 ≥ t1 . . . sn ≥ tn
(precongruence)

f (s1, . . . , sn) ≥ f (t1, . . . , tn)

(reflexive)
s ≥ s

s ≥ t t ≥ u
(transitive)

s ≥ u

Theorem
t � s ⇐⇒ t →∗ s ⇐⇒ t ≥ s



Rewriting logic inference example

Inference of I · (I · t) ≥ I · t?



Rewriting logic inference example

Inference of I · (I · t) ≥ I · t?

I · x → x
(rule)

I · x ≥ x
(subst)

I · (I · t) ≥ I · t



Rewriting logic inference example

Inference of I · (I · t) ≥ I · t?

I · x → x
(rule)

I · x ≥ x
(subst)

I · (I · t) ≥ I · t

(reflexive)
I ≥ I

I · x → x
(rule)

I · x ≥ x
(subst)

I · t ≥ t
(precongruence)

I · (I · t) ≥ I · t



Rewriting logic inference example

Inference of I · (I · t) ≥ I · t?

I · x → x
(rule)

I · x ≥ x
(subst)

I · (I · t) ≥ I · t

(reflexive)
I ≥ I

I · x → x
(rule)

I · x ≥ x
(subst)

I · t ≥ t
(precongruence)

I · (I · t) ≥ I · t
How to represent proofs?
Idea: Proofs as terms



Representing proofs as terms

Useful since then rewriting machinery applicable



Representing proofs as terms

Useful since then rewriting machinery applicable
outer represented by ̺(I · t) : I · (I · t) → I · t
inner represented by I · ̺(t) : I · (I · t) → I · t



Representing proofs as terms

Useful since then rewriting machinery applicable
outer represented by ̺(I · t) : I · (I · t) → I · t
inner represented by I · ̺(t) : I · (I · t) → I · t

◮ Turn rewrite rules into function symbols
E.g. I · x → x turns into ̺
unary since the rule has one free variable.



Representing proofs as terms

Useful since then rewriting machinery applicable
outer represented by ̺(I · t) : I · (I · t) → I · t
inner represented by I · ̺(t) : I · (I · t) → I · t

◮ Turn rewrite rules into function symbols
E.g. I · x → x turns into ̺
unary since the rule has one free variable.

◮ Reflexivity is superfluous on ground terms (congruence)
E.g. I ≥ I also follows by (congruence)
tgt(t) = t = src(t) if t ground



Representing proofs as terms

Useful since then rewriting machinery applicable
outer represented by ̺(I · t) : I · (I · t) → I · t
inner represented by I · ̺(t) : I · (I · t) → I · t

◮ Turn rewrite rules into function symbols
E.g. I · x → x turns into ̺
unary since the rule has one free variable.

◮ Reflexivity is superfluous on ground terms (congruence)
E.g. I ≥ I also follows by (congruence)
tgt(t) = t = src(t) if t ground

◮ Represent (transitivity) by infix ◦



Representing proofs as terms

Useful since then rewriting machinery applicable
outer represented by ̺(I · t) : I · (I · t) → I · t
inner represented by I · ̺(t) : I · (I · t) → I · t

◮ Turn rewrite rules into function symbols
E.g. I · x → x turns into ̺
unary since the rule has one free variable.

◮ Reflexivity is superfluous on ground terms (congruence)
E.g. I ≥ I also follows by (congruence)
tgt(t) = t = src(t) if t ground

◮ Represent (transitivity) by infix ◦

What is represented by ̺(I · t) ◦ ̺(t), and by ̺(t ◦ t) ?



Restrictions on proof terms

◮ Single step →: no transitivity, exactly one rule



Restrictions on proof terms

◮ Single step →: no transitivity, exactly one rule

◮ Parallel step q−→: no transitivity, no nested rules



Restrictions on proof terms

◮ Single step →: no transitivity, exactly one rule

◮ Parallel step q−→: no transitivity, no nested rules

◮ Multi-step ◦−→: no transitivity



Restrictions on proof terms

◮ Single step →: no transitivity, exactly one rule

◮ Parallel step q−→: no transitivity, no nested rules

◮ Multi-step ◦−→: no transitivity

◮ Many-step →+: transitivity only at root



Examples of Term Rewriting Strategies

◮ Single step: leftmost-outermost, leftmost-innermost, needed



Examples of Term Rewriting Strategies

◮ Single step: leftmost-outermost, leftmost-innermost, needed

◮ Parallel step: parallel outermost, parallel innermost



Examples of Term Rewriting Strategies

◮ Single step: leftmost-outermost, leftmost-innermost, needed

◮ Parallel step: parallel outermost, parallel innermost

◮ Multi-step: full-substitution (Gross–Knuth)



Higher-order rewriting strategies

Same procedure

1. Higher-order equational logic
Formats differ in types allowed and in way βηα are combined
with rules, but same logic



Higher-order rewriting strategies

Same procedure

1. Higher-order equational logic
Formats differ in types allowed and in way βηα are combined
with rules, but same logic

2. Higher-order proof terms
by injecting rules as symbols into signature



Higher-order rewriting strategies

Same procedure

1. Higher-order equational logic
Formats differ in types allowed and in way βηα are combined
with rules, but same logic

2. Higher-order proof terms
by injecting rules as symbols into signature

3. Strategies as restriction of higher-order proof terms.



Higher-order rewriting strategies

Same procedure

1. Higher-order equational logic
Formats differ in types allowed and in way βηα are combined
with rules, but same logic

2. Higher-order proof terms
by injecting rules as symbols into signature

3. Strategies as restriction of higher-order proof terms.

Other structures: graphs, . . .



Strategies summary

◮ Abstract rewrite relations vs. systems
(extensional vs. intensional)

◮ Strategy as sub-ARS
(same objects, normal forms)

◮ Term rewrite strategies as ARS strategies
(via proof terms for rewrite logic)


	Abstract Rewriting Strategies
	Term Rewriting Strategies
	Structured Rewriting Strategies

