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Motivation for Strategies

Controlling non-determinism



Typical Result
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Typical Result

Theorem
The needed strategy is normalising for combinatory logic.

(K · x) · y → x

((S · x) · y) · z → (x · z) · (y · z)

Example

(K · I ) · Ω I

I = (S · K ) · K

Ω = ((S · I ) · I ) · ((S · I ) · I )



ARS strategy

Definition
Strategy is sub-ARS having same objects and normal forms.
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◮ Needed (‘call by need’)

◮ . . .
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Inadequacy of relations for strategies

Syntactic accident:

I · t

outer inner

I · (I · t)

I · x → x

Want steps
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Abstract Rewriting Systems

Definition
ARS is a binary relation on a set.

extensional (existence of steps)
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Abstract Rewriting Systems redefined

Definition
ARS is 〈A,Φ, src, tgt〉

◮ A set of objects

◮ Φ set of steps

◮ src, tgt : Φ → A
source and target functions

intensional (steps φ, ψ, χ, . . .)
φ : a → b denotes
φ is step with source a and target b
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Abstract Rewriting Systems redefined?

Equivalently

◮ Directed graph

◮ Category without composition (no monoid laws)
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Deterministic ARS/strategy

Definition
Deterministic if object source of at most one step

no forks

(possibly b = c)

a

b c

Lemma
a deterministic strategy always exists
(simply choose one step from each source)
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Facts on strategies

◮ strategy for strategy is strategy

◮ deterministic strategy has only one strategy

◮ termination preserved, not reflected

◮ normalising reflected, not preserved

◮ confluence neither preserved nor reflected
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◮ Objects: objects of →

◮ Steps: non-empty reduction sequences of →

◮ source of sequence is source of first step
target of sequence is target of last step



Reduction sequences

Many-step ARS →+:

◮ Objects: objects of →

◮ Steps: non-empty reduction sequences of →

◮ source of sequence is source of first step
target of sequence is target of last step

reduction sequences can be composed (associative)
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Definition
Many-step strategy for → is strategy for →+

(Non-)examples:

◮ Loop three times and then exit (‘not single-step’)

◮ Reduce to (weak) head-normal form (‘semantics change’)

◮ Contract innermost redexes
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ARS as term rewriting strategy?

No, not in general: ARSs lack structure to express

◮ Parallel strategies

◮ Multi-step strategies

Need structured objects
terms, graphs, . . .
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ARS underlying a TRS

I · t

outer inner

I · (I · t)

Want to prevent syntactic accidents systematically
(instead of ad hoc)
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t = s

s = t t = u
(transitive)

s = u



Equational logic inference system

s → t
(rule)

s = t

s = t
(substitution)

sσ = tσ

s1 = t1 . . . sn = tn
(congruence)

f (s1, . . . , sn) = f (t1, . . . , tn)

(reflexive)
s = s

s = t
(symmetric)

t = s

s = t t = u
(transitive)

s = u

Theorem
t ≈ s ⇐⇒ t ↔∗ s ⇐⇒ t = s
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Equational logic inference example

Inference of I · (I · t) = I · t?

I · x → x
(rule)

I · x = x
(subst)

I · (I · t) = I · t

(reflexive)
I = I

I · x → x
(rule)

I · x = x
(subst)

I · t = t
(congruence)

I · (I · t) = I · t
Distinct proofs!
Idea: Proofs as steps
Symmetry never needed in rewriting
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Equational logic inference system without (symmetric)

s → t
(rule)

s ≥ t

s ≥ t
(substitution)

sσ ≥ tσ

s1 ≥ t1 . . . sn ≥ tn
(precongruence)

f (s1, . . . , sn) ≥ f (t1, . . . , tn)

(reflexive)
s ≥ s

s ≥ t t ≥ u
(transitive)

s ≥ u

Theorem
t � s ⇐⇒ t →∗ s ⇐⇒ t ≥ s
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Rewriting logic inference example

Inference of I · (I · t) ≥ I · t?

I · x → x
(rule)

I · x ≥ x
(subst)

I · (I · t) ≥ I · t

(reflexive)
I ≥ I

I · x → x
(rule)

I · x ≥ x
(subst)

I · t ≥ t
(precongruence)

I · (I · t) ≥ I · t
How to represent proofs?
Idea: Proofs as terms
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Representing proofs as terms

Useful since then rewriting machinery applicable
outer represented by ̺(I · t) : I · (I · t) → I · t
inner represented by I · ̺(t) : I · (I · t) → I · t

◮ Turn rewrite rules into function symbols
E.g. I · x → x turns into ̺
unary since the rule has one free variable.

◮ Reflexivity is superfluous on ground terms (congruence)
E.g. I ≥ I also follows by (congruence)
tgt(t) = t = src(t) if t ground

◮ Represent (transitivity) by infix ◦

What is represented by ̺(I · t) ◦ ̺(t), and by ̺(t ◦ t) ?
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Restrictions on proof terms

◮ Single step →: no transitivity, exactly one rule

◮ Parallel step q−→: no transitivity, no nested rules

◮ Multi-step ◦−→: no transitivity

◮ Many-step →+: transitivity only at root
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Examples of Term Rewriting Strategies

◮ Single step: leftmost-outermost, leftmost-innermost, needed

◮ Parallel step: parallel outermost, parallel innermost

◮ Multi-step: full-substitution (Gross–Knuth)
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Higher-order rewriting strategies

Same procedure

1. Higher-order equational logic
Formats differ in types allowed and in way βηα are combined
with rules, but same logic

2. Higher-order proof terms
by injecting rules as symbols into signature

3. Strategies as restriction of higher-order proof terms.

Other structures: graphs, . . .



Strategies summary

◮ Abstract rewrite relations vs. systems
(extensional vs. intensional)

◮ Strategy as sub-ARS
(same objects, normal forms)

◮ Term rewrite strategies as ARS strategies
(via proof terms for rewrite logic)
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