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Higher-Order Rewriting

HRS meta-theory

Lambda-calculus with explicit substitutions

Lambda-calculus with patterns



CL : TRS = Lambda-calculus : HRS

Combinatory Logic, Lambda-calculus

I not closed under rule manipulations

I rule schemes

I logical

first-/higher-order term rewriting systems

I closed under many rule manipulations

I rules

I algebraic
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Terms over (simply) typed signature

Inference system:

I equivalence rules (reflexivity,symmetry,transitivity)

I congruence rules (application,abstraction)

I αβη rule schemes

I user-defined rules R of terms of same type (`→ r)
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Higher-Order Rewriting (→)

I Drop symmetry, allow transitivity only at top level

I HRS: modulo αβη

I IDTS: modulo α, but βη as steps

Theorem
=R =↔∗

R(βη)

Decide equational theory via rewriting



HRS Terms, Rules, Rewriting

Signature:
(Simply) typed symbols

Terms:
λ-terms modulo αβη over signature
represented by their βη-normal form

Rules:
Pairs of terms of same type, lhs a pattern:

Definition
Pattern: free vars have only distinct bound vars as arguments.

Steps for rule `→ r :
s =αβη C [λ~m.`]→ C [λ~m.r ] =αβη t



TRS as HRS
Signature:

0 : ι

s : ι→ ι

+ : ι→ ι→ ι

Rules for m, n:ι

+m 0 → m

+m (s n) → s (+m n)

Steps:

+ 0 (s 0) =αβη (λmn.+m (s n)) 0 0

→ (λmn.s (+m n)) 0 0

=αβη s (+ 0 0)

=αβη s ((λm.+m 0) 0)

→ s ((λm.m) 0)

=αβη s 0



Lambda-calculus as HRS
Signature:

app : o → (o → o)

lam : (o → o)→ o

Rules for M:o → o, N:o

app (lam λx .M x) N → M N

lam λx .app M x → M

Steps:

app (lam λy .y) (lam λz .z)

=αβη (λMN.app (lam λx .M x) N) (λy .y) (lam λz .z)

→ (λMN.M N) (λy .y) (lam λz .z)

=αβη lam λz .z

lam λx .app x x 6=αβη (λM.lam λx .app M x) t



HRS meta-theory

Generalization of TRS and Lambda-calculus
Combined difficulties:

I TRS ⇒ arbitrary rules (overlap)

I Lambda-calculus ⇒ second-orderness (nesting)
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HRS meta-theory

Generalization of TRS and Lambda-calculus
Combined difficulties:

I TRS ⇒ arbitrary rules (overlap)

I Lambda-calculus ⇒ second-orderness (nesting)

patterns make HRSs first-order-like
orthogonality makes HRSs λ-calculus-like



HRS meta-theory: Critical Pair Lemma

Definition
Critical Pair: pair of reducts of most general overlap of lhss.

(Invited talk this afternoon)

For Lambda-calculus HRS:

app M N ← app (lam λx .app M x)N → app M N

lam λy .M y ← lam λx .app (lam λy .M y) x → lam λx .M x

Theorem
Locally confluent iff all critical pairs are.

⇒ for terminating →R , →R confluent, =R decidable.
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HRS meta-theory: Bounded termination

Definition
Bounded reduction: creation depth of redexes bounded

rule a→ a:
a→ a→ a→ a bounded (by 3)
a→ a→ a→ . . . not bounded

Theorem
Bounded reductions are terminating.

⇒ finite developments (bound 1)
⇒ reduction up to order of contraction (permutation equivalence)
⇒ neededness, normalisation of needed strategy
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HRS meta-theory: Left-linear + fully-extended ⇒
Standardisation

Definition
Left-linear: lhss are linear
Fully-extended/applied: free vars have all bound vars as arguments

All rules above left-linear
eta-rule not fully-extended.

Definition
Steps Out-of-order: inside-out or right-to-left
Standardisation: swap out-of-order steps

Theorem
Left-linear + fully-extended ⇒ standardisation ends in standard

⇒ Standardised reduction permutation equivalent to original
⇒ normal order sound to implement Lambda-calculus/FP.
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HRS meta-theory: Orthogonal ⇒ Confluent

Definition
Orthogonal: left-linear and no criticial pairs.

All rules above.
Non-example: add eq(x , x)→ true

Theorem
Orthogonal ⇒ confluent

⇒ all reductions to normal form permutation equivalent
⇒ unique normal forms (normalising strategy =R decidable)
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HRS meta-theory: RPO termination via semantic labelling

Definition
RPO termination ` >RPO r :
>RPO obtained by lifting wfo > on signature to terms
compatible with computability/reducibility

Theorem
If ` >RPO r then → terminating

Definition
Semantics: tutorial this morning, and [[`]] = [[r ]]

Definition
Labelling: label symbols by arguments semantics, labelled rules.

Semantics guarantees labelling invariant under reduction

Theorem
If labelled system RPO terminating, then →R terminating

Example: Lambda-labelled explicit subs are RPO-terminating.
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Lambda-calculus with explicit subs: usual presentation

(λx .M)N → M〈x :=N〉
x〈x :=N〉 → N

y〈x :=N〉 → y where y 6= x

(M1M2)〈x :=N〉 → M1〈x :=N〉M2〈x :=N〉
(λy .M)〈x :=N〉 → λy .M〈x :=N〉



Lambda-calculus with explicit subs: näıve HRS

Signature:

app : o → (o → o)

lam : (o → o)→ o

〈 := 〉 : (o ← o)→ o → o

Rules:

app(lamλx .M x)N → M x〈x :=N〉
x〈x :=N〉 → N

y〈x :=N〉 → y

(app (M1 x) (M2 x))〈x :=N〉 → app (M1 x)〈x :=N〉 (M2 x)〈x :=N〉
(lam λy .M x y)〈x :=N〉 → lam λy .(M x y)〈x :=N〉

I not faithful: y term var, substitute any (closed) term for it

I not fully-extended: term substituted for y may not contain x
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Lambda-calculus with explicit subs: less näıve HRS

Signature:

app : o → (o → o)

lam : (ν → o)→ o

var : ν → o
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I still not fully-extended

I but doesn’t matter since never substituted for names
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Lambda-calculus with patterns: usual presentation

Terms:

M ::= x |MM | λM.M

free variables of abstracted term bound in body

Rule scheme:

(λP.M)Pσ → Mσ

Steps as usual, e.g.

(λ(λz .zxy).x)λz .zMN → M

with syntactic sugar:

(λ〈x , y〉.x)〈M,N〉 → M
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Lambda-calculus with patterns: HRS

Rules:

app (lam λ~x(P ~x).(Z ~x))(P ~Z ) → Z ~Z

for every pattern P

Theorem
Abstracted terms linear and not narrowable ⇒ confluent

Proof.
Orthogonal HRS!
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Pure pattern calculus: part 1

3 Reduction

In all well-known pattern-matching calculi reduction proceeds in two stages: first
generate a match and then apply it. The difference between different languages
resides in different notions of matching functions. As the patterns of our calculus
contain free variables, the notion of matching has to be carefully defined in order
to guarantee that substitutions generated by the match operation will only affect
the set of binding variables of the case.

3.1 Matching

Basic matching is defined using two parameters ϕ and θ, the first being the set of
constructors and the second one the set of binding variables. A key notion used
in the definition of basic matching is the one of ϕ-matchable form, intuitively,
those terms that are ready to be matched.

Definition 6 (Data Structures and Matchable Forms). The ϕ-data struc-
tures (meta-variable d) and ϕ-matchable forms (meta-variable e) are given by
the following grammar:

d ::= x (x ∈ ϕ) | d t
e ::= d | [θ] t → t

where t can be an arbitrary term. Define the data structures (resp. matchable
forms) to be the {}-data structures (resp. {}-matchable forms).

Definition 7 (Basic Matching). The basic matching {{u #θ p}}γ of a term p
(called the pattern) against a term u (called the argument) relative to a set θ of
binding variables and a disjoint set γ of constructing variables (or constructors)
is the partial operation defined by applying the following equations in order

{{u #θ x}}γ := {u/x} if x ∈ θ
{{x #θ x}}γ := {} if x ∈ γ
{{v u #θ q p}}γ := {{v #θ q}}γ # {{u #θ p}}γ if q p is a γ, θ-matchable form

and v u is a γ-matchable form
{{u #θ p}}γ := none if p is a γ, θ-matchable form

and u is a γ-matchable form
{{u #θ p}}γ := undefined otherwise.

That is, matching is always defined if the pattern is a γ, θ-matchable form
and the argument is a γ-matchable form, and match failure can only arise if rules
for successful matching do not apply. A binding variable matches anything. A
constructor matches itself. Matching of compound data structures is component-
wise, using (disjoint) union. Note that the ordering of the equations can be
avoided by expanding the definition into an induction on the structure of the
pattern.

The use of disjoint unions when matching compound patterns means that
matching against a compound such as c x x can never succeed. Since non-linear
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the following grammar:

d ::= x (x ∈ ϕ) | d t
e ::= d | [θ] t → t

where t can be an arbitrary term. Define the data structures (resp. matchable
forms) to be the {}-data structures (resp. {}-matchable forms).

Definition 7 (Basic Matching). The basic matching {{u #θ p}}γ of a term p
(called the pattern) against a term u (called the argument) relative to a set θ of
binding variables and a disjoint set γ of constructing variables (or constructors)
is the partial operation defined by applying the following equations in order

{{u #θ x}}γ := {u/x} if x ∈ θ
{{x #θ x}}γ := {} if x ∈ γ
{{v u #θ q p}}γ := {{v #θ q}}γ # {{u #θ p}}γ if q p is a γ, θ-matchable form

and v u is a γ-matchable form
{{u #θ p}}γ := none if p is a γ, θ-matchable form

and u is a γ-matchable form
{{u #θ p}}γ := undefined otherwise.

That is, matching is always defined if the pattern is a γ, θ-matchable form
and the argument is a γ-matchable form, and match failure can only arise if rules
for successful matching do not apply. A binding variable matches anything. A
constructor matches itself. Matching of compound data structures is component-
wise, using (disjoint) union. Note that the ordering of the equations can be
avoided by expanding the definition into an induction on the structure of the
pattern.

The use of disjoint unions when matching compound patterns means that
matching against a compound such as c x x can never succeed. Since non-linear
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patterns cannot be banned (any term can be a pattern), the alternative would be
to allow it to match with terms of the form c u u. However, this may cause a loss
of confluence, as in [FK03,Kah03], for reasons grounded in Klop’s observation
[Klo80] that the combination of untyped λ-calculus with non left-linear first-
order rewriting systems breaks confluence.

As defined, matching one case against another always fails. It should be
possible to support this without too much effort, but it it not neccessary for the
sorts of data manipulations that motivated this work.

Definition 8 (Matching). Let p and u be terms and let θ and γ be disjoint
sets of variables. Define the matching {u/[θ] p}γ of p against u with respect to
binding variables θ and constructors γ to be the check of {{u$θ p}}γ on θ, where
the check of a match is the function in Definition 5.

The check is necessary to ensure that reduction does not allow bound vari-
ables to become free. For example, {{x $y x}}{x} = {} but {x/[y] x}{x} = none
since the basic matching is not defined on y.

The pure pattern calculus has a match rule given by

([θ] p → s) u >γ {u/[θ] p}γ s (2)

parametrised by the choice of constructors γ. That is, if matching of the pattern
against the argument produces a substitution whose domain is the binding vari-
ables then apply this to the body. If the matching fails then return the identity
function. Of course, if {u/[θ] p}γ is undefined (e.g. because p or u needs to be
reduced) then the match rule does not apply.

([θ] p → s) u !γ {u/[θ] p}γ s

r !γ r′

r u !γ r′ u

u !γ u′

r u !γ r u′

p !γ,θ p′

[θ] p → s !γ [θ] p′ → s

s !γ s′

[θ] p → s !γ [θ] p → s′

Fig. 1. One-step reduction

The one-step reduction relation !γ is defined by the rules in Figure 1. The
reduction relation !∗

γ is the reflexive-transitive closure of !γ . A term t is
γ-irreducible if there is no reduction of the form t !γ t′.

The key point is that the binding variables of a case become constructors
when reducing the pattern. For example,

[x] ([ ] x → x) x → x !{} [x] x → x

since the binding variable x becomes a constructor when reducing (([ ] x → x) x).
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Pure pattern calculus: HRS

Rules:

app (lam (λ~a.(P ~a)) (λ~x .(Z ~x)))(P ~Z ) → Z ~Z

for every pattern P

Theorem
Pure pattern calculus is confluent

Proof.
By orthogonality for HRSs, with non-substitutable names.
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