Names in Higher-Order Rewriting

Vincent van Oostrom

Theoretical Philosophy
Universiteit Utrecht
The Netherlands

June 8, 2007

Higher-Order Rewriting

HRS meta-theory

Lambda-calculus with explicit substitutions

Lambda-calculus with patterns

CL : TRS = Lambda-calculus : HRS

Combinatory Logic, Lambda-calculus

first-/higher-order term rewriting systems

CL : TRS = Lambda-calculus : HRS

Combinatory Logic, Lambda-calculus

» not closed under rule manipulations

first-/higher-order term rewriting systems

» closed under many rule manipulations

CL : TRS = Lambda-calculus : HRS

Combinatory Logic, Lambda-calculus
» not closed under rule manipulations

» rule schemes

first-/higher-order term rewriting systems
» closed under many rule manipulations

> rules

CL : TRS = Lambda-calculus : HRS

Combinatory Logic, Lambda-calculus
» not closed under rule manipulations
» rule schemes
» logical

first-/higher-order term rewriting systems
» closed under many rule manipulations
> rules

» algebraic

Higher-Order Equational Logic (=)

Terms over (simply) typed signature

Inference system:

Higher-Order Equational Logic (=)

Terms over (simply) typed signature

Inference system:

» equivalence rules (reflexivity,symmetry,transitivity)

Higher-Order Equational Logic (=)

Terms over (simply) typed signature

Inference system:
> equivalence rules (reflexivity,symmetry,transitivity)

» congruence rules (application,abstraction)

Higher-Order Equational Logic (=)

Terms over (simply) typed signature

Inference system:
> equivalence rules (reflexivity,symmetry,transitivity)
» congruence rules (application,abstraction)

» «afIn rule schemes

Higher-Order Equational Logic (=)

Terms over (simply) typed signature

Inference system:
> equivalence rules (reflexivity,symmetry,transitivity)
» congruence rules (application,abstraction)
» «afIn rule schemes

» user-defined rules R of terms of same type (¢ — r)

Higher-Order Rewriting (—)

» Drop symmetry, allow transitivity only at top level

Higher-Order Rewriting (—)

» Drop symmetry, allow transitivity only at top level
» HRS: modulo af8n

Higher-Order Rewriting (—)

» Drop symmetry, allow transitivity only at top level
» HRS: modulo af8n
» IDTS: modulo «, but 8n as steps

Higher-Order Rewriting (—)

» Drop symmetry, allow transitivity only at top level
» HRS: modulo af8n
» IDTS: modulo «, but 8n as steps

Theorem

—R = T R(6n)

Higher-Order Rewriting (—)

» Drop symmetry, allow transitivity only at top level

» HRS: modulo af8n
» IDTS: modulo «, but 87 as steps

Theorem
*

—R = TR(sn)
Decide equational theory via rewriting

HRS Terms, Rules, Rewriting

Signature:
(Simply) typed symbols

Terms:
A-terms modulo «3n over signature
represented by their Gn-normal form

Rules:

Pairs of terms of same type, lhs a pattern:

Definition

Pattern: free vars have only distinct bound vars as arguments.

Steps for rule ¢ — r:
S =apn C[)\r_ﬁ.ﬁ] — C[)\ﬁ‘l.r] =apn t

TRS as HRS

Signature:
0 :
S I L—
+ L= L=

Rules for m, n:.
+m0 — m
+m(sn) — s(+mn)
Steps:
+0(s0) =apy; (Amn4+m(sn))00
— (Amn.s(+mn))00
=apgy S(+00)
=apn S((Am.+-m0)0)
— s((Am.m)0)

=afn s0

Lambda-calculus as HRS

Signature:
app : o— (0o— o)
lam : (0o —o0)—o0

Rules for M:o — o, N:o

app (lamAx.Mx)N — MN
lam Ax.appMx — M

Steps:

app (lam Ay.y) (lam Az.z)
=apn (AMN.app (lam Ax.M x) N) (Ay.y) (lam Az.z)
— (AMN.MN) (Ay.y) (lam Xz.z)

=apy lamAz.z

lam Ax.appxx #apy (AM.lam Ax.app M x) t

HRS meta-theory

Generalization of TRS and Lambda-calculus
Combined difficulties:

HRS meta-theory

Generalization of TRS and Lambda-calculus
Combined difficulties:

» TRS = arbitrary rules (overlap)

HRS meta-theory

Generalization of TRS and Lambda-calculus
Combined difficulties:

» TRS = arbitrary rules (overlap)

» Lambda-calculus = second-orderness (nesting)

HRS meta-theory

Generalization of TRS and Lambda-calculus
Combined difficulties:

» TRS = arbitrary rules (overlap)
» Lambda-calculus = second-orderness (nesting)

patterns make HRSs first-order-like

HRS meta-theory

Generalization of TRS and Lambda-calculus
Combined difficulties:

» TRS = arbitrary rules (overlap)
» Lambda-calculus = second-orderness (nesting)

patterns make HRSs first-order-like
orthogonality makes HRSs A-calculus-like

HRS meta-theory: Critical Pair Lemma

Definition
Critical Pair: pair of reducts of most general overlap of Ihss.
(Invited talk this afternoon)

HRS meta-theory: Critical Pair Lemma

Definition
Critical Pair: pair of reducts of most general overlap of Ihss.

(Invited talk this afternoon)
For Lambda-calculus HRS:

app M N — app (lam Ax.app M x) N — app M N

lam Ay .My «— lam Ax.app (lam Ay.M y) x — lam Ax.M x

HRS meta-theory: Critical Pair Lemma

Definition
Critical Pair: pair of reducts of most general overlap of Ihss.

(Invited talk this afternoon)
For Lambda-calculus HRS:

app M N — app (lam Ax.app M x) N — app M N

lam Ay .My «— lam Ax.app (lam Ay.M y) x — lam Ax.M x

Theorem
Locally confluent iff all critical pairs are.

HRS meta-theory: Critical Pair Lemma

Definition
Critical Pair: pair of reducts of most general overlap of Ihss.

(Invited talk this afternoon)
For Lambda-calculus HRS:

app M N — app (lam Ax.app M x) N — app M N

lam Ay .My «— lam Ax.app (lam Ay.M y) x — lam Ax.M x

Theorem
Locally confluent iff all critical pairs are.

= for terminating — g, —r confluent, =g decidable.

HRS meta-theory: Bounded termination

Definition
Bounded reduction: creation depth of redexes bounded

HRS meta-theory: Bounded termination

Definition

Bounded reduction: creation depth of redexes bounded
rule a — a:

a— a— a— a bounded (by 3)

a— a— a— ...not bounded

HRS meta-theory: Bounded termination

Definition

Bounded reduction: creation depth of redexes bounded
rule a — a:

a— a— a— a bounded (by 3)

a— a— a— ...not bounded

Theorem
Bounded reductions are terminating.

HRS meta-theory: Bounded termination

Definition

Bounded reduction: creation depth of redexes bounded
rule a — a:

a— a— a— a bounded (by 3)

a— a— a— ...not bounded

Theorem
Bounded reductions are terminating.

= finite developments (bound 1)
= reduction up to order of contraction (permutation equivalence)
= neededness, normalisation of needed strategy

HRS meta-theory: Left-linear + fully-extended =
Standardisation

Definition
Left-linear: lhss are linear
Fully-extended /applied: free vars have all bound vars as arguments

HRS meta-theory: Left-linear + fully-extended =
Standardisation

Definition
Left-linear: lhss are linear
Fully-extended /applied: free vars have all bound vars as arguments

All rules above left-linear
eta-rule not fully-extended.

HRS meta-theory: Left-linear + fully-extended =
Standardisation

Definition
Left-linear: lhss are linear
Fully-extended /applied: free vars have all bound vars as arguments

All rules above left-linear
eta-rule not fully-extended.

Definition
Steps Out-of-order: inside-out or right-to-left
Standardisation: swap out-of-order steps

HRS meta-theory: Left-linear + fully-extended =
Standardisation

Definition
Left-linear: lhss are linear
Fully-extended /applied: free vars have all bound vars as arguments

All rules above left-linear
eta-rule not fully-extended.

Definition
Steps Out-of-order: inside-out or right-to-left
Standardisation: swap out-of-order steps

Theorem
Left-linear + fully-extended = standardisation ends in standard

HRS meta-theory: Left-linear + fully-extended =
Standardisation

Definition
Left-linear: lhss are linear
Fully-extended /applied: free vars have all bound vars as arguments

All rules above left-linear
eta-rule not fully-extended.

Definition
Steps Out-of-order: inside-out or right-to-left
Standardisation: swap out-of-order steps

Theorem
Left-linear + fully-extended = standardisation ends in standard

= Standardised reduction permutation equivalent to original
= normal order sound to implement Lambda-calculus/FP.

HRS meta-theory: Orthogonal = Confluent

Definition
Orthogonal: left-linear and no criticial pairs.

HRS meta-theory: Orthogonal = Confluent

Definition

Orthogonal: left-linear and no criticial pairs.
All rules above.

Non-example: add eq(x, x) — true

HRS meta-theory: Orthogonal = Confluent

Definition
Orthogonal: left-linear and no criticial pairs.

All rules above.
Non-example: add eq(x, x) — true

Theorem
Orthogonal = confluent

HRS meta-theory: Orthogonal = Confluent

Definition
Orthogonal: left-linear and no criticial pairs.

All rules above.
Non-example: add eq(x, x) — true

Theorem
Orthogonal = confluent

= all reductions to normal form permutation equivalent
= unique normal forms (normalising strategy =g decidable)

HRS meta-theory: RPO termination via semantic labelling

HRS meta-theory: RPO termination via semantic labelling

Definition

RPO termination £ >gpo r:

>grpo obtained by lifting wfo > on signature to terms
compatible with computability /reducibility

HRS meta-theory: RPO termination via semantic labelling

Definition

RPO termination £ >gpo r:

>grpo obtained by lifting wfo > on signature to terms
compatible with computability /reducibility

Theorem
If £ >rpo r then — terminating

HRS meta-theory: RPO termination via semantic labelling

Definition

RPO termination £ >gpo r:

>grpo obtained by lifting wfo > on signature to terms
compatible with computability /reducibility

Theorem
If £ >rpo r then — terminating

Definition
Semantics: tutorial this morning, and [¢] = []

HRS meta-theory: RPO termination via semantic labelling

Definition

RPO termination £ >gpo r:

>grpo obtained by lifting wfo > on signature to terms
compatible with computability /reducibility

Theorem
If £ >rpo r then — terminating

Definition

Semantics: tutorial this morning, and [¢] = []

Definition

Labelling: label symbols by arguments semantics, labelled rules.

Semantics guarantees labelling invariant under reduction

HRS meta-theory: RPO termination via semantic labelling

Definition

RPO termination £ >gpo r:

>grpo obtained by lifting wfo > on signature to terms
compatible with computability/reducibility

Theorem
If £ >rpo r then — terminating

Definition

Semantics: tutorial this morning, and [¢] = []

Definition

Labelling: label symbols by arguments semantics, labelled rules.
Semantics guarantees labelling invariant under reduction
Theorem

If labelled system RPO terminating, then —g terminating
Example: Lambda-labelled explicit subs are RPO-terminating.

Lambda-calculus with explicit subs: usual presentation

(M.MN — M(x:=N)

x(x:==N) — N

y{x:=N) — y wherey # x
(MiMy)(x:=N) — M(x:=N)My(x:=N)
(Ay.-M){(x:=N) — Ay.M{(x:=N)

Lambda-calculus with explicit subs: naive HRS

Signature:
app : o— (0o—0)
lam : (0o —o0)—o0

{u=2) : (0+—0)—0—0

Signature:
app : o— (o0— o)
lam : (0o —o0)—o0
{x2=) : (0+—0)—0—0
Rules:
app(lamiAx. M x)N —
x(x:=N) —
y(x=N) —
(app (M1 x) (M2 x)){x:=N) —
(lamAy.Mxy)(x:=N) —

Lambda-calculus with explicit subs: naive HRS

M x(x:=N)

N

y

app (M x)(x:=N) (M2 x)(x:=N)
lam \y.(M x y)(x:=N)

Lambda-calculus with explicit subs: naive HRS

Signature:
app o— (0o — o)
lam (0o —0)—o0
(=) (0—0)—0—0
Rules
app(lamiAx. M x)N —
x(x:=N) —
y(x:=N) —
(app (M1 x) (M2 x)){x:=N) —
(lamAy.Mxy)(x:=N) —

Problems with third rule:

M x(x:=N)

N

y

app (M1 x)(x:=N) (M x)(x:=N)
lam Ay.(M x y)(x:=N)

» not faithful: y term var, substitute any (closed) term for it

Lambda-calculus with explicit subs: naive HRS

L

Signature:
app o— (0o — o)
lam (0o —0)—o0
(=) (0—0)—0—0
Rules
app(lamix.M x)N
x(x:=N)
y{x:=N)
(app (M1 x) (M2 x))(x:=N)
(lamAy.Mx y)(x:=N)

Problems with third rule:

M x(x:=N)

N

y

app (M1 x)(x:=N) (M x)(x:=N)
lam Ay.(M x y)(x:=N)

» not faithful: y term var, substitute any (closed) term for it

» not fully-extended: term substituted for y may not contain x

Lambda-calculus with explicit subs: less naive HRS

Signature:
app : o— (0o—0)
lam : (v —o0)—o0
var © v —o0

(=) : (o—v)—o0—o0

Lambda-calculus with explicit subs: less naive HRS

Signature:
app : o—(0o—o0)
lam : (v —o0)—o0
var . VvV —0
(=) : (o—v)—o0—o0
Rules:

app(lamAx.M x)N

(var x)(x:=N)

(var y)(x:=N)

(app(My X) (Mo X)) (x:=N)
(lam Ay .M x y)(x:=N)

A

(M x)(x:=N)

N

y

app(My x) {(x:=N)(M2 x){x:=N)
lam Ay.(M x y){(x:=N)

Lambda-calculus with explicit subs: less naive HRS

Signature:

app
lam

o— (0—0)
(v—0)—o0
v—o

(0—v)—o0—o0

app(lamAx.M x)N (M x)(x:=N)
(var x)(x:=N N
(vary) y

app(Mi x)(x:=N)(Maz x)(x:=N)
lam A\y.(M x y)(x:=N)

A

Problem with third rule?:
» still not fully-extended

Lambda-calculus with explicit subs: less naive HRS

Signature:
app o— (0—0)
lam (v—0)—o0
var v—o
(==) (0—v)—o0—o0
Rules
app(lamAx. M x)N —
(varx)(x:=N) —
(vary)(x:==N) —
(app(My x) (M2 X)) (x:=N) —
(lamAy.Mxy)(x:=N) —

Problem with third rule?:
» still not fully-extended

(M x)(x:=N)

N

y

app(My x) {(x:=N)(M2 x){x:=N)
lam Ay.(M x y){(x:=N)

» but doesn’t matter since never substituted for .names

Lambda-calculus with patterns: usual presentation

Terms:
M:=x| MM |\M.M

free variables of abstracted term bound in body

Rule scheme:

(AP.M)P® — M°

Steps as usual, e.g.

(AMAz.zxy).x)A\z.zMN — M

Lambda-calculus with patterns: usual presentation

Terms:
M:=x| MM |\M.M

free variables of abstracted term bound in body

Rule scheme:

(AP.M)P® — M°

Steps as usual, e.g.
(AMAz.zxy).x)A\z.zMN — M
with syntactic sugar:

(Ax, y).x)(M, Ny — M

P-pattern redex -2 contractum

/

N argument

7\

body

pattern

Lambda-calculus with patterns: HRS

Rules:
app (lamAX(PR).(ZX))PZ) — ZZ

for every pattern P

Lambda-calculus with patterns: HRS

Rules:
app (lamAX(PR).(ZX))PZ) — ZZ
for every pattern P

Theorem
Abstracted terms linear and not narrowable = confluent

Proof.
Orthogonal HRS!

Pure pattern calculus: part 1

du=zxz (xeyp)|dt
ex=d|[0]t—t

Definition 7 (Basic Matching). The basic matching {ury p}, of a term p
(called the pattern) against a term u (called the argument) relative to a set 0 of
binding variables and a disjoint set vy of constructing variables (or constructors)
is the partial operation defined by applying the following equations in order

furvy 2}, = {u/x} ifxed

{zrg 2}, ={} ifxeny

fvurg ¢p}y ={uvre ¢}, W{ure p}, if ¢ pis a v, f-matchable form
and v u is a y-matchable form

furo v}y := none if p is a 7, f-matchable form
and w is a y-matchable form

fure p}y := undefined otherwise.

Pure pattern calculus: part 2

(B1p = 5) u >y {u/[0] p}y s

/ ’
>y u Dy u

(0]p — s) u=> {u/[0] p}y s rud, 1 u ruDyru

P00 B
0lp—s 2 [0]p —s 0lp—s 2 [0]lp— s

Pure pattern calculus: part 2

(B1p = 5) u >y {u/[0] p}y s

I e
(0]p — s) u=> {u/[0] p}y s ru=,7" u ruDyru
P00 B
0lp—s >, [0]p —s 0lp—s 2, [0]p— s
Theorem
Pure pattern calculus is confluent
Proof.

Tait—Martin-Lof

Pure pattern calculus: HRS

Rules:
app (lam (\3.(P3)) M\X.(ZR))(PZ) — ZZ

for every pattern P

Pure pattern calculus: HRS

Rules:
app (lam (\3.(P3)) M\X.(ZR))(PZ) — ZZ
for every pattern P

Theorem
Pure pattern calculus is confluent

Proof.
By orthogonality for HRSs, with non-substitutable names.

	Higher-Order Rewriting
	HRS meta-theory
	Lambda-calculus with explicit substitutions
	Lambda-calculus with patterns

