# Names in Higher-Order Rewriting 

## Vincent van Oostrom

Theoretical Philosophy
Universiteit Utrecht
The Netherlands
June 8, 2007

Higher-Order Rewriting

HRS meta-theory

Lambda-calculus with explicit substitutions

Lambda-calculus with patterns

## CL : TRS = Lambda-calculus : HRS

Combinatory Logic, Lambda-calculus
first-/higher-order term rewriting systems

## $\mathrm{CL}: \mathrm{TRS}=$ Lambda-calculus : HRS

Combinatory Logic, Lambda-calculus

- not closed under rule manipulations
first-/higher-order term rewriting systems
- closed under many rule manipulations


## $\mathrm{CL}: \mathrm{TRS}=$ Lambda-calculus : HRS

Combinatory Logic, Lambda-calculus

- not closed under rule manipulations
- rule schemes
first-/higher-order term rewriting systems
- closed under many rule manipulations
- rules


## $\mathrm{CL}: \mathrm{TRS}=$ Lambda-calculus : HRS

Combinatory Logic, Lambda-calculus

- not closed under rule manipulations
- rule schemes
- logical
first-/higher-order term rewriting systems
- closed under many rule manipulations
- rules
- algebraic


## Higher-Order Equational Logic (=)

Terms over (simply) typed signature

Inference system:

## Higher-Order Equational Logic (=)

Terms over (simply) typed signature
Inference system:

- equivalence rules (reflexivity,symmetry,transitivity)


## Higher-Order Equational Logic (=)

Terms over (simply) typed signature
Inference system:

- equivalence rules (reflexivity,symmetry,transitivity)
- congruence rules (application,abstraction)


## Higher-Order Equational Logic (=)

Terms over (simply) typed signature
Inference system:

- equivalence rules (reflexivity,symmetry,transitivity)
- congruence rules (application,abstraction)
- $\alpha \beta \eta$ rule schemes


## Higher-Order Equational Logic (=)

Terms over (simply) typed signature
Inference system:

- equivalence rules (reflexivity,symmetry,transitivity)
- congruence rules (application,abstraction)
- $\alpha \beta \eta$ rule schemes
- user-defined rules $R$ of terms of same type $(\ell \rightarrow r)$


## Higher-Order Rewriting $(\rightarrow)$

- Drop symmetry, allow transitivity only at top level


## Higher-Order Rewriting $(\rightarrow)$

- Drop symmetry, allow transitivity only at top level
- HRS: modulo $\alpha \beta \eta$


## Higher-Order Rewriting $(\rightarrow)$

- Drop symmetry, allow transitivity only at top level
- HRS: modulo $\alpha \beta \eta$
- IDTS: modulo $\alpha$, but $\beta \eta$ as steps


## Higher-Order Rewriting $(\rightarrow)$

- Drop symmetry, allow transitivity only at top level
- HRS: modulo $\alpha \beta \eta$
- IDTS: modulo $\alpha$, but $\beta \eta$ as steps


## Theorem

$={ }_{R}=\leftrightarrow_{R(\beta \eta)}^{*}$

## Higher-Order Rewriting $(\rightarrow)$

- Drop symmetry, allow transitivity only at top level
- HRS: modulo $\alpha \beta \eta$
- IDTS: modulo $\alpha$, but $\beta \eta$ as steps

Theorem
$={ }_{R}=\leftrightarrow_{R(\beta \eta)}^{*}$
Decide equational theory via rewriting

## HRS Terms, Rules, Rewriting

Signature:
(Simply) typed symbols
Terms:
$\lambda$-terms modulo $\alpha \beta \eta$ over signature represented by their $\beta \eta$-normal form

Rules:
Pairs of terms of same type, Ihs a pattern:
Definition
Pattern: free vars have only distinct bound vars as arguments.

Steps for rule $\ell \rightarrow r$ :
$s={ }_{\alpha \beta \eta} C[\lambda \vec{m} . \ell] \rightarrow C[\lambda \vec{m} . r]={ }_{\alpha \beta \eta} t$

## TRS as HRS

Signature:

$$
\begin{aligned}
0 & : \\
s & : \\
+ & : \\
+ & \iota \rightarrow \iota \rightarrow \iota
\end{aligned}
$$

Rules for $m, n: \iota$

$$
\begin{aligned}
+m 0 & \rightarrow m \\
+m(s n) & \rightarrow s(+m n)
\end{aligned}
$$

Steps:

$$
\begin{array}{rlrl}
+0(s 0) & ={ }_{\alpha \beta \eta} & & (\lambda m n .+m(s n)) 00 \\
& \rightarrow & (\lambda m n \cdot s(+m n)) 00 \\
& ={ }_{\alpha \beta \eta} & s(+00) \\
& ={ }_{\alpha \beta \eta} & s((\lambda m \cdot+m 0) 0) \\
& \rightarrow & s((\lambda m \cdot m) 0) \\
& ={ }_{\alpha \beta \eta} & s 0
\end{array}
$$

## Lambda-calculus as HRS

Signature:

$$
\begin{aligned}
& \text { app }: 0 \rightarrow(o \rightarrow 0) \\
& \text { lam }:(o \rightarrow 0) \rightarrow 0
\end{aligned}
$$

Rules for $\mathrm{M}: \mathrm{O} \rightarrow \mathrm{O}, \mathrm{N}: \mathrm{O}$

$$
\begin{aligned}
\operatorname{app}(\operatorname{lam} \lambda x \cdot M x) N & \rightarrow M N \\
\operatorname{lam} \lambda x \cdot \operatorname{app} M x & \rightarrow M
\end{aligned}
$$

Steps:

$$
\begin{array}{ll}
\operatorname{app}(\operatorname{lam} \lambda y \cdot y)(\operatorname{lam} \lambda z . z) \\
={ }_{\alpha \beta \eta} & (\lambda M N \cdot a p p(\operatorname{lam} \lambda x \cdot M x) N)(\lambda y \cdot y)(\operatorname{lam} \lambda z . z) \\
\quad \rightarrow & (\lambda M N \cdot M N)(\lambda y \cdot y)(\operatorname{lam} \lambda z . z) \\
={ }_{\alpha \beta \eta} & \operatorname{lam} \lambda z . z
\end{array}
$$

$\operatorname{lam} \lambda x \cdot \operatorname{app} x x \quad \neq{ }_{\alpha \beta \eta} \quad(\lambda M . \operatorname{lam} \lambda x \cdot a p p M x) t$

## HRS meta-theory

Generalization of TRS and Lambda-calculus Combined difficulties:

## HRS meta-theory

Generalization of TRS and Lambda-calculus Combined difficulties:

- TRS $\Rightarrow$ arbitrary rules (overlap)


## HRS meta-theory

Generalization of TRS and Lambda-calculus Combined difficulties:

- TRS $\Rightarrow$ arbitrary rules (overlap)
- Lambda-calculus $\Rightarrow$ second-orderness (nesting)


## HRS meta-theory

Generalization of TRS and Lambda-calculus
Combined difficulties:

- TRS $\Rightarrow$ arbitrary rules (overlap)
- Lambda-calculus $\Rightarrow$ second-orderness (nesting) patterns make HRSs first-order-like


## HRS meta-theory

Generalization of TRS and Lambda-calculus Combined difficulties:

- TRS $\Rightarrow$ arbitrary rules (overlap)
- Lambda-calculus $\Rightarrow$ second-orderness (nesting) patterns make HRSs first-order-like orthogonality makes HRSs $\lambda$-calculus-like


## HRS meta-theory: Critical Pair Lemma

Definition
Critical Pair: pair of reducts of most general overlap of Ihss.
(Invited talk this afternoon)

## HRS meta-theory: Critical Pair Lemma

## Definition

Critical Pair: pair of reducts of most general overlap of Ihss.
(Invited talk this afternoon)
For Lambda-calculus HRS:

$$
\begin{aligned}
& \operatorname{app} M N \leftarrow \operatorname{app}(\operatorname{lam} \lambda x \cdot \operatorname{app} M x) N \rightarrow \operatorname{app} M N \\
& \operatorname{lam} \lambda y \cdot M y \leftarrow \operatorname{lam} \lambda x \cdot \operatorname{app}(\operatorname{lam} \lambda y \cdot M y) x \rightarrow \operatorname{lam} \lambda x \cdot M x
\end{aligned}
$$

## HRS meta-theory: Critical Pair Lemma

## Definition

Critical Pair: pair of reducts of most general overlap of Ihss.
(Invited talk this afternoon)
For Lambda-calculus HRS:

$$
\begin{aligned}
& \operatorname{app} M N \leftarrow \operatorname{app}(\operatorname{lam} \lambda x \cdot \operatorname{app} M x) N \rightarrow \operatorname{app} M N \\
& \operatorname{lam} \lambda y \cdot M y \leftarrow \operatorname{lam} \lambda x \cdot \operatorname{app}(\operatorname{lam} \lambda y \cdot M y) x \rightarrow \operatorname{lam} \lambda x \cdot M x
\end{aligned}
$$

Theorem
Locally confluent iff all critical pairs are.

## HRS meta-theory: Critical Pair Lemma

## Definition

Critical Pair: pair of reducts of most general overlap of Ihss.
(Invited talk this afternoon)
For Lambda-calculus HRS:

$$
\begin{aligned}
& \operatorname{app} M N \leftarrow \operatorname{app}(\operatorname{lam} \lambda x \cdot \operatorname{app} M x) N \rightarrow \operatorname{app} M N \\
& \operatorname{lam} \lambda y \cdot M y \leftarrow \operatorname{lam} \lambda x \cdot \operatorname{app}(\operatorname{lam} \lambda y \cdot M y) x \rightarrow \operatorname{lam} \lambda x \cdot M x
\end{aligned}
$$

## Theorem

Locally confluent iff all critical pairs are.
$\Rightarrow$ for terminating $\rightarrow_{R}, \rightarrow_{R}$ confluent, $=R$ decidable.

## HRS meta-theory: Bounded termination

Definition
Bounded reduction: creation depth of redexes bounded

## HRS meta-theory: Bounded termination

## Definition

Bounded reduction: creation depth of redexes bounded rule $a \rightarrow a$ :
$a \rightarrow a \rightarrow a \rightarrow a$ bounded (by 3 )
$a \rightarrow a \rightarrow a \rightarrow \ldots$ not bounded

## HRS meta-theory: Bounded termination

Definition
Bounded reduction: creation depth of redexes bounded rule $a \rightarrow a$ :
$a \rightarrow a \rightarrow a \rightarrow a$ bounded (by 3)
$a \rightarrow a \rightarrow a \rightarrow \ldots$ not bounded
Theorem
Bounded reductions are terminating.

## HRS meta-theory: Bounded termination

## Definition

Bounded reduction: creation depth of redexes bounded rule $a \rightarrow a$ :
$a \rightarrow a \rightarrow a \rightarrow a$ bounded (by 3)
$a \rightarrow a \rightarrow a \rightarrow \ldots$ not bounded
Theorem
Bounded reductions are terminating.
$\Rightarrow$ finite developments (bound 1)
$\Rightarrow$ reduction up to order of contraction (permutation equivalence)
$\Rightarrow$ neededness, normalisation of needed strategy

## HRS meta-theory: Left-linear + fully-extended $\Rightarrow$

 StandardisationDefinition
Left-linear: Ihss are linear
Fully-extended/applied: free vars have all bound vars as arguments

## HRS meta-theory: Left-linear + fully-extended $\Rightarrow$

 StandardisationDefinition
Left-linear: Ihss are linear
Fully-extended/applied: free vars have all bound vars as arguments
All rules above left-linear
eta-rule not fully-extended.

## HRS meta-theory: Left-linear + fully-extended $\Rightarrow$

 StandardisationDefinition
Left-linear: Ihss are linear
Fully-extended/applied: free vars have all bound vars as arguments
All rules above left-linear
eta-rule not fully-extended.
Definition
Steps Out-of-order: inside-out or right-to-left
Standardisation: swap out-of-order steps

## HRS meta-theory: Left-linear + fully-extended $\Rightarrow$

 StandardisationDefinition
Left-linear: Ihss are linear
Fully-extended/applied: free vars have all bound vars as arguments
All rules above left-linear
eta-rule not fully-extended.
Definition
Steps Out-of-order: inside-out or right-to-left
Standardisation: swap out-of-order steps
Theorem
Left-linear + fully-extended $\Rightarrow$ standardisation ends in standard

## HRS meta-theory: Left-linear + fully-extended $\Rightarrow$

 Standardisation
## Definition

Left-linear: Ihss are linear
Fully-extended/applied: free vars have all bound vars as arguments
All rules above left-linear
eta-rule not fully-extended.

## Definition

Steps Out-of-order: inside-out or right-to-left
Standardisation: swap out-of-order steps
Theorem
Left-linear + fully-extended $\Rightarrow$ standardisation ends in standard
$\Rightarrow$ Standardised reduction permutation equivalent to original
$\Rightarrow$ normal order sound to implement Lambda-calculus/FP.

## HRS meta-theory: Orthogonal $\Rightarrow$ Confluent

Definition
Orthogonal: left-linear and no criticial pairs.

## HRS meta-theory: Orthogonal $\Rightarrow$ Confluent

Definition
Orthogonal: left-linear and no criticial pairs.
All rules above.
Non-example: add eq $(x, x) \rightarrow$ true

## HRS meta-theory: Orthogonal $\Rightarrow$ Confluent

Definition
Orthogonal: left-linear and no criticial pairs.
All rules above.
Non-example: add eq $(x, x) \rightarrow$ true
Theorem
Orthogonal $\Rightarrow$ confluent

## HRS meta-theory: Orthogonal $\Rightarrow$ Confluent

## Definition

Orthogonal: left-linear and no criticial pairs.
All rules above.
Non-example: add eq $(x, x) \rightarrow$ true
Theorem
Orthogonal $\Rightarrow$ confluent
$\Rightarrow$ all reductions to normal form permutation equivalent
$\Rightarrow$ unique normal forms (normalising strategy $={ }_{R}$ decidable)

HRS meta-theory: RPO termination via semantic labelling

## HRS meta-theory: RPO termination via semantic labelling

Definition
RPO termination $\ell>_{R P O} r$ :
$>_{\text {RPO }}$ obtained by lifting wfo $>$ on signature to terms compatible with computability/reducibility

## HRS meta-theory: RPO termination via semantic labelling

Definition
RPO termination $\ell>_{R P O} r$ :
$>_{\text {RPO }}$ obtained by lifting wfo $>$ on signature to terms compatible with computability/reducibility

Theorem
If $\ell>_{\text {RPO }} r$ then $\rightarrow$ terminating

## HRS meta-theory: RPO termination via semantic labelling

Definition
RPO termination $\ell>_{R P O} r$ :
$>_{\text {RPO }}$ obtained by lifting wfo $>$ on signature to terms compatible with computability/reducibility

Theorem
If $\ell>_{\text {RPO }} r$ then $\rightarrow$ terminating
Definition
Semantics: tutorial this morning, and $\llbracket \ell \rrbracket=\llbracket r \rrbracket$

## HRS meta-theory: RPO termination via semantic labelling

Definition
RPO termination $\ell>_{R P O} r$ :
$>_{R P O}$ obtained by lifting wfo $>$ on signature to terms compatible with computability/reducibility

Theorem
If $\ell>_{\text {RPO }} r$ then $\rightarrow$ terminating
Definition
Semantics: tutorial this morning, and $\llbracket \ell \rrbracket=\llbracket r \rrbracket$
Definition
Labelling: label symbols by arguments semantics, labelled rules.
Semantics guarantees labelling invariant under reduction

## HRS meta-theory: RPO termination via semantic labelling

## Definition

RPO termination $\ell>_{R P O} r$ :
$>_{R P O}$ obtained by lifting wfo $>$ on signature to terms compatible with computability/reducibility

Theorem
If $\ell>_{\text {RPO }} r$ then $\rightarrow$ terminating
Definition
Semantics: tutorial this morning, and $\llbracket \ell \rrbracket=\llbracket r \rrbracket$
Definition
Labelling: label symbols by arguments semantics, labelled rules.
Semantics guarantees labelling invariant under reduction
Theorem
If labelled system RPO terminating, then $\rightarrow_{R}$ terminating
Example: Lambda-labelled explicit subs are RPO-terminating.

## Lambda-calculus with explicit subs: usual presentation

$$
\begin{aligned}
(\lambda x \cdot M) N & \rightarrow M\langle x:=N\rangle \\
x\langle x:=N\rangle & \rightarrow N \\
y\langle x:=N\rangle & \rightarrow y \quad \text { where } y \neq x \\
\left(M_{1} M_{2}\right)\langle x:=N\rangle & \rightarrow M_{1}\langle x:=N\rangle M_{2}\langle x:=N\rangle \\
(\lambda y \cdot M)\langle x:=N\rangle & \rightarrow \lambda y \cdot M\langle x:=N\rangle
\end{aligned}
$$

## Lambda-calculus with explicit subs: naïve HRS

Signature:

$$
\begin{aligned}
\text { app } & : 0 \rightarrow(0 \rightarrow 0) \\
\operatorname{lam} & :(0 \rightarrow 0) \rightarrow 0 \\
-\left\langle_{-}:=-\right\rangle & :(0 \leftarrow 0) \rightarrow 0 \rightarrow 0
\end{aligned}
$$

## Lambda-calculus with explicit subs: naïve HRS

Signature:

$$
\begin{aligned}
\text { app } & : 0 \rightarrow(0 \rightarrow 0) \\
\text { lam } & :(0 \rightarrow 0) \rightarrow 0 \\
\left.\__{-}:={ }_{-}\right\rangle & :(0 \leftarrow 0) \rightarrow 0 \rightarrow 0
\end{aligned}
$$

Rules:

$$
\begin{aligned}
\operatorname{app}(\operatorname{lam} \lambda x \cdot M x) N & \rightarrow M x\langle x:=N\rangle \\
x\langle x:=N\rangle & \rightarrow N \\
y\langle x:=N\rangle & \rightarrow y \\
\left(\operatorname{app}\left(M_{1} x\right)\left(M_{2} x\right)\right)\langle x:=N\rangle & \rightarrow \operatorname{app}\left(M_{1} x\right)\langle x:=N\rangle\left(M_{2} x\right)\langle x:=N\rangle \\
(\operatorname{lam} \lambda y \cdot M x y)\langle x:=N\rangle & \rightarrow \operatorname{lam} \lambda y \cdot(M x y)\langle x:=N\rangle
\end{aligned}
$$

## Lambda-calculus with explicit subs: naïve HRS

Signature:

$$
\begin{aligned}
\text { app } & : 0 \rightarrow(0 \rightarrow 0) \\
\text { lam } & :(0 \rightarrow 0) \rightarrow 0 \\
-\left\langle \_:=-\right\rangle & :(0 \leftarrow 0) \rightarrow 0 \rightarrow 0
\end{aligned}
$$

Rules:

$$
\begin{aligned}
\operatorname{app}(\operatorname{lam} \lambda x \cdot M x) N & \rightarrow M x\langle x:=N\rangle \\
x\langle x:=N\rangle & \rightarrow N \\
y\langle x:=N\rangle & \rightarrow y \\
\left(\operatorname{app}\left(M_{1} x\right)\left(M_{2} x\right)\right)\langle x:=N\rangle & \rightarrow \operatorname{app}\left(M_{1} x\right)\langle x:=N\rangle\left(M_{2} x\right)\langle x:=N\rangle \\
(\operatorname{lam} \lambda y \cdot M x y)\langle x:=N\rangle & \rightarrow \operatorname{lam} \lambda y \cdot(M x y)\langle x:=N\rangle
\end{aligned}
$$

Problems with third rule:

- not faithful: $y$ term var, substitute any (closed) term for it


## Lambda-calculus with explicit subs: naïve HRS

Signature:

$$
\begin{aligned}
\text { app } & : 0 \rightarrow(0 \rightarrow 0) \\
\operatorname{lam} & :(0 \rightarrow 0) \rightarrow 0 \\
\__{-}\langle=-\rangle & :(0 \leftarrow 0) \rightarrow 0 \rightarrow 0
\end{aligned}
$$

Rules:

$$
\begin{aligned}
\operatorname{app}(\operatorname{lam} \lambda x \cdot M x) N & \rightarrow M x\langle x:=N\rangle \\
x\langle x:=N\rangle & \rightarrow N \\
y\langle x:=N\rangle & \rightarrow y \\
\left(\operatorname{app}\left(M_{1} x\right)\left(M_{2} x\right)\right)\langle x:=N\rangle & \rightarrow \operatorname{app}\left(M_{1} x\right)\langle x:=N\rangle\left(M_{2} x\right)\langle x:=N\rangle \\
(\operatorname{lam} \lambda y \cdot M x y)\langle x:=N\rangle & \rightarrow \operatorname{lam} \lambda y \cdot(M x y)\langle x:=N\rangle
\end{aligned}
$$

Problems with third rule:

- not faithful: $y$ term var, substitute any (closed) term for it
- not fully-extended: term substituted for $y$ may not contain $x$


## Lambda-calculus with explicit subs: less naïve HRS

Signature:

$$
\begin{aligned}
\text { app } & : 0 \rightarrow(0 \rightarrow 0) \\
\text { lam } & :(\nu \rightarrow 0) \rightarrow 0 \\
\text { var } & : \nu \rightarrow 0 \\
\left.\mathcal{-}_{-}:==_{-}\right\rangle & :(0 \leftarrow \nu) \rightarrow 0 \rightarrow 0
\end{aligned}
$$

## Lambda-calculus with explicit subs: less naïve HRS

Signature:

$$
\begin{aligned}
\text { app } & : 0 \rightarrow(0 \rightarrow 0) \\
\text { lam } & :(\nu \rightarrow 0) \rightarrow 0 \\
\text { var } & : \nu \rightarrow 0 \\
\left.\__{-}:={ }_{-}\right\rangle & :(0 \leftarrow \nu) \rightarrow 0 \rightarrow 0
\end{aligned}
$$

Rules:

$$
\begin{aligned}
\operatorname{app}(\operatorname{lam} \lambda x \cdot M x) N & \rightarrow(M x)\langle x:=N\rangle \\
(\operatorname{var} x)\langle x:=N\rangle & \rightarrow N \\
(\operatorname{var} y)\langle x:=N\rangle & \rightarrow y \\
\left(\operatorname{app}\left(M_{1} x\right)\left(M_{2} x\right)\right)\langle x:=N\rangle & \rightarrow \operatorname{app}\left(M_{1} x\right)\langle x:=N\rangle\left(M_{2} x\right)\langle x:=N\rangle \\
(\operatorname{lam} \lambda y \cdot M x y)\langle x:=N\rangle & \rightarrow \operatorname{lam} \lambda y \cdot(M x y)\langle x:=N\rangle
\end{aligned}
$$

## Lambda-calculus with explicit subs: less naïve HRS

Signature:

$$
\begin{aligned}
\text { app } & : 0 \rightarrow(0 \rightarrow 0) \\
\text { lam } & :(\nu \rightarrow 0) \rightarrow 0 \\
\text { var } & : \nu \rightarrow 0 \\
-\left\langle \_:=-\right\rangle & :(0 \leftarrow \nu) \rightarrow 0 \rightarrow 0
\end{aligned}
$$

Rules:

$$
\begin{aligned}
\operatorname{app}(\operatorname{lam} \lambda x \cdot M x) N & \rightarrow(M x)\langle x:=N\rangle \\
(\operatorname{var} x)\langle x:=N\rangle & \rightarrow N \\
(\operatorname{var} y)\langle x:=N\rangle & \rightarrow y \\
\left(\operatorname{app}\left(M_{1} x\right)\left(M_{2} x\right)\right)\langle x:=N\rangle & \rightarrow \operatorname{app}\left(M_{1} x\right)\langle x:=N\rangle\left(M_{2} x\right)\langle x:=N\rangle \\
(\operatorname{lam} \lambda y \cdot M x y)\langle x:=N\rangle & \rightarrow \operatorname{lam} \lambda y \cdot(M x y)\langle x:=N\rangle
\end{aligned}
$$

Problem with third rule?:

- still not fully-extended


## Lambda-calculus with explicit subs: less naïve HRS

Signature:

$$
\begin{aligned}
\text { app } & : 0 \rightarrow(0 \rightarrow 0) \\
\text { lam } & :(\nu \rightarrow 0) \rightarrow 0 \\
\text { var } & : \nu \rightarrow 0 \\
-\left\langle \_:=-\right\rangle & :(0 \leftarrow \nu) \rightarrow 0 \rightarrow 0
\end{aligned}
$$

Rules:

$$
\begin{aligned}
\operatorname{app}(\operatorname{lam} \lambda x \cdot M x) N & \rightarrow(M x)\langle x:=N\rangle \\
(\operatorname{var} x)\langle x:=N\rangle & \rightarrow N \\
(\operatorname{var} y)\langle x:=N\rangle & \rightarrow y \\
\left(\operatorname{app}\left(M_{1} x\right)\left(M_{2} x\right)\right)\langle x:=N\rangle & \rightarrow \operatorname{app}\left(M_{1} x\right)\langle x:=N\rangle\left(M_{2} x\right)\langle x:=N\rangle \\
(\operatorname{lam} \lambda y \cdot M x y)\langle x:=N\rangle & \rightarrow \operatorname{lam} \lambda y \cdot(M x y)\langle x:=N\rangle
\end{aligned}
$$

Problem with third rule?:

- still not fully-extended
- but doesn't matter since never substituted for names


## Lambda-calculus with patterns: usual presentation

Terms:

$$
M::=x|M M| \lambda M \cdot M
$$

free variables of abstracted term bound in body

Rule scheme:

$$
(\lambda P . M) P^{\sigma} \rightarrow M^{\sigma}
$$

Steps as usual, e.g.

$$
(\lambda(\lambda z . z x y) \cdot x) \lambda z . z M N \rightarrow M
$$

## Lambda-calculus with patterns: usual presentation

Terms:

$$
M::=x|M M| \lambda M \cdot M
$$

free variables of abstracted term bound in body
Rule scheme:

$$
(\lambda P . M) P^{\sigma} \rightarrow M^{\sigma}
$$

Steps as usual, e.g.

$$
(\lambda(\lambda z . z x y) \cdot x) \lambda z . z M N \rightarrow M
$$

with syntactic sugar:

$$
(\lambda\langle x, y\rangle . x)\langle M, N\rangle \rightarrow M
$$



## Lambda-calculus with patterns: HRS

Rules:

$$
\operatorname{app}(\operatorname{lam} \lambda \vec{x}(P \vec{x}) \cdot(Z \vec{x}))(P \vec{Z}) \quad \rightarrow \quad Z \vec{Z}
$$

for every pattern $P$

## Lambda-calculus with patterns: HRS

Rules:

$$
\operatorname{app}(\operatorname{lam} \lambda \vec{x}(P \vec{x}) \cdot(Z \vec{x}))(P \vec{Z}) \quad \rightarrow \quad Z \vec{Z}
$$

for every pattern $P$
Theorem
Abstracted terms linear and not narrowable $\Rightarrow$ confluent
Proof.
Orthogonal HRS!

## Pure pattern calculus: part 1

```
\(d::=x(x \in \varphi) \mid d t\)
\(e::=d \mid[\theta] t \rightarrow t\)
```

Definition 7 (Basic Matching). The basic matching $\left\{u \triangleright_{\theta} p\right\}_{\gamma}$ of a term $p$ (called the pattern) against a term $u$ (called the argument) relative to a set $\theta$ of binding variables and a disjoint set $\gamma$ of constructing variables (or constructors) is the partial operation defined by applying the following equations in order

$$
\begin{aligned}
& \left\{u \triangleright_{\theta} x\right\}_{\gamma} \quad:=\{u / x\} \\
& \left\{\begin{array}{ll}
x \triangleright_{\theta} & x
\end{array}\right\}_{\gamma} \quad:=\{ \} \\
& \left\{\left\{\begin{array}{lll}
v & u \triangleright_{\theta} & q p
\end{array}\right\}_{\gamma}:=\left\{\begin{array}{ll}
v D_{\theta} & q
\end{array}\right\}_{\gamma} \uplus\left\{\begin{array}{ll}
u D_{\theta} & p
\end{array}\right\}_{\gamma}\right. \\
& \left\{\left\{\begin{array}{ll}
u \triangleright_{\theta} & p\}_{\gamma} \\
& :=\text { none }
\end{array}\right.\right. \\
& \left\{u \triangleright_{\theta} p\right\}_{\gamma} \quad:=\text { undefined }
\end{aligned}
$$

if $x \in \theta$
if $x \in \gamma$
if $q p$ is a $\gamma, \theta$-matchable form and $v u$ is a $\gamma$-matchable form if $p$ is a $\gamma, \theta$-matchable form and $u$ is a $\gamma$-matchable form otherwise.

## Pure pattern calculus: part 2

$$
([\theta] p \rightarrow s) u>_{\gamma}\{u /[\theta] p\}_{\gamma} s
$$

$$
\begin{array}{rr}
\frac{r \rightarrow_{\gamma} r^{\prime}}{([\theta] p \rightarrow s) u \rightarrow_{\gamma}\{u /[\theta] p\}_{\gamma} s} & \frac{u \rightarrow_{\gamma} u^{\prime}}{r u \rightarrow_{\gamma} r^{\prime} u} \\
\frac{p \rightarrow_{\gamma, \theta} p^{\prime}}{r u \rightarrow_{\gamma} r u^{\prime}} \\
{[\theta] p \rightarrow s \rightarrow_{\gamma}[\theta] p^{\prime} \rightarrow s} & \frac{s \rightarrow_{\gamma} s^{\prime}}{[\theta] p \rightarrow s \rightarrow_{\gamma}[\theta] p \rightarrow s^{\prime}}
\end{array}
$$

## Pure pattern calculus: part 2

$$
([\theta] p \rightarrow s) u>_{\gamma}\{u /[\theta] p\}_{\gamma} s
$$

$$
\begin{array}{rrr}
\frac{r}{([\theta] p \rightarrow s) u \rightarrow_{\gamma}\{u /[\theta] p\}_{\gamma} s} & \frac{r \rightarrow_{\gamma} r^{\prime}}{r u \rightarrow_{\gamma} r^{\prime} u} & \frac{u \rightarrow_{\gamma} u^{\prime}}{r u \rightarrow_{\gamma} r u^{\prime}} \\
\frac{p \rightarrow_{\gamma, \theta} p^{\prime}}{[\theta] p \rightarrow s \rightarrow_{\gamma}[\theta] p^{\prime} \rightarrow s} & \frac{s \rightarrow_{\gamma} s^{\prime}}{[\theta] p \rightarrow s \rightarrow_{\gamma}[\theta] p \rightarrow s^{\prime}}
\end{array}
$$

Theorem
Pure pattern calculus is confluent
Proof.
Tait-Martin-Löf

## Pure pattern calculus: HRS

Rules:

$$
\operatorname{app}(\operatorname{lam}(\lambda \vec{a} \cdot(P \vec{a}))(\lambda \vec{x} \cdot(Z \vec{x})))(P \vec{Z}) \rightarrow Z \vec{Z}
$$

for every pattern $P$

## Pure pattern calculus: HRS

Rules:

$$
\operatorname{app}(\operatorname{lam}(\lambda \vec{a} \cdot(P \vec{a}))(\lambda \vec{\lambda} \cdot(Z \vec{x})))(P \vec{Z}) \rightarrow Z \vec{Z}
$$

for every pattern $P$
Theorem
Pure pattern calculus is confluent
Proof.
By orthogonality for HRSs, with non-substitutable names.

