Preponement Vincent van Oostrom April 24, 2011

Abstract We refine the analysis of [1] for rewrite relations $\rightarrow = \triangleright \cup \triangleright$.

Preponement Theorem. Repeatedly replacing in a \rightarrow -reduction sequence the first occurrence of a subsequence of shape $a \triangleright \cdot \triangleright b$ for some a, b, by either

- (i) $a \triangleright b$; or
- (ii) $a \triangleright \cdot \twoheadrightarrow b$,

yields a coinitial \rightarrow -reduction sequence in which every object \rightarrow -reduces to an object in the original sequence, and in which \blacktriangleright -steps precede \triangleright -steps, except possibly for an infinite tail of \blacktriangleright -steps in case transformation (i) was applied infinitely often. The transformation preserves infiniteness and, in case only transformation (ii) was applied, the number of \blacktriangleright -steps (it may increase).

Proof. Clearly, both infiniteness and the property that every object in the transformed sequence →-reduces to some object in the original one are preserved by each transformation step. We show that an ever growing prefix remains stable, is such that \triangleright -steps precede \triangleright -steps, and in case only transformation (ii) was applied includes an ever growing number of the \triangleright -steps, initially taking the empty prefix. Suppose from some stage on a prefix of length n remains stable in the sense that no subsequence involving a step to the left of the nth object is replaced in subsequent transformation steps. Clearly, \triangleright -steps must precede \triangleright -steps in it. Distinguish cases on the →-step to its right.

- if there is no such step, the process stops as desired.
- if the first step to the right of the prefix is a \triangleright -step, then either it is not involved in any subsequent transformation step and adjoining it to the right of the prefix yields a prefix of length n + 1 stable from that stage on, or it is at some later stage the left step of a transformed subsequence of shape $a \triangleright b \triangleright b'$ and we distinguish case on the transformation step:
 - (i) then $a \triangleright b'$ and note that as $b \blacktriangleright b'$ if we infinitely often end up in this case we obtain a reduction comprising the prefix and $a \triangleright b \blacktriangleright b' \triangleright \ldots$, from which we conclude. Otherwise at some stage either the \triangleright -step from a becomes stable or the next item applies;
 - (ii) then $a \triangleright \cdot \twoheadrightarrow b'$ and in the next stage the next item applies.

If the suffix contains \triangleright -steps and only transformation (ii) is used, then case (ii) applies causing an increase in the number of \triangleright -steps in the prefix.

if the first step to the right of the prefix is a ▶-step, then by the stability assumption, the prefix does not end in a ▷-step, so in fact comprises only ▶-steps (possibly 0), and adjoining the ▶-step to its right yields a prefix of length n + 1 stable from that stage on.

If the stable prefix ever increases in length then the property that \triangleright -steps precede \triangleright -steps in it, will also hold for the final \rightarrow -reduction sequence.

Observe that under the conditions of the Preponement Theorem an infinite \rightarrow -reduction sequence is transformed into one having an infinite \triangleright - or \triangleright -suffix.

Remark. If we require instead that $a \triangleright \cdot \triangleright b$ implies either $a \triangleright b$ or $a \triangleright b'$, where b' allows some infinite \rightarrow -reduction sequence, the result goes through except that objects may not \rightarrow -reduce on the original sequence and the number of \triangleright -steps may not be preserved.

Corollary ([1]). If $\triangleright \cdot \triangleright \subseteq \triangleright \cup (\triangleright \cdot \neg)$, then \rightarrow is terminating if \triangleright and \triangleright are.

Proof. By the Preponement Theorem an infinite \rightarrow -reduction sequence would yield one with an infinite \triangleright - or \triangleright -suffix, contradicting termination of \triangleright or \triangleright . \Box

Corollary (Geser, Exercise 1.3.20 in [3]). If \rightarrow is transitive, then \rightarrow is terminating iff \triangleright and \triangleright are.

Proof. By the previous corollary using that $\rightarrow \cdot \rightarrow \subseteq \rightarrow$, entails $\triangleright \cdot \triangleright \subseteq \triangleright \cup \triangleright$. \Box

Corollary ([2] Lemma 51). If $\triangleright \cdot \blacktriangleright \subseteq \triangleright \cdot \triangleright$, then if *a* has an infinite \rightarrow -reduction but not an infinite \triangleright -reduction, then *a* has an infinite \rightarrow -reduction comprising a finite \triangleright -prefix and an infinite \triangleright -suffix.

Proof. By the Preponement Theorem, if a has an infinite \rightarrow -reduction then it has an infinite \rightarrow -reduction in which the \triangleright -steps precede the \triangleright -steps, from which we conclude by the assumption that a does not have an infinite \triangleright -reduction. \Box

Corollary (Bachmair and Dershowitz, Exercise 1.3.19 in [3]). If $\triangleright \cdot \triangleright \subseteq \triangleright \cdot \neg$, then $\triangleright^* \cdot \triangleright \cdot \triangleright^*$ is terminating iff \triangleright is.

Proof. The only-if direction being trivial, the Preponement Theorem yields that if there is an infinite $\triangleright^* \cdot \triangleright \cdot \triangleright^*$ -reduction from *a* there is an infinite \rightarrow -reduction from *a* in which the \triangleright -steps precede the \triangleright -steps, having infinitely many \triangleright -steps, i.e. an infinite \triangleright -reduction sequence from *a*, contradicting termination of \triangleright . \Box

References

- H. Doornbos and B. von Karger. On the union of well-founded relations. Logic Journal of the IGPL, 6(2):195-201, 1998. doi:10.1093/jigpal/6.2.195.
- [2] Alfons Geser, Dieter Hofbauer, Johannes Waldmann, and Hans Zantema. On tree automata that certify termination of left-linear term rewriting systems. *Information and Computation*, 205(4):512–534, April 2007. doi:10.1016/j.ic.2006.08.007.
- [3] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2003. doi:10.2277/0521391156.