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Abstract. We present some contributions to the theory of infinitary rewriting for weakly
orthogonal term rewrite systems, in which critical pairs may occur provided they are trivial.

We show that the infinitary unique normal form property (UN∞) fails by a simple ex-
ample of a weakly orthogonal TRS with two collapsing rules. By translating this example,
we show that UN∞ also fails for the infinitary λβη-calculus.

As positive results we obtain the following: Infinitary confluence, and hence UN∞, holds
for weakly orthogonal TRSs that do not contain collapsing rules. To this end we refine
the compression lemma. Furthermore, we consider the triangle and diamond properties
for infinitary multi-steps (complete developments) in weakly orthogonal TRSs, by refining
an earlier cluster-analysis for the finite case.

1. Introduction

While the theory of infinitary term rewriting is well-developed for orthogonal rewrite
systems, much less is known about infinitary rewriting in non-orthogonal systems, in which
critical pairs between rules may occur. In this paper we consider the simplest such systems,
namely weakly orthogonal ones, in which all critical pairs are trivial. Conceptually, weakly
orthogonal systems deviate little from orthogonal systems. But for the development of their
rewrite theory specific notions and techniques had to be developed [5].

We show that the infinitary rewrite theory known for orthogonal systems fails dramati-
cally in the case of weakly orthogonal systems. In Section 2, we give a simple counterexample
to the infinitary unique normal form property UN∞. Moreover, by a straightforward trans-
lation we obtain a counterexample to UN∞ in the infinitary λβη-calculus (Section 3), the
paradigmatic example of a weakly orthogonal higher-order rewrite system.

In the remaining sections we show that, under simple restrictions, much of the theory
of infinitary rewriting in orthogonal systems can be regained: we establish the diamond
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property, and consider the triangle property (Section 6) for weakly orthogonal TRSs without
collapsing rules. An important ingredient in their proofs is a refinement of the compression
lemma (Section 4).

For a general introduction to infinitary rewriting, as well as for notations used in this
paper, we refer to [9, Ch.12], [6, 3].

2. A Counterexample to UN∞ for Weakly Orthogonal Systems

In [3] it is shown that every orthogonal TRS exhibits the infinitary unique normal
forms (UN∞) property, see also [6]. In strong contrast, we will now give a counterexample
showing that the UN∞ property does not generalize to weakly orthogonal TRSs. The
counterexample is very simple: its signature consists of the unary symbols P and S with
the reduction rules: P(S(x))→ x and S(P(x))→ x. Clearly this TRS is weakly orthogonal.
In the sequel we consider the corresponding string rewrite system (SRS):

PS→ ε SP→ ε

where ε is the empty word. If w is a finite word, we write wω for the infinite word www . . ..
Using S and P we have infinite words such as ζ = (PS)ω. Note that Sω and Pω are the only
infinite normal forms, and that ζ only reduces to itself.

Given an infinite PS-word w we can plot in a graph the surplus number of S’s of w when
stepping through the word w from left to right, see e.g. Figure 1. The graph is obtained by
counting S for +1 and P for −1. We define sum(w, n) as the result of this counting up to
depth n in the word w (if w is finite we define sum(w) = sum(w, |w|)):

sum(w, 0) = 0 sum(Sw, n+ 1) = sum(w, n) + 1 sum(Pw, n+ 1) = sum(w, n)− 1

For w = (SP)ω the graph takes values, consecutively, 1, 0, 1, 0, . . ., for w = Sω it takes
1, 2, 3, . . ., and for w = Pω we have −1,−2,−3, . . ..

0

sum(w, n) +∞

−∞

•
•
•
•
•
•
•

n

Figure 1: Graph for the oscillating PS-word ψ = P1 S2 P3 . . . .

We define the S-norm ‖w‖S and P-norm ‖w‖P of w:

‖w‖S = sup
n∈N

sum(w, n) ‖w‖P = sup
n∈N

(−sum(w, n)) (2.1)
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So the S-norm (P-norm) of (SP)ω is 1 (0), of Sω it is ∞ (0), and of Pω it is 0 (∞).

Lemma 2.1. Let w be a finite PS-word, and let n = sum(w). If n ≥ 0 then w � Sn, and
w � P−n, otherwise.

Proof. For finite words u, v we have that u→ v implies sum(u) = sum(v). Moreover, → is
normalising, and the only normal forms are of the form Sk and Pk for k ≥ 0.

Proposition 2.2.

(i) w �� Sω if and only if ‖w‖S =∞,
(ii) w �� Pω if and only if ‖w‖P =∞.

Proof. We consider only (i) as case (ii) can be treated analogously. From ‖w‖S = ∞ it
follows that w = w1w2 . . . with finite words w1, w2, . . . such that sum(wi) = 1 for all i ∈ N.
Then wi � S for all i ∈ N by Lemma 2.1 and hence w �� Sω.

Note that in Proposition 2.2 w �� Sω can always be achieved using the rule PS → ε
only. And likewise the rule SP→ ε for w �� Pω.

Now let us take a term ψ with ‖ψ‖S = ∞ and ‖ψ‖P = ∞ ! Then by the previous
proposition ψ reduces to both Sω and Pω, both normal forms. Hence UN∞ fails. Indeed,
such a term ψ can be found:

ψ = PSSPPPSSSSPPPPPSSSSSS . . .

The graph for this term is displayed in Figure 1. If we only apply rule PS→ ε the P-blocks
are absorbed by the larger S-blocks to their right, leaving the normal form Sω. Likewise,
applying only SP→ ε yields Pω.

We find that ψ �� w for every infinite PS-word w, and more generally:

Proposition 2.3. Every PS-word that reduces to both Sω and Pω reduces to any infinite
PS-word.

Proof. Let w be a PS-word such that Pω �� w �� Sω. And let u be the infinite PS-word
we want to obtain. Then, by Proposition 2.2 we have that ‖w‖P = ‖w‖S = ∞. From this
it follows that w = w1w2 . . . with wi finite PS-words such that sum(wi) = 1 if u(i) = S and
sum(wi) = −1 if u(i) = P. By Lemma 2.1, we get that wi � u(i), and hence w �� u.

Hence, not only is ψ a counterexample to UN∞ for weakly orthogonal rewrite systems.
But also, ψ rewrites to (PS)ω, a word which has no normal form. Thus, in contrast to
orthogonal systems, weak normalisation is not preserved under infinite rewriting.

Figure 2 shows a more detailed analysis of various classes of PS-words. By Proposi-
tion 2.2 an infinite word w reduces to Sω iff ‖w‖S = ∞, and to Pω iff ‖w‖P = ∞. The
shaded non-empty intersection (‖w‖S = ‖w‖P = ∞) contains the counterexample term ψ
mentioned above. All terms in this intersection are root-active (RA), that is, every�-reduct
can be reduced to a redex (at the root). However, there are also other root-active terms.
For example ξ = SPS2 P2 S3 P3 . . . is a root-active term which reduces to Sω but not to Pω

(i.e., ‖ξ‖P = 0 <∞ and ‖ξ‖S =∞). The term ξ′ = S ξ (a reduct of ξ) is not root-active but
still not SN∞, yet it reduces to Sω. An example of a root-active term which reduces only
to itself (implying that ‖ξ‖S and ‖ξ‖P are finite) is ζ = (PS)ω. The dotted part consists of
terms with the property of infinitary strong normalization (SN∞,[6]), normalizing to Sω, or
Pω, respectively. For instance (S SP)ω is in the left dotted triangle.

The root-active terms can be characterized as follows.
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RA

•
Sω

•
Pω

SN∞

‖w‖S =∞ ‖w‖P =∞
•ξ

•ζ
•ψ

•ξ′

Figure 2: Venn diagram of infinite PS-words.

Proposition 2.4. A PS-word w is root-active if and only if w is the concatenation of
infinitely many finite ‘zero-words’ w1, w2, w3, . . ., that is, words wi with sum(wi) = 0.

As a consequence of this proposition, an infinite PS-word w is root-active if and only if
sum(w, n) = 0 for infinitely many n, and hence, if ((lim inf)n→∞|sum(w, n)|) = 0.

Corollary 2.5. For an infinite PS-word w we have SN∞(w) if and only if each value
sum(w, n) for n = 0, 1 . . . occurs only finitely often.

It follows that SN∞(w) holds if and only if ((lim inf)n→∞|sum(w, n)|) =∞, and hence,
if limn→∞ sum(w, n) ∈ {∞,−∞}.

3. A Counterexample to UN∞ of the Infinitary λβη-Calculus

We give a straightforward translation of the word ψ = P1 S2 P3 . . . from the previous
section into an infinite λ-term which then forms a counterexample to the infinitary unique
normal form property UN∞ for λ∞βη, the infinitary λβη-calculus. The infinitary λβη-
calculus [7, 8] is a well-known example of a weakly orthogonal higher-order term rewrite
system.

The set Ter∞(λ) of (potentially) infinite λ-terms is coinductively defined by:

M ::= x |MM | λx.M (Ter∞(λ))

The rewrite rules of λ∞βη are:

λx.MN →M [x:=N ] (β)

λx.Mx→M if x is not free in M (η)

where M [x:=N ] denotes the result of substituting N for all free occurrences of x in M . The
λ∞βη-calculus allows for two critical pairs1:

Mx
β← (λx.Mx)x

η→Mx λx.M [y:=x]
β← λx.(λy.M)x

η→ λy.M

As we have that λx.M [y:=x] and λy.M are equal modulo renaming of bound variables,
both of these critical pairs are trivial. Hence λ∞βη is weakly orthogonal.

We translate infinite PS-words to λ-terms.

1We use the notation of infinitary λ-calculus, but we view the rule schemes (β) and (η) as rules of a
second-order HRS, thereby obtaining a formal notion of critical pairs ([9, Def. 11.6.10]). Likewise, CRSs can
be viewed as second-order HRSs.
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Definition 3.1. We define L M : {P,S}ω → Ter∞(λ) by LwM = LwM0, for all w ∈ {P, S}ω,
where LwMi is defined coinductively, for all i ∈ Z, as follows:

LPwMi = LwMi−1 xi LSwMi = λxi+1.LwMi+1

The translation of ψ is the λ-term LψM, displayed in the middle of Figure 3. This term has

·
λx0

λx1

·
·

·
λx−1

λx0

λx1

λx2

·
·

·
·

·
...

x−2
x−1

x0
x1
x2

x−1
x0
x1

x0

λx1

λx2

...

·
·

·
...

x−2
x−1

x0

β η

Figure 3: Counterexample to unique normal forms in λ∞βη.

two normal forms (corresponding to Sω and Pω), as indicated in the figure.
While LψM cannot be generated from a finite λ-term (it has infinitely many free vari-

ables), the finite term WWI where W = λwf.f(ww(λabc.f(abc))x0) and I = λa.a exhibits
a similar behaviour, reducing both to A = λx.A and B = Bx0. This can be seen as fol-
lows: Let Vn = λv1 . . . vn.(v1 . . . vn). First note that WWI →2

β I(WW (λabc.I(abc))x0)→2
β

WWV3x0. Then we get:

WWV3x0 →2
β V3(WW (λabc.V3(abc))x0)x0 →3

β λv3.WWV5x0x0v3

→6
β λv3v5.WWV7x0x0x0v3v5 ��β λv3v5v7 . . . . =α A

WWV3x0 →2
η (WWI)x0 ��βη B

Note that the number of bound variables needed along the reduction from WW (λa.a) to
A is unbounded, but that A can be written using only a single one. We conjecture that
it holds for every counterexample to UN∞ in the infinitary λβη-calculus that during the
rewrite process to one of the normal forms unboundedly many variables are needed.

The translation given in Definition 3.1 lifts PS→ ε to β, and SP→ ε to η.

Lemma 3.2. An application of the rule PS → ε at depth k in an infinite PS-word w
corresponds to a β-step in λ∞βη at depth k in LwMi. Similarly so for the rule SP→ ε and
the η-rule. These correspondences are indicated in the following diagrams:
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PSw (λxi.LwMi)xi

w LwMi

L Mi

PS
L Mi

β

SPw λxi+1.LwMi xi+1

w LwMi

L Mi

SP
L Mi

η

The counterexample to the infinitary unique normal form property UN∞ for infini-
tary λβη-calculus (λ∞βη) establishes a striking contrast to the situation for infinitary λβ-
calculus (λ∞β). In the latter, infinitary confluence breaks down, but infinitary normal forms
stay unique. Therefore λ∞β clearly is of importance in the model theory of λ-calculus; for
several models the equality is captured by convertibility in λ∞β. E.g. Böhm Trees, Lévy–
Longo trees and Berarducci trees are unique normal forms in this rewrite system, when
suitable ⊥-normalization rules are added. (See [1, 2] and [9, Ch.12]). However, when the
η-rule is added, and the infinitary perspective is maintained, then ‘everything’ breaks down
dramatically: not only infinitary confluence, but also unique infinitary normal forms.

From the perspective of combinatory reduction systems (CRSs, see [9]) the η-rule has
many undesirable properties: (i) it is undecidable whether an infinite term is an η-redex,
since it is undecidable whether an infinite term contains a variable freely; (ii) single-step
η-reduction is not lower semi-continuous: if t η-reduces to u, then for a given ε > 0 we
cannot always find a δ > 0 such that anything within δ-distance of t η-reduces to something
within ε-distance of u; (iii) the η-rule is not fully-extended, and various existing results for
orthogonal infinite CRSs require fully-extendedness, see [4].

4. A Refinement of the Compression Lemma

As a preparation for Section 5 we will prove the following lemma, which is a refined
version of the Compression Lemma in left-linear TRSs. In its original formulation (e.g. see
Theorem 12.7.1 on page 689 in [9]), it states that strongly convergent rewrite sequences in
left-linear TRSs can be compressed to length less or equal to ω. We recall that a rewrite
sequence of ordinal length α is strongly convergent if for each limit ordinal λ ≤ α the depth
of the contracted redexes tends to infinity.

Lemma 4.1 (Refined Compression Lemma). Let R be a left-linear iTRS. Let κ : s→α
R t be

a rewrite sequence, d the minimal depth of a step in κ, and n the number of steps at depth
d in κ. Then there exists a rewrite sequence κ′ : s →≤ωR t in which all steps take place at
depth ≥ d, and where precisely n steps contract redexes at depth d.

Proof. We proceed by transfinite induction on the ordinal length α of rewrite sequences
κ : s →α

R t with d the minimal depth of a step in κ, and n the number of steps at depth d
in κ.

In case that α = 0 nothing needs to be shown.
Suppose α is a successor ordinal. Then α = β + 1 for some ordinal β, and κ is of the

form s→β s′ → t. Applying the induction hypothesis to s→β s′ yields a rewrite sequence
s →γ s′ of length γ ≤ ω that contains the same number of steps at depth d, and no steps
at depth less than d.

If γ < ω, then s→γ s′ → t is a rewrite sequence of length γ + 1 < ω, in which all steps
take place at depth ≥ d and precisely n steps at depth d.

If γ = ω, we obtain a rewrite sequence of the form s ≡ s0 → s1 → . . .→ω sω → t. Let
`→ r ∈ R be the rule applied in the final step sω → t, that is, sω ≡ C[`σ]→ C[rσ] ≡ t for
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some context C and substitution σ. Moreover, let dh be the depth of the hole in C, and dp
the depth of the pattern of `. Since the reduction s0 →ω sω is strongly convergent, there
exists n ∈ N such that all rewrite steps in ξ : sn →ω sω have depth > dh+dp, and hence are
below the pattern of the redex contracted in the last step sω → t. As a consequence, there
exists a context D and a substitution τ such that sn ≡ D[`τ ]. Since the rewrite sequence
ξ : sn ≡ D[`τ ]→ω C[`σ] ≡ sω consists only of steps at depth > dh + dp, it follows that:

• there exists a rewrite sequence ϑ : D[2]→≤ω C[2] at depth > dh + dp, and
• there exist rewrite sequences ϑx : τ(x)→≤ω σ(x) for all x ∈ Var(`).

We now prepend the final step sω → t to sn, that is: sn ≡ D[`τ ]→ D[rτ ]. Even if the term
r is infinite, this creates at most ω-many copies of subterms τ(x) with reduction sequences
ϑx : τ(x) →≤ω σ(x) of length ≤ ω. Since the rewrite sequences ϑ and ϑx for x ∈ Var(`)
are in disjoint (parallel) subterms, there exists an interleaving D[rτ ] →≤ω C[rσ] of length
at most ω (the idea is similar to establishing countability of ω2 by dovetailing). We obtain
a rewrite sequence κ′ : s→≤ω t, since s→n sn ≡ D[`τ ]→ D[rτ ]→≤ω C[rσ] ≡ t.

It remains to be shown that κ′ contains only steps at depth ≥ d, and that it has the
same number of steps as the original sequence κ at depth d. This follows from the induction
hypothesis and the fact that all steps in sn →ω sω have depth > dh + dp and thus also all
steps of the interleaving D[rτ ] →≤ω C[rσ] have depth > dh + dp − dp = dh ≥ d (the
application of `→ r can lift steps at most by the pattern depth dp of `).

s t
α

last step of depth d
β < α

≤ ω

≥ d > d

last step of depth d
n < ω

≤ ωIH continue
with d+ 1, . . .

Figure 4: Compression Lemma, in case α is a limit ordinal.

Finally, suppose that α is a limit ordinal > ω. We refer to Figure 4 for a sketch of the
proof. Since κ is strongly convergent, only a finite number of steps take place at depth d.
Hence there exists β < α such that sβ is the target of the last step at depth d in κ. We

have s →β sβ →≤α t and all rewrite steps in sβ →≤α t are at depth > d. By induction
hypothesis there exists a rewrite sequence ξ : s →≤ω sβ containing an equal amount of

steps at depth d as s→β sβ. Consider the last step of depth d in ξ . This step has a finite
index n < ω. Thus we have s →∗ sn →≤α t, and all steps in sn →≤α t are at depth > d.
By successively applying this argument to sn →≤α t we construct finite initial segments
s→∗ sn with strictly increasing minimal rewrite depth d. Concatenating these finite initial
segments yields a reduction s →≤ω t containing as many steps at depth d as the original
sequence.

With this refined compression lemma we now prove that also divergent rewrite sequences
can be compressed to length less or equal to ω.

Theorem 4.2. Let R be a left-linear iTRS. For every divergent rewrite sequence κ : s→α
R

of length α there exists a divergent rewrite sequence κ′ : s→≤ωR of length less or equal to ω.
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Proof. Let κ : s →α
R be a divergent rewrite sequence. Then there exist k ∈ N such that

infinitely many steps in κ take place at depth k. Let d be the minimum of all numbers k
with that property. Let β be the index of the last step above depth d in κ, κ : s→β sβ →≤α.

Then by Lemma 4.1 the rewrite sequence s→β sβ can be compressed to a rewrite sequence
s →≤ω sβ such that sβ →≤α consists only of steps at depth ≥ d, among which infinitely
many steps are at depth d. Let n be the index of the last step of depth ≤ d in the rewrite
sequence s→≤ω sβ. Then s→∗ sn →≤ω sβ →≤α, and sn →≤ω sβ →≤α contains only steps
at depth ≥ d. Thus all steps with depth less than d occur in the finite prefix s→∗ sn.

Now consider the rewrite sequence κ1 : sn →≤ω · →≤α, say κ1 : sn →γ for short,
containing infinitely many steps at depth d. Let γ′ be the index of the first step at depth
d in κ1. Then κ1 : sn →γ′ u →≤γ for some term u and sn →γ′ u can be compressed to
sn →≤ω u containing exactly one step at depth d. Now let m be the index of this step, then
sn →m u′ →≤ω u→≤γ where sn →m u′ contains one step at depth d. Repeatedly applying
this construction to u′ →≤ω u →≤γ we obtain a rewrite sequence κ′ : s →∗ sn →∗ u′ →∗
u′′ → . . . that contains infinitely many steps at depth d, and hence is divergent.

5. Infinitary Confluence

In Section 2 we have seen that the property UN∞ fails for weakly orthogonal TRSs when
collapsing rules are present, and hence also CR∞. Now we show that weakly orthogonal
TRSs without collapsing rules are infinitary confluent (CR∞), and as a consequence also
have the property UN∞.

We adapt the projection of parallel steps in weakly orthogonal TRSs from [9, Sec-
tion 8.8.4.] to infinite terms. The basic idea is to orthogonalize the parallel steps, and then
project the orthogonalized steps. The orthogonalization uses that overlapping redexes have
the same effect and hence can be replaced by each other. In case of overlaps we replace the
outermost redex by the innermost one. This is possible since the maximal nesting depth
of the union of two infinite parallel steps is at most 2, that is, there can not be infinite
chains of overlapping nested redexes in such a union (see Example 6.3). For a treatment
of infinitary multi-steps where such chains can occur, we refer to Section 6. See further [9,
Proposition 8.8.23] for orthogonalization in the finitary case.

Definition 5.1. Let R be a TRS, and t ∈ Ter∞(Σ) a term.
A redex in t is a pair consisting of a position p and a rule `→ r, such that t|p = `σ for

some substitution σ. We call p and `→ r the root and rule of the redex, respectively. The
pattern of a redex 〈p, `→ r〉 is the set of all positions pq such that `(q) is a function symbol.

Two sets of positions are overlapping if they have a non-empty intersection. For redexes
u and v in t we say that u and v overlap, denoted by u! v, if the patterns of u and v
overlap. A set U of redexes is called non-overlapping if, for all u, v ∈ U with u 6= v, u does
not overlap with v.

For a study of developments we refer to [9, Sec. 4.5.2] and [10]. Here, we briefly introduce
developments and multi-steps via labelling (underlining).

Definition 5.2. Let R be a weakly orthogonal TRS over Σ. For symbols f ∈ Σ and ρ ∈ R
we write fρ for f labelled with ρ. For labelled terms t, we write btc to denote the term
obtained from t by dropping all labels.

We define the TRS R. to consist of all rules `ρ → r for ρ : ` → r ∈ R where `ρ is the
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term obtained from ` by labelling the root-symbol of ` with ρ.
Let t, t′ ∈ Ter∞(Σ) be terms, and U a set of non-overlapping redexes in t. Let tU be

the term obtained from t by labelling for each redex 〈p, ρ〉 ∈ U the symbol at position p in
t with ρ. A development of U in t is a rewrite sequence t ��R t′ (in R) that can be lifted
to a reduction tU ��R. t′′ (in R.) such that t′′ arises from t′ by adding some labels; the
development is called complete if t′ ≡ t′′. A multi-step with respect to U is a step t ◦−→U t

′

such that there exists a reduction tU ��R. t′.

In non-collapsing, weakly orthogonal TRSs, every set U of non-overlapping redexes has
a complete development, and every complete development of U ends in the same term [9].
Multi-steps arise from complete developments, and are uniquely determined by their starting
term and redex set.

Definition 5.3. Let R be a TRS, t ∈ Ter∞(Σ) a term, and let U and V be sets of redexes
in t. We call U and V orthogonal (to each other) if U∪V is a non-overlapping set of redexes.

Definition 5.4. Let R be a non-collapsing, weakly orthogonal TRS, and let U and V be
orthogonal sets of redexes in a term t. For multi-steps φ : t ◦−→U t

′ and ψ : t ◦−→V t′′ with
respect to U and V we define the projection φ/ψ as the multi-step t′′ ◦−→U ′ s with respect
to the set of residuals U ′ = U/ψ as defined in [9].1 In the sequel we frequently write ◦−→ for
the multi-step relation, suppressing the set of redexes U that induces the multi-step ◦−→U .

Definition 5.5. An orthogonalization of a pair 〈φ, ψ〉 of multi-steps φ : s ◦−→U t1 and
ψ : s ◦−→V t2 with respect to sets U and V of redexes in s is a pair 〈φ′, ψ′〉 of multi-steps
φ′ : s ◦−→U ′ t1 and ψ′ : s ◦−→V ′ t2 with respect to orthogonal sets U ′ and V ′ of redexes in s.

A parallel step φ : s −→ t is a multi-step φ : s ◦−→U t with respect to a set U of parallel
redexes, that is, redexes at pairwise disjoint positions.

Proposition 5.6. Let φ : s −→ t1 and ψ : s −→ t2 be parallel steps in a weakly orthogonal
TRS. Then there exists an orthogonalization 〈φ′, ψ′〉 of φ and ψ with the special property
that φ′ : s −→ t1 and ψ′ : s −→ t2.

Proof. In case of overlaps between U and V , then for every overlap we replace the outermost
redex by the innermost one (if there are multiple inner redexes overlapping, then we choose
the left-most among the top-most redexes). If there are two redexes at the same position
but with respect to different rules, then we replace the redex in V with the one in U . See
also Figure 5.

Figure 5: Orthogonalization of parallel steps; the arrow indicates replacement.

Definition 5.7. Let φ : s −→ t1, ψ : s −→ t2 be parallel steps in a weakly orthogonal TRS.
The weakly orthogonal projection φ/ψ of φ over ψ is defined as the orthogonal projection

1We refer to Def. 12.5.3 in [9], and note that the definition not only applies in orthogonal TRSs, but also
to every non-overlapping set U of redexes versus a multistep φ w.r.t. a redex set V that is orthogonal to U .
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φ′/ψ′ where 〈φ′, ψ′〉 is the orthogonalization of φ and ψ given in the proof of Proposition 5.6.

Remark 5.8. The weakly orthogonal projection does not give rise to a residual system in
the sense of [9]. The projection fulfils the three identities φ/φ ≈ 1, φ/1 ≈ φ, and 1/φ ≈ 1,
but not the cube identity (φ/ψ)/(χ/ψ) ≈ (φ/χ)/(ψ/χ).

Lemma 5.9. Let φ : s −→ t1, ψ : s −→ t2 be parallel steps in a weakly orthogonal TRS R.
Let dφ and dψ be the minimal depth of a step in φ and ψ, respectively. Then the minimal
depth of the weakly orthogonal projections φ/ψ and ψ/φ is greater or equal min(dφ, dψ). If
R contains no collapsing rules then the minimal depth of φ/ψ and ψ/φ is greater or equal
min(dφ, dψ + 1) and min(dψ, dφ + 1), respectively.

Proof. Immediate from the definition of the orthogonalization (for overlaps the innermost
redex is chosen) and the fact that in the orthogonal projection a non-collapsing rule applied
at depth d can lift nested redexes at most to depth d+ 1 (but not above).

Lemma 5.10 (Parallel Moves Lemma). Let R be a weakly orthogonal TRS, κ : s →α t1
a rewrite sequence, and φ : s −→ t2 a parallel rewrite step. Let dκ and dφ be the minimal
depth of a step in κ and φ, respectively. Then there exist a term u, a rewrite sequence
ξ : t2 →≤ω u and a parallel step ψ : t1 −→ u such that the minimal depth of the rewrite
steps in ξ and ψ is min(dκ, dξ); see Figure 6 (left).

If additionally R contains no collapsing rules, then the minimal depth of a step in ξ
and ψ is min(dκ, dξ + 1) and min(dξ, dκ + 1), respectively. See also Figure 6 (right).

s t1

t2 u

≥ dκ

≥ dξ

≥ min(dκ, dξ)

≥ min(dκ, dξ)

s t1

t2 u

≥ dκ

≥ dξ

≥ min(dκ, dξ + 1)

≥ min(dξ, dκ + 1)

Figure 6: Parallel Moves Lemma; with (left) and without (right) collapsing rules.

Proof. By compression we may assume α ≤ ω in κ : s →≤ω t1 (note that, the minimal
depth d is preserved by compression). Let κ : s ≡ s0 → s1 → s2 → . . ., and define ψ0 = ψ.
Furthermore, let κ≤n denote the prefix of κ of length n, that is, s0 → . . . → sn and let
κ≥n denote the suffix sn → sn+1 → . . . of κ. We employ the projection of parallel steps
to close the elementary diagrams with top sn → sn+1 and left ψn : sn −→ s′n, that is, we
construct the projections ψi+1 = ψi/(si → si+1) (right) and (si → si+1)/ψi (bottom). Then
by induction on n using Lemma 5.9 there exists for every 1 ≤ n ≤ α a term s′n, and parallel
steps φn : sn −→ s′n and s′n−1 −→ s′n. See Figure 7 for an overview.

We show that the rewrite sequence constructed at the bottom s′0 −→ s′1 −→ . . . of
Figure 7 is strongly convergent, and that the parallel steps φi have a limit for i → ∞
(parallel steps are always strongly convergent).

Let d ∈ N be arbitrary. By strong convergence of κ there exists n0 ∈ N such that all
steps in κ≥n0 are at depth ≥ d. Since φn0 is a parallel step there are only finitely many
redexes φn0,<d ⊆ φn0 in φn0 rooted above depth d. By projection of φn0 along κ≥n0 no fresh
redexes above depth d can be created. The steps in φn0,<d may be cancelled out due to
overlaps, nevertheless, for all m ≥ n0 the set of steps above depth d in φm is a subset of
φn0,<d.

Let p be the maximal depth of a left-hand side of a rule applied in φn0,<d. By strong
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s ≡ s0 s1 . . . sn0 sm0 t1

t2 ≡ s′0 s′1 . . . s′n0
s′m0

u

s′′n0
s′′m0

t′′1

≥ d ≥ d+ p

φ = φ0 φ1

φn0,<d

φn0,≥d

ψ ⊆ φn0,<d

φm0,≥d

ψ

≥ d

≥ d

≥ d

Figure 7: Parallel Moves Lemma, proof overview.

convergence of κ there exists m0 ≥ n0 ∈ N such that all steps in κ≥n0 are at depth ≥ d+ p.
As a consequence the steps ψ in φm0 rooted above depth d will stay fixed throughout the
remainder of the projection. Then for all m ≥ m0 the parallel step φm can be split into
φm = sm −→ψ s

′′
m −→φm,≥d

s′m where φm,≥d consists of the steps of φm at depth ≥ d. Since
d was arbitrary, it follows that projection of φ over κ has a limit. Moreover the steps of the
projection of κ≥m0 over φm0 are at depth ≥ d+p−p = d since rules with pattern depth ≤ p
can lift steps by at most by p. Again, since d was arbitrary, it follows that the projection
of κ over φ is strongly convergent.

Finally, both constructed rewrite sequences (bottom and right) converge towards the
same limit u since all terms {s′m, s′′m | m ≥ m0} coincide up to depth d − 1 (the terms
{sm | m ≥ m0} coincide up to depth d+p−1 and the lifting effect of the steps φm is limited
by p).

Theorem 5.11. Every weakly orthogonal TRS without collapsing rules is infinitary conflu-
ent.

s s1 t1

s2

t2

s′ t′1

t′2 u

≥ d

≥ d

> d

> d

≥ d
≥ d

> d

> d

≥ d

≥ dfinitary diagram PML (Lemma 5.10)

PML (Lemma 5.10)
repeat construction

with d+ 1

Figure 8: Infinitary confluence.

Proof. An overview of the proof is given in Figure 8. Let κ : s→α t1 and ξ : s→β t2 be two
rewrite sequences. By compression we may assume α ≤ ω and β ≤ ω. Let d be the minimal
depth of any rewrite step in κ and ξ. Then κ and ξ are of the form κ : s→∗ s1 →≤ω t1 and
ξ : s→∗ s2 →≤ω t2 such that all steps in s1 →≤ω t1 and s2 →≤ω t2 at depth > d.

Then s →∗ s1 and s →∗ s2 can be joined by finitary diagram completion employing
the diamond property for parallel steps. If follows that there exists a term s′ and finite
sequences of (possibly infinite) parallel steps s1 −→∗ s′ and s2 −→∗ s′ all steps of which are
at depth ≥ d (Lemma 5.9). We project s1 →≤ω t1 over s1 −→∗ s′, s2 →≤ω t2 over s2 −→∗ s′
by repeated application of the Lemma 5.10, obtaining rewrite sequences t1 �� t′1, s

′ �� t′1,
t2 �� t′2, and s′ �� t′2 with depth ≥ d, > d, ≥ d, and > d, respectively. As a consequence we
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have t′1, s
′ and t′2 coincide up to (including) depth d. Recursively applying the construction

to the rewrite sequences s′ �� t′1 and s′ �� t′2 yields strongly convergent rewrite sequences

t2 �� t′2 �� t′′2 �� . . . and t1 �� t′1 �� t′′1 �� . . . where the terms t
(n)
1 and t

(n)
2 coincide up to

depth d+ n− 1. Thus these rewrite sequences converge towards the same limit u.

We consider an example to illustrate that the absence of collapsing rules is a necessary
condition for Theorem 5.11.

Example 5.12. Let R be a TRS over the signature {f, a, b} consisting of the collapsing
rule: f(x, y)→ x Then, using a self-explaining recursive notation, the term s = f(f(s, b), a)
rewrites in ω many steps to t1 = f(t1, a) as well as t2 = f(t2, b) which have no common
reduct. The TRS R is weakly orthogonal (even orthogonal) but not confluent. The same
phenomenon occurs in the infinitary version of combinatory logic, due to the rule Kxy → x.

6. The Diamond and Triangle Property for Multi-Steps

We prove that infinitary multi-steps in weakly orthogonal TRSs without collapsing
rules have the diamond property. For all TRSs in this section we assume that are weakly
orthogonal and do not contain collapsing rules.

Definition 6.1. A binary relation → on A is said to have:

• the diamond property if ← · → ⊆ → · ←, and
• the triangle property if ∀a ∈ A. ∃a′ ∈ A. a→ a′ ∧ (∀b ∈ A. a→ b⇒ b→ a′).

We develop an orthogonalization algorithm that, given two co-initial multisteps, makes
them orthogonal to each other by eliminating overlaps. Since overlapping steps in weakly
orthogonal TRSs have the same targets, we can replace one by the other. The challenge is
to do this in such a way that no new overlaps are created.

1
2 ∪

3

5

4

=

Figure 9: Orthogonalization in a weakly orthogonal TRS.

Consider for example Figure 9, where the redexes 2 and 3 overlap with each other.
When trying to solve this overlap, we have to be careful since replacing the redex 2 by 3 as
well as 3 by 2 creates new conflicts.

The case of finitary weakly orthogonal rewriting is treated in [9, Theorem 8.8.23]. There
an inside-out algorithm is employed, consisting of inductively extending an orthogonaliza-
tion of the subtrees to the whole tree. The basic observation is that one overcomes the
difficulties pointed out above by starting at the bottom of the tree and solving overlaps by
choosing the deeper (innermost) redex.

Example 6.2. We consider Figure 9 and apply the orthogonalization algorithm from [9,
Theorem 8.8.23]. We start at the bottom of the tree. The first overlap we find is between
the redexes 2 and 5; this is removed by replacing 2 with 5. Then the overlap between 2 and
3 has also disappeared. The only remaining overlap is between the redexes 3 and 1. Hence
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we replace 3 by 1. As result we obtain two orthogonal multi-steps {1, 5} and {1, 4, 5}.

Note that the above algorithm does not carry over to the case of infinitary
multi-steps since we may have infinite chains of overlapping redexes and thus
have no bottom to start at. This is illustrated on the right.

Example 6.3. As an example where such an infinite chain of overlaps arises
we consider the TRS R consisting of the rule:

A(A(A(x)))→ A(x)

together with two multi-steps of blue and green redexes in the term Aω:

A(A(A(A(A(A(A(A(A(A(A(A(A(A(A(. . .) . . .)

The blue redexes are marked by overlining, the green redexes by underlining.

Definition 6.4. A cluster is a non-empty set of redexes which forms a connected compo-
nent with respect to!. The pattern of a cluster is the union of the patterns of its redexes.
A cluster is a Y-cluster if it contains a pair of redexes at parallel positions (Figure 10, cases
(ii) and (iv)); otherwise it is an I-cluster (Figure 10, cases (i) and (iii)). A Y-redex is a
redex in a Y-cluster.

At first sight one might expect that Y-redexes are due to trivial rules of the form `→ r
with ` ≡ r. However, the following example illustrates that, in general, this is not the case.

Example 6.5. Let R consist of the following (non-trivial) rules:

f(g(x, y), z, g(a, a))→ f(g(y, x), z, g(a, a)) (ρ1)

f(g(a, a), z, g(x, y))→ f(g(a, a), z, g(y, x)) (ρ2)

g(x, y)→ g(y, x) (ρ3)

We consider the term f(g(a, a), t, g(a, a)) which contains both a ρ1-redex and a ρ2-redex at
the root, a ρ3-redex at disjoint positions 1 and 3. These redexes form a Y-cluster.

Notwithstanding the above example, it is always safe to drop Y-redexes from multi-steps
without changing the outcome of the multi-step. This result is implicit in [5]. In partic-
ular in [5, Remark 4.38] it is mentioned that Y-clusters are a generalisation of Takahashi-
configurations.

Lemma 6.6. Let Y be a term in which the non-variable positions form the pattern of a
Y-cluster, σ a substitution, and Y σ → s a step in Y . Then s ≡ Y σ and subterms outside of
Y have not been affected. (Note that subterms fully contained in the pattern of a Y-cluster
can be affected.)

Proof. By weak orthogonality redexes in a cluster have the same effect. Since Y-clusters have
redexes at disjoint positions, it follows that contraction of any redex in a Y-cluster results in
the same term. By applying this argument for the result of replacing the subterms outside
of the Y-cluster by fresh variables, we conclude that none of these subterms can be affected
(moved, copied, deleted) by contracting a redex from the Y-cluster.

Lemma 6.7. Let R be a weakly orthogonal TRS, t ∈ Ter∞(Σ) a term. Let U be a set
of non-overlapping redexes in t. Furthermore, let V ⊆ U be such that every redex in V is
contained in a Y-cluster of t. Then the multi-step with respect to U\V results in the same
term as the multi-step with respect to U .
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Proof. We reduce in the complete development first all Y-redexes: by Lemma 6.6 this leaves
the term as well as all redexes outside of Y-clusters untouched. As a consequence, the result
of the complete development (multi-step) depends only on the redexes outside of Y-clusters.

Definition 6.8. Let σ : s ◦−→U t1 and δ : s ◦−→V t2 be multi-steps. An orthogonalization
witness for the pair 〈σ, δ〉 of multi-steps is a pair 〈fU , fV 〉 of injective partial functions
fU : U ⇀ U ∪ V and fV : V ⇀ U ∪ V such that it holds: (i) ran(fU ) and ran(fV ) are
orthogonal sets of redexes in t ; (ii) for all u ∈ dom(fU ), fU (u) ! u, as well as, for all
v ∈ dom(fV ), fV (v)! v ; and (iii) (U\dom(fU ))∪ (V \dom(fV )) ⊆ {v : v is Y-redex in t}.

Informally, an orthogonalization witness of multi-steps w.r.t. redex sets U and V defines
(as stated in the proposition below) an orthogonalization consisting of multi-steps w.r.t.
redex sets U ′ and V ′ that arise from U and V by exchanging redexes with equivalent,
overlapping ones, and by possibly dropping some Y-redexes which have no effect.

Proposition 6.9. Let σ : s ◦−→U t1 and δ : s ◦−→V t2 be multi-steps, and let 〈fU , fV 〉 be an
orthogonalization witness for 〈σ, δ〉. Then U ′ = ran(fU ) and V ′ = ran(fV ) are orthogonal
sets of redexes in s, and there exist multi-steps σ′ : s ◦−→U ′ t1 and δ′ : s ◦−→V ′ t2, and hence
an orthogonalization 〈σ′, δ′〉 of 〈σ, δ〉.

We now define a top–down orthogonalization algorithm. Roughly speaking, we start at
the top of the term and replace overlapping redexes with the outermost one. However, care
has to be taken in situations as depicted in Figure 9.

Theorem 6.10. Let R be a weakly orthogonal TRS, t ∈ Ter∞(Σ) a (possibly infinite) term.
Every pair 〈σ, δ〉 of multi-steps σ : t ◦−→ t′ and δ : t ◦−→ t′′ has an orthogonalization.

Proof. Let σ : s ◦−→U t1 and δ : s ◦−→V t2 be multi-steps with respect to sets U and V of
(non-overlapping) redexes. In view of Proposition 6.9 it suffices to construct an orthogonal-
ization witness 〈fU , fV 〉 for 〈σ, δ〉. Briefly, we will show that it is always possible to solve
outermost conflicts without creating fresh ones. After solving a conflict, the orthogonaliza-
tion continues with the next conflict that is now at a top-most position.

If U and V are orthogonal, then we are finished (then fU and fV are both the identity).
In this proof, by overlap we mean non-identical redexes whose patterns overlap. If there
exist overlaps, let u ∈ U ∪ V be a topmost redex (that is, having minimal depth) among
the redexes which have an overlap. Without loss of generality (by symmetry) we assume
that u ∈ U and let v ∈ V be a topmost redex among the redexes in V overlapping u.

We distinguish the following cases:

u

v

case (i)

u

v
w

case (ii)

u

v

w

case (iii)

u

v

mw

case (iv)

Figure 10: Case distinction for the orthogonalization algorithm.

(i) If v is the only redex in V that overlaps with u, case (i) of Figure 10, then we can safely
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replace v by u. More precisely, we define fU (u) = u and fV (v) = u and continue the
orthogonalization with 〈U \ {u}, V \ {v}〉, that is, the remaining redexes. Note that,
since (U \ {u}) ∪ (V \ {v}) contains no redexes overlapping u, the orthogonalization
of the remainder cannot create overlaps with u.

Otherwise we pick a redex w ∈ V , w 6= v and w overlaps u.

(ii) Assume that v and w are at disjoint positions, case (ii) of Figure 10. Then u, v and w
are Y-redexes and can be dropped from U and V by Lemma 6.7. That is, we choose
fU (u), fV (v) and fV (w) to be undefined, and continue the orthogonalization with the
remainder 〈U \ {u}, V \ {v, w}〉.

Otherwise, v and w are not disjoint, and then w must be nested inside v.

(iii) If u is the only redex from U overlapping v, case (iii) of Figure 10, then we can replace u
by v. That is, we define fU (u) = v and fV (v) = v. We continue the orthogonalization
with 〈U \ {u}, V \ {v}〉; that is including w since w may have further overlaps that
need to be resolved.

(iv) In the remaining case there must be a redex m ∈ U , m 6= u and m overlaps with the
redex v, see case (iv) of Figure 10. We pick such an m. Since U and V are developments
u cannot overlap with m, and v cannot overlap with w. We have that w is nested in
v, both overlapping u, but m is below the pattern of u, overlapping v. Hence w and
m must be at disjoint positions (v cannot tunnel through w to touch m); this has also
been shown in [5]. Then u, m, v and w are contained in a Y-cluster, and hence they can
be removed by Lemma 6.7. We choose fU (u), fU (m), fV (v), fV (w) to be undefined,
and continue the orthogonalization with the remainder 〈U \ {u,m}, V \ {v, w}〉.

For all redexes u ∈ U and v ∈ V for which we have not specified fU (u) or fV (v), respectively,
we define fU (u) = u or fV (v) = v (this concerns those u and v that either had no overlaps,
or the conflicts have been solved by rearranging another redex positions).

We obtain the diamond property as a corollary.

Corollary 6.11. For every weakly orthogonal TRS without collapsing rules, (infinite) multi-
steps have the diamond property.

Proof. Let σ, δ be two coinitial complete developments t1
σ← s

δ→ t2. Then by Theorem 6.10
there exists an orthogonalization 〈σ′, δ′〉 of σ, δ. The orthogonal projections σ′/δ′ and δ′/σ′

are complete developments (multi-steps) again, which are strongly convergent since the

rules are not collapsing. Hence t1
δ′/σ′→ s′

σ′/δ′← t2.

Note that in Corollary 6.11 the non-collapsingness is a necessary condition. To see this,
reconsider Example 5.12 and observe that the non-confluent derivations are developments.

In a similar vein, we can prove the triangle property for infinitary weakly orthogonal
multi-steps without collapsing rules:

Theorem 6.12. For every weakly orthogonal TRS without collapsing rules, (infinite) multi-
steps have the triangle property.

7. Conclusions

We have shown the failure of UN∞ for weakly orthogonal TRSs in the presence of two
collapsing rules. For weakly orthogonal TRSs without collapsing rules we established that
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CR∞ (and hence UN∞) holds, and that this result is optimal in the sense that allowing
only one collapsing rule is able to invalidate CR∞.

However, the failure of UN∞ for two collapsing rules raises the following question:

Question 7.1. Does UN∞ hold for weakly orthogonal TRSs with one collapsing rule?

Furthermore, we have shown that infinitary developments in weakly orthogonal TRSs
without collapsing rules have the diamond property. In general this property fails already
in the presence of only one collapsing rule.

The following table summarizes the results of this paper (coloured green) next to known
results (black).
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The nc-WOTRSs are weakly orthogonal TRSs without collapsing rules; 1c-WOTRSs like-
wise with one collapsing rule. The fe-OCRSs are fully extended orthogonal CRSs, see [4].
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