
Theoretical Computer Science 412 (2011) 3175–3202

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On equal µ-terms
Jörg Endrullis, Clemens Grabmayer, Jan Willem Klop ∗, Vincent van Oostrom
Vrije Universiteit Amsterdam, Department of Computer Science, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
Universiteit Utrecht, ZENO Research Institute, Department of Philosophy, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

a r t i c l e i n f o

Keywords:
Weak µ-equality
Strong µ-equality
α-equivalence
Renaming
Tree automata

a b s t r a c t

We consider the rewrite system Rµ with µx.M→µ M[x := µx.M] as its single rewrite
rule, where the signature consists of the variable binding operator commonly denoted by
µ, first-order symbols, which in this paper are restricted to a binary function symbol F, and
possibly some constant symbols. This kernel system denoting recursively defined objects
occurs in several contexts, e.g. it is the framework of recursive types, with F as the function
type constructor. For general signatures, this rewriting system is widely used to represent
and manipulate infinite regular trees.

Themain concern of this paper is the convertibility relation forµ-terms as given by the
µ-rule, in particular, its decidability. This relation is sometimes called weak µ-equality, in
contrast with strong µ-equality, which is given by the equality of the possibly infinite tree
unwinding of µ-terms. While strong equality has received much attention, the opposite is
the case for weak µ-equality.

We present three alternative proofs for decidability of weak µ-equality. The first two
proofs build upon an ingenious proof method of Cardone and Coppo. Prior to that, we
prepare the way by an analysis of α-conversion. We then give a decidability proof in an
‘α-free’ manner, essentially treating µ-terms as first-order terms, and next, a proof in
higher-order style, employing α-equivalence classes and viewing Rµ as a higher-order
rewriting system.

The third decidability proof is also derived in an α-free manner, exploiting the regular
nature of the set of µ-reducts, enabling an appeal to the theory of tree automata.

We conclude with additional results concerning decidability of reachability, and
upward-joinability of µ-reduction, and of convertibility by α-free µ-reduction.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let us consider the infinite wave pattern as follows:

∩∪∩∪∩∪∩∪∩∪∩∪∩∪∩∪∩∪∩∪∩ · · ·

This pattern is actually suggested by the very origin of the Greek letter µ descending from the Egyptian hieroglyph and
the Phoenician symbol , meaning water. The question arises whether this pattern has a finite representation. Indeed it
has, namely:

µx.∩∪x
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with the µ-rule

µx.s→ s[[x:=µx.s]]

Then we have:

µx.∩∪x→ ∩∪µx.∩∪x→ ∩∪∩∪µx.∩∪x→ ∩∪∩∪∩∪µx.∩∪x→ · · ·

However, there are other representations of the same pattern, for example:

µx′.∩∪x′

∩µy.∪∩y
∩∪µz.∩∪z
µw.∩∪∩∪w

Now the question arises when two such representations are the same (finitely)? Thus we arrive at themain endeavor of this
paper.

This paper studies a particular orthogonal higher-order rewrite system that we will call Rµ, containing terms built from
constants c, d, . . . , variables x, y, z, . . . , a binary function symbol F, and a higher-order symbol µ allowing to construct
terms such as µx.F(x, c). Everything in this paper generalizes to a more general first-order signature Σ , but for our present
purposes, with recursive types as main application, the specific signature as mentioned will be assumed. There is a single
rewrite rule, the µ-rule, which reads µx.M → M[x:=µx.M] (in meta-notation using the schematic variable M and meta-
substitution). So we have the rewrite sequence:

µx.F(x, x)→ F(µx.F(x, x), µx.F(x, x))
→ F(F(µx.F(x, x), µx.F(x, x)), µx.F(x, x))→ · · ·

where we could continue rewriting with as limit result the infinite binary branching tree of F’s. However, in most of the
paper we will only consider finite reduction sequences, and for such reduction sequences we have the confluence property,
as a consequence of the general confluence theorem for orthogonal higher-order rewrite systems. For studies involving the
use of µ-terms in infinitary term rewriting we refer to Inverardi and Zilli [13], and Corradini and Gadducci [8].

The rewrite system Rµ embodies the recursion principle in a most concentrated form, replacing the fixed point
combinators Y as employed in λ-calculus. In fact, we can consider Rµ to be a subcalculus of λ-calculus, via the translation
replacing µ by Y ◦ λ for some fixed point combinator Y ; the µ-rule then becomes a derived rule. As we will remark below,
this translation preserves unsolvability; meaningless terms are carried over to unsolvables in the λ-calculus.

Just as we can view λ-calculus from the finitary or the infinitary perspective, the latter leading to semantical notions such
as Böhm trees, its subsystem Rµ can also be viewed finitary or infinitary. The infinitary perspective of Rµ is in fact rather well
known, as it pertains to tree unwinding semantics of e.g. recursive types [3]. The ensuing equality is called ‘strong equality’
in [3], holding whenµ-termsM , N have the same possibly infinite tree unwinding. There are many proof systems for strong
equality, and many algorithms for deciding strong equality.

However, the finitary aspects of Rµ are much less known. For instance, the basic notion of (finitary) convertibility using
the µ-rule, was first studied in depth by Cardone and Coppo [6]. They provided a beautiful and ingenious proof method to
show decidability, using standard reductions and a special purpose proof system, but as it turned out recently, the proof
in [6] seems to be not entirely conclusive. Our proof below of decidability follows their proof strategy, but adds a crucial
ingredient in the form of annotated or virtual µ-binders.

In order to explain the structure of our paper inmore detail, wewill elaborate nowhowwe have approached the problem
of α-conversion, and whether we perform µ-reduction modulo α, or not. It turns out that the main theme in many proofs
of properties ofµ-reduction resides in cycle detection, also named loop checking. In order to guarantee termination of loop
checking, finiteness of the subterm closure SC(M) is exploited, where SC(M) is obtained from a µ-term M by alternating
root reduction (unfolding) and subterm taking. Finiteness of the subterm closure guarantees the appearance of cycles, that
is, the reoccurrence of terms that have been generated earlier. Our decidability proofs of weak µ-equality hinge upon such
a concept of loop checking.

However, taking subterms of a term µx.M is problematic, because a binder µx is severed, whereafter the previously
bound x’s are ‘loosely dangling’. Indeed, the corresponding higher-order ‘rule’ µx.M(x) → M(x) violates the restriction
on rules that the left-hand side and right-hand side must be closed (the right-hand side is not), as found in higher-order
rewriting. When wework with α-equivalence classes, it is not clear at all how tomake sense of this situation, and this is the
heart of the problem in the theory of µ-terms. To deal with this problem, various methods have been proposed and used,
all depending on the precise way how α-conversion and α-equivalence classes are handled. Here we can distinguish three
ways to define α-conversion inductively:

(I) The method used by Schroer [23]. This method consists in adopting new constants for the administration and
management of bound variables, much like the ‘de Bruijn indices’. In our paper, this method will be employed in
Section 8, where we treat decidability of weak µ-equality in a higher-order manner, based on α-equivalence classes.
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(II) The inductive definition employed by Kahrs [15]. In deciding α-equivalence M ≡α N , we successively peel off binders
from both sides M , N , keeping on the way a record, an ordered stack, of equations between the peeled off variables.
Togetherwith the other decomposition rule (F-decomposition),we thenobtain a finite tree of subgoals, and the terminal
equations of this tree can be simply decided by looking up in the stack, whether we have a success or a failure. These
judgments at the leaves of the tree, percolating upwards, then determine the judgment of the original α-equivalence
question. Interestingly, we will recognize aspects of this simple decision procedure for α-equivalence later on in
the more complicated setting of deciding weak µ-equivalence (in particular the tree search, and the bookkeeping of
discarded binders).

ε ⊢ µxy.F(x, y) = µyx.F(y, x)
x = y ⊢ µy.F(x, y) = µx.F(y, x)
x = y, y = x ⊢ F(x, y) = F(y, x)

x = y, y = x ⊢ x = y
x ≠ y y ≠ x x = y ⊢ x = y

x = y, y = x ⊢ y = x

Fig. 1. A proof of α-equivalence in the style of Kahrs [15].

(III) The definition ofα-equivalence as≡α := (←α∪→α)∗, the convertibility relation generated by single-stepα-renaming
→α .

In Hendriks and van Oostrom [12] these three approaches are proved to be equivalent. This does not mean that their use is
interchangeable without more; depending on the problem context one or more of methods (I)–(III) may be preferable and
the right one to use.

So there are various ways to deal with α-equivalence. But the basic strategic choice is to commit oneself either to treat
matters α-free, and clearly separating α-renaming andµ-reduction; or towork all thewaywith α-equivalence classes and a
corresponding notion ofµ-reduction. The advantage of the first commitment is that if we have succeeded in eliminating the
concerns to deal with α-conversion – and below we will show how in detail this can be done – then we are for all purposes
actually in a first-order setting.1 This first commitment we have adopted in our first decidability proof for weak µ-equality,
extending the proof method of Cardone and Coppo, see Section 7. It is also adopted in our third decidability proof, which
uses tree automata techniques, made possible by our ‘first-order rendering’ of µ-terms, see Section 9.

Our second decidability proof, in Section 8, is under the regime of the second commitment. It still follows the Cardone–
Coppo proof strategy, but now in a pure higher-order setting, so that µ-terms are α-equivalence classes. The advantage is
that thenwe do not have to deal with reductionmodulo α; this is seamlessly integrated in the notion of reduction in higher-
order rewriting. Here a certain disadvantage is that the higher-order setting is less concrete, and also less well known.

Summing up, we advocate the adagium that α-freeness entails a first-order setting. In our paper we have endeavored to
put light on the decidability question for weak µ-equality from both paradigm perspectives, α-free with the ensuing first-
order setting, and higher-order, with the ensuing built-in α-equivalence. This is the rationale for the different proofs that
we have developed.

An interesting meta-observation about the inclusion of the core system Rµ in the full λ-calculus, is that while in the
λ-calculus ‘every interesting property is undecidable’, as validated for many instances by Scott’s theorem, in the core
system Rµ by contrast ‘every interesting property is decidable’. To substantiate this informal slogan, we have included proofs
of decidability of reachability �µ/α , and also of unsolvability, and of upward-joinability ↑µ/α .

In this paper wewill sometimes refer to the rewrite system Rµ as ‘µ-calculus’, in analogywith the λ-calculus, to facilitate
our way of speaking. As a caveat we point out that we do not intend to evoke associations with well-known, important and
more expressiveµ-calculi such as the modalµ-calculus or Parigot’s λµ-calculus (see also [1]). It will be clear that our paper
concentrates on syntactic aspects of Rµ, rather than semantic studies of fixed point rules such as by Fiore and Plotkin [9] on
FPC.

2. Preliminaries

We start with setting up the notations. We also introduce the notion of meaningless µ-terms, and the Böhm Tree, or
infinite tree unwinding, of a µ-term.

Definition 1 (µ-Terms). Ter(µ) is the set of µ-terms over the first-order signature Σ = {c, d, . . .} ∪ {F} with constants
c, d, . . . , and binary function symbol F, more precisely:

(i) x, y, z, . . . ∈ Ter(µ) (variables),
(ii) c, d, . . . ∈ Ter(µ) (constants), and

1 The situation is similar as in the case of weak β-reduction where one does not reduce under a λ-binding: there is no need for α-conversion, and hence
one obtains the simplicity of a first-order setting.
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(iii) M,N ∈ Ter(µ) =⇒ F(M,N) ∈ Ter(µ), and
(iv) M ∈ Ter(µ) and x a variable =⇒ µx.M ∈ Ter(µ).

Note that the main application of µ-terms is for recursive types, where the type constructor is usually written as→, as
in [3]. To avoid overloading with our reduction step notation we use the binary F.

By the size size(M) of a µ-term M we mean the number of symbols and bindings in M , or more precisely, the number
of generation steps of M according to Definition 1. The definition of free and bound variables is analogous as in the
λ-calculus. By FV(M) (by BV(M)) we denote the set of variables that occur free (occur bound) in M , that is, we define
inductively:

FV(x) = {x} variables x
FV(c) = {ε} constants c

FV(µx.M) = FV(M) \ {x}
FV(F(M,N)) = FV(M) ∪ FV(N)

BV(x) = ∅ variables x
BV(c) = ∅ constants c

BV(µx.M) = BV(M) ∪ {x}
BV(F(M,N)) = BV(M) ∪ BV(N)

We write Pos(M) ⊆ N∗ for the set of positions of a µ-term M , defined by:

Pos(x) = Pos(c) = {ε} for variables x and constants c
Pos(µx.M) = {ε} ∪ {1p | p ∈ Pos(M)}

Pos(F(M,N)) = {ε} ∪ {1p | p ∈ Pos(M)} ∪ {2p | p ∈ Pos(N)}

For p ∈ Pos(M), we writeM|p for the subterm ofM at position p:

M|ε = M µx.M|1p = M|p F(M,N)|1p = M|p F(M,N)|2p = N|p

We write M →p N if there is a step M → N such that p ∈ Pos(M) is the position of the contracted redex. We write p < q
if the sequence of numbers representing position p is a prefix of that of q. So p is above q.

We use = to denote syntactic equality of µ-terms, and ≡α for equality modulo α-conversion. We write M[[x:=N]] for
α-converting substitution, which we denote using double brackets in order to distinguish it from α-free (potentially variable
capturing) substitution that we denote by M[x:=N]. Formally, for α-converting substitution M[[y:=N]] we employ Curry’s
definition (see e.g. [2, Definition C.1]) with µ for abstraction and F for application:

x[[x:=N]] := N
y[[x:=N]] := y (if y ≠ x)

F(M1,M2)[[x:=N]] := F(M1[[x:=N]],M2[[x:=N]])
(µx.M1)[[x:=N]] := µx.M1

(µy.M1)[[x:=N]] := µz.(M1[[y:=z]])[[x:=N]] (if y ≠ x)
where z = y if x /∈ FV(M1) or y /∈ FV(N),
else z is the first variable in the ordered
sequence of variables that does neither occur
in M1 nor in N

Furthermore, α-free substitutionM[x:=N] is formally defined by analogous clauses but with the difference that the last one
is replaced by the following simpler clause:

(µy.M1)[x:=N] := µy.M1[x:=N] (if y ≠ x)

As stated by the proposition below, α-free substitutions that do not lead to the capture of variables coincide with α-
converting substitutions. Variable capture does not occur in a substitution M[x:=N] if and only if N is free for x in M: there
is no free occurrence of x inM below a binding µy such that y ∈ FV(N).
Proposition 2. If N is free for x in M, then M[[x:=N]] = M[x:=N].
Definition 3 (µ-Rewrite Relation). The µ-rule (or unfolding rule) is:

µx.M → M[x:=µx.M] (if µx.M is free for x in M)

This rule induces the α-free µ-rewrite relation→µ on µ-terms (note that, as usual, the rewrite rule may be applied within
contexts). By extending→µ-steps on both sides by α-conversion steps,→µ/α := ≡α · →µ · ≡α , the µ-rewrite relation
(modulo α-conversion) on µ-terms is obtained.
Definition 4 (Weak µ-Equality). The relationweakµ-equality onµ-terms is defined as=µ/α := (←µ/α ∪→µ/α)∗ ∪ ≡α .2
By=µ we denote the convertibility relation (←µ ∪→µ)∗ with respect to the α-free µ-rewrite relation→µ.

2 Note that=µ/α coincideswith the convertibility relation (←µ/α ∪→µ/α)∗with respect to→µ/α : this is because everyα-renaming step can bemimicked
by a←µ/α-step that introduces a vacuousµ-binding at the root of the term, followed by a→µ/α-step that removes the vacuousµ-binding again and carries
out the α-renaming step. Furthermore,=µ/α also coincides with (←µ∪≡α ∪→µ)∗ , the convertibility relation with respect to→µ modulo α-equivalence.
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Fig. 2. Reduction graph for cyclic µ-terms.

Meaningless µ-terms. To illustrate some of the preliminary notations and notions we consider ‘meaningless’ µ-terms that
are analogous to meaningless terms in λ-calculus (see e.g. [16,24]) of a certain kind, namely the ‘root-active’ ones: such
λ-terms enable infinite rewrite sequences with infinitely many→β-reduction steps at the root position. These λ-terms are
‘meaningless’ in the sense that no information can be obtained from them because their root does not stabilize eventually.

This leads us to the following definition.

Definition 5 (Root Normal Forms, and Root-Active µ-Terms). A root-reduction step is a step in which the redex contracted is
situated at the root. (So a root step does not occur in a non-trivial context.3) A root-→µ/α-step is a (≡α · →µ · ≡α)-step in
which the→µ-step is a root-reduction step.

A root normal form of a µ-term is a normal form with respect to root-→µ/α-steps. A µ-term M is called root-active if it
admits an infinite→µ/α-rewrite sequence that contains infinitely many root-→µ/α-steps.

Proposition 6. (i) µ-terms in root normal form are either variables, or constants, or of the form F(A, B) for some µ-terms A, B.
(ii) Let M be a µ-term. The following four statements are equivalent:

(a) M is root-active.
(b) M admits an infinite→µ/α-reduction consisting only of root-→µ-steps.
(c) M does not reduce by→µ/α-steps (hence neither by root-→µ/α-steps) to a root normal form.
(d) M ≡α µxn . . . x1.xk for some n ≥ k ≥ 1 and variables x1, . . . , xn.

Let us denote, for n ≥ k ≥ 1, a root-active µ-term of the form µxn . . . x1.xk (with some variables x1, . . . , xn) by ⟨n, k⟩.

Remark 7. The following→µ/α-steps (provided to us by Felice Cardone, personal communication) comprise a complete
picture of the→µ/α-steps that are possible between root-active µ-terms:

⟨1, 1⟩ →µ/α ⟨1, 1⟩
⟨n, k⟩ →µ/α ⟨n− 1, k⟩ if n > k
⟨n, k⟩ →µ/α ⟨n− 1, k− 1⟩ if k > 1
⟨n, k⟩ →µ/α ⟨n+ k− 1, k⟩

The ARS (abstract reduction system) constituted by these steps is displayed in Fig. 2. The root-reduction steps are colored
red in the picture. It is easy to show that all root-active µ-terms are→µ/α-convertible to the simplest root-active µ-term
⟨1, 1⟩ = µx.x. So, in contrast with the λ-calculus, the property ‘root-active’ is decidable.

Hence Scott’s theorem for the λ-calculus fails for the µ-calculus: Scott’s theorem states that if a non-trivial property P of
λ-terms is closed under β-convertibility, then P and¬P are undecidable properties. Here ‘non-trivial’ means: P and¬P are
non-empty.

3 A context is a µ-term with one occurrence of a hole �.



3180 J. Endrullis et al. / Theoretical Computer Science 412 (2011) 3175–3202

The following exercise isworth noting: For its formulation, letΦ be the translation fromµ-terms toλ-terms that replaces
a µ by Y ◦ λ (or simply Yλ assuming the terms are written as words using the usual bracket convention), where Y is an
arbitrary fixed point combinator, leaving the other symbols in the µ-terms unchanged.

Exercise 8. Show that: For all µ-terms M , M is root-active if and only if Φ(M) is root-active. Note that root-active λ-terms
correspond to ‘unsolvable’ terms in λ-calculus, where root-steps are defined as steps at depth 0 with respect to the depth
measure (001) (see [24, 12.10]).

Does also the following hold: for all µ-terms M , M is root-active if and only if Φ(M) is root-active with respect to the
depth measure (111)?

Definition 9 (Infinite Tree Unfolding/Böhm Trees of µ-Terms). This definition is entirely analogous to the coinductive
definition of Böhm Trees (BT) in the λ-calculus and for term rewriting systems (see further [14, Section 2, (vii), and fn. 3]
and [17]), except that we replace ‘head reduction’ by ‘root reduction’. So, forM ∈ Ter(µ):

BTµ(M) = ⊥ ifM has no root normal form
BTµ(µx.M) = BTµ(M[[x:=µx.M]]) if µx.M has a root normal form

BTµ(x) = x for a variable x
BTµ(c) = c for a constant c

BTµ(F(M,N)) = F(BTµ(M),BTµ(N))

Note that the first clause applies for root-active (meaningless)µ-terms of the form (n, k) discussed above. In the last clause,
we have borrowed term notation to denote a possibly infinite term tree, in a self-explaining manner. In this case we peel off
the root normal context F(�, �) and coinductively append the BTµ’s of M and N . Later on we will define the notion of the
set of generators of a BTµ; the present M , N in the last clause are among these generators. But we give this definition only
after introducing the so-called subterm closure.

Definition 10 (Strong µ-Equality). Strongµ-equality=BTµ is the equivalence relation onµ-terms that is induced by equality
of the Böhm trees (or tree unfoldings): for µ-terms M , M =BTµ N holds if BTµ(M) = BTµ(N).

We remark that weak µ-equality implies strong µ-equality. The converse does not hold, as the following examples
illustrate. Both representations

µx.∩∪x and µx.∩∪∩∪x

represent the same infinite wave pattern ∩∪∩∪∩∪∩∪∩∪∩ · · · . Nevertheless, they are not equal with respect to weak
µ-equality, that is, they are not convertible by a finite sequence of folding, unfolding and α-renaming steps.

The following two µ-terms can be viewed as encodings into µ-terms over the signature we consider of the two µ-terms
from the example above:

M = µx.F(c, x) and N = µx.F(c, F(c, x))

The µ-terms M and N are equal with respect to strong µ-equality: both unfold in infinitely steps to the Böhm tree
F(c, F(c, F(c, . . .))). The terms are, however, not equal with respect to weak µ-equality.

3. Avoiding α-conversion in µ-calculus

We start with showing that α-conversion can be avoided along µ-reduction from a µ-termM by choosing the variables
of binders inM to be distinct and distinct from the free variables. We will call such µ-terms simple.

Since the phenomenon of α-conversion plays a rôle in any higher-order calculus, we set the stage by showing that
α-conversion cannot be avoided in the prototypical higher-order calculus: the λ-calculus with β-reduction [2].

Example 11 (α-Conversion in λ-Calculus). We consider the following reduction in which α-conversion cannot be avoided,
despite all λs binding distinct variables initially:

(λx.xx)λy.λz.yz →1 (λy.λz.yz)λy.λz.yz →2 λz.(λy.λz.yz)z →3 λz.λz ′.zz ′

In the end the bound variable z must be renamed to z ′ in order to avoid capturing the free z by λz. Without such self-capture
α-conversion can be avoided. A particular example where α-conversion can be avoided are developments.

We show that, unlike what is the case in the λ-calculus, in the µ-calculus α-conversion can always be avoided.
Intuitively, µ-reductions share the property with β-developments that no new redexes can be created along a reduction.
The latter property was shown in [22] to entail the absence of self-capturing so that α-conversion can be avoided along
β-developments.4 Here we adapt, and instantiate, that proof to µ-reduction.

4 In the terminology of [22] absence of self-capturing is expressed as holding (being connected by a chain in the sense of Definition 12) being parting
(never relating two residuals of the same redex), and established for all combinatory reduction systems [20] (second-order term rewriting systems).
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Fig. 3. A self-capturing chain of length 5 for the term µx.F(y, µz.F(x, µy.z)).

Fig. 4. Assumptions of Proposition 14 (left); Proof of the proposition (right).

Definition 12 (Self-Capture). For a given term M , a position p of a binder µx binds (captures) a position p1q of a variable y,
if the occurrence of y at position q in M|p1 is free (inM|p1) and x = y (x ≠ y).

A chain is a series of connected links,where a link is a binding or a converse capturing.More precisely, a chain is a sequence
of positions p1, . . . , pn such that for every 1 ≤ i < n we have that pi binds pi+1, or pi is captured by pi+1. We frequently
identify the positions pi with the symbol occurrences at position pi.

A chain is self-capturing if it starts with x and ends with µx, for some x. A µ-term is self-capture-free (capture-avoiding) if
there is no self-capturing chain (scc).

Example 13. The µ-term µx.F(y, µy.x) contains the chain 11, ε, 121, 12 connecting y to µy via µx and x, which is self-
capturing. Indeed, α-conversion is needed for contracting the outermost µ-redex yielding F(y, µy′.µx.F(y, µy.x)).

In a chain binding and converse capturing alternate. Chains are finite since if p binds o which is captured by q,5 then
p < q < o. Links are not self-capturing and self-capture-freeness is closed under taking subterms.

The following proposition and its proof are illustrated by Fig. 4.

Proposition 14. Let µx.M contain no scc. Suppose that a free occurrence of x in M is chained to a binder µy. Then y does not
occur free in M.

Proof. Otherwise there is a chain y, µx, x, . . . , µy in µx.M , contradicting self-capture-freeness. �

Example 15. Consider the following example in Fig. 3:

M = µx.F(y,N)

N = µz.F(x, P)

P = µy.z

The chain displayed in the right part of that figure shows the alternation of links and converse capturings. Note however,
that the binders µx, µz, µy at the peaks of this zigzag figure are actually not horizontal, but ‘sliding down’ along a branch
of the term, as one sees in the left part of the figure, and also in Fig. 4. Note that it holds: M →ϵ

µ F(y, µz.F(M, P)). The last
term contains twoµz’s, the displayed one, and the one inM . Contracting the displayedµ-redex without α-renaming causes
y to be captured.

By the following lemma, redexes for which the assumptions of Proposition 14 hold can be contracted by means of α-free
substitution.

Lemma 16 (α-free). Suppose that if there is a chain from a free occurrence of x in M to a binder µy, then y is not free in N. Then
M[[x:=N]] = M[x:=N].

5 In the terminology of [21], on which [22] was based, p grips q. That is, we decompose gripping using the more elementary notion of link, as a binding
link followed by a converse capturing link, allowing also to deal uniformly with free variables.
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Fig. 5. Tracing symbols along a step.

Proof. By induction and cases on the formation of the term substituted in, the only interesting case being when the term is
an abstraction µy.M with x ≠ y. Then either x is not free inM or else by the assumption, y is not free in N , hence

(µy.M)[[x:=N]] = µy.M[[y:=y]][[x:=N]]
= µy.M[[x:=N]]
= µy.M[x:=N]
= (µy.M)[x:=N]

where the induction hypotheses is applied in the third equality. �

Having shown that self-capture-freeness entails that α-conversion can be avoided, we next show that it is preserved by
µ-reduction.

Lemma 17 (Self-Capture-Free Preservation). Self-capture-freeness is preserved by µ-reduction.

Proof. The proof is by tracing back positions, paths, links, and chains. The (dynamic) trace relation [[φ⟩⟩, simply denoted by
◃ if the step φ is clear from the context, cf. [24, Section 8.6.1], between the positions of the source and target of a reduction
step φ contracting a µ-redex µz.M at position o:

C[µz.M]o →o C[M[[z:=µz.M]]]o

is defined by the following clauses:

(context) p ◃ p if o 
 p
(body) o1p ◃ op if o1p not bound by o
(copy) op ◃ oqp if o1q bound by o

In the remainder of the proof we use primed variables, e.g. p′, to range over positions in the target of φ, indicating the
unique positions they trace back to, their origins, by unpriming, e.g. p, and employ that the symbols at these positions in
the respective terms are the same. We claim that for every link connecting p′, q′ there is chain connecting p, q in the same
direction. Since the claim entails that chains trace back to chains, the result follows. To prove the claim assume w.l.o.g. that
p′ is the position of a binder µx and q′ the position of a variable y, and distinguish cases on the relative positions of p′ < q′.

If both p′, q′ are in the same component (context, body, or copy) then the path between them is in the same component
as well, and the origin of such a path is a path between their origins p, q.

If p′ is in the context and q′ in the body then the origin of the path between them is the same path with 1 inserted at o,
and we conclude using that y ≠ z by the condition on the body case.

If p′ is in the context and q′ in a copy at o′ then q′ must be free in o′1, and the origin of the path is the same path with the
path from o up to o′ removed, from which we conclude.

If p′ is in the body and q′ in a copy at o′ then q′ must be free in o′1, and we conclude using that there is a chain connecting
p to q via first the binder corresponding to the copy, i.e. o′ with 1 inserted at o, and next o (Fig. 5). �

Theorem 18 (α-Free µ). For any µ-term M, there is an α-equivalent term M ′ such that any µ-reduction from M can be lifted
to a µ-reduction from M ′ contracting redexes using α-free substitution only.

Proof. LetM ′ be obtained by renaming the binders on each chain inM so as to be distinct, and distinct from the free variables,
e.g. by choosing all of them to be distinct. ThenM ′ is self-capture-free and we conclude by the previous lemmata. �

The theorem justifies treating µ-terms as if they were first-order terms, as we will do with the exception of Section 8.
We proceed with showing a substitution lemma for α-free substitution.

Remark 19. The (µ-calculus variant of the) standard Substitution Lemma [2, Lemma 2.1.16] will not do for our purposes
as it implicitly makes use of α-conversion to guarantee a stronger invariant, the so-called variable convention, than can be
guaranteed in this paper. Typically, a single µ-step both copies and nests binders, violating the variable convention.
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Fig. 6. The subterm closure of µxyz.y.

Lemma 20 (α-Free Substitution). M[x:=N][y:=L] = M[y:=L][x:=N[y:=L]], under the condition of Lemma 16, x ≠ y, and x
not free in L.

Proof. By induction and cases on the structure ofM .

(z) If x = z, then both sides of the equality yield N[y:=L], using x ≠ y.
If y = z, then both sides of the equality yield L using x ≠ y, and x not free in L to establish L[x:= . . .] = L.
Otherwise, both sides of the equality yield z.

(µz.M1) If x = z, then both sides of the equality yield µx.M1[y:=L], using x ≠ y.
If y = z, then either x is not free inM1 and then both sides of the equality yieldM , or else by the assumption, y
is not free in N and both sides yield µy.M1[x:=N].
Otherwise, µz.M1[x:=N][y:=L] = µz.M1[y:=L][x:=N[y:=L]] and we conclude by the induction hypothesis
forM1.

(F(M1,M2)) Then the statement follows again from the induction hypothesis. �

4. The subterm closure and its finiteness

In this section we exhibit a key notion in the theory of µ-terms and various decidability proofs, namely the notion of
subterm closure, as well as the corresponding key lemma stating that this subterm closure is finite. Both the notion and its
property were originally conceived by Brandt and Henglein [4].

Note: All terms in this section are assumed to be capture-avoiding, which implies that→µ-rewrite sequences never lead
to µ-terms in which µ-redexes could only be contracted after suitable renamings of bound variables.

Consider the µπ-calculus obtained by adjoining the following root-reduction rule schemata π :

F(M1,M2)→ Mi for i ∈ {1, 2} (F-decomposition)
µx.M → M (µ-decomposition)

to the µ-calculus restricted to root reduction:

µx.M → M[x:=µx.M] (root-µ-reduction)

These reductions are not allowed in a context, and they pertain to µ-terms taken literally, not modulo α. Since a π-step
projects onto a subterm, it may only shorten chains. Hence the above results carry over immediately, i.e. α-conversion is
not needed in the µπ-calculus either.

In this section,
ε
→µπ will be used to denote µπ-root-reduction, i.e. µπ-reduction at position ε, the root.

Warning: The present reduction
ε

�µπ should not be confused with �µ/α , a sequence of general µ-reduction steps, even
though both relations overlap;

ε
�µπ may involve some root-µ-steps, just as �µ/α .

Definition 21. The subterm closure SC(M) of a µ-term M is defined as the set of reducts ofM with respect to
ε
→µπ :

SC(M) = {N | M
ε

�µπ N}.

Example 22. We consider the cyclic µ-term M ≡ µxyz.y, i.e. the unsolvable (3, 2) in Fig. 1. The subterm closure SC(M)
contains 5 elements; see Fig. 6. Note that µxyz.y ≡α µzyz.y, that is, we take µ-terms literally without α-conversion.

Example 23. Let M ≡ µx.F(x, µy.F(x, y)). Then SC(M) has 11 elements, see Fig. 7. The reduction relation
ε
→µπ is not SN

(terminating). Nevertheless, the set of generated terms is always finite. This finiteness will be crucial in the subsequent
sections.
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Fig. 7. The subterm closure of µx.F(x, µy.F(x, y)). (For the shaded boxes see the explanation below Proposition 37 in Section 6.)

Before giving the detailed proof of finiteness of the subterm closure, let us give some quick intuition of the finiteness. Let
M ≡ µx.F(x, µy.F(x, y)) as in Example 23, and consider the following µπ-reduction starting fromM:

µx.F(x, µy.F(x, y))
→µ F(µx.F(x, µy.F(x, y)), µy.F(µx.F(x, µy.F(x, y)), y))

→π µy.F(µx.F(x, µy.F(x, y)), y)

→µ F(µx.F(x, µy.F(x, y)), µy.F(µx.F(x, µy.F(x, y)), y))

→π µy.F(µx.F(x, µy.F(x, y)), y)

The underlined subterms6 indicate terms that are substitutions created by a previous µ-step at the root. That is, the
underlined terms have been encountered before in the reduction. Now observe that the size of the non-underlined part
is decreasing with every µπ-step. It decreases until size 0, that is, the whole term is underlined. To construct the subterm
closure we only need to consider repetition-free µπ-reductions. The above argument of the decreasing size of the non-
underlined context can be formalized to a termination proof for repetition-free µπ-reductions. Then since µπ-reductions
are finitely branching, we conclude finiteness of the subterm closure by König’s Lemma.

Remark 24. We can also prove the finiteness of the subterm closure SC(M) by the following application of recursive path
order (RPO). This can be seen as a more refined version of underlining. See Fig. 8 where we have shown SC(M) as in Fig. 7,
now enhanced with labels yielding the RPO finiteness proof. The notation M0 means that the head symbol of M (where M
occurred ‘earlier’ in the figure), has label 0, but the other labels are unchanged. Likewise for N0 and P0.

(i) Label each x, y, . . . , F, µ inM with a natural number n ∈ N, such that higher occurrences have a higher label. A labeling
with that property is called ‘decreasing’.

(ii) Second, we label the µπ-rules. For F-decomposition and µ-decomposition we take the obvious definition, where the
subterm resulting after the step keeps the labels it had before the step.

(iii) However, for the root-µ-reduction rule we have the crux of the definition:

µxn+1.M → M[x:=µx0.M] (1)

Note that a 0-labeled µ-redex cannot ‘fire’, be contracted. So the label of the contractum of a µ-redex is nullified. But,
beware, not the labels ofµ’s inside the contractum, they remain ‘what they were’. So a decreasing labeling will not stay
decreasing in general. However, that does not matter.

(iv) Show that labeledµπ-reduction is SN. So there are only finitelymany labeled reducts. Clearly, after erasure of the labels
they are all in SC(M).

(v) Vice versa, show that an unlabeled µπ-reductionwithout repetition can be ‘lifted’ to a labeled one. Here the intuition is
that µx0-redexes are ‘old’, and have used their ‘one-shot firing power’.

(vi) Conclude thatSC(M) is finite, using that RPO is terminating. For RPO see e.g. IPO, iterative lexicographic path orders [19].

Substitutions do or do not contribute to a subterm closure reduction. That the substitution of a µ-reduction step can be
split off, is a consequence of the following technical factorization lemma.

Lemma 25. Under the conditions of Lemma 16, if M[x:=N]
ε

�µπ K then either

(i) it is a [x:=N]-instance of a reduction M
ε

�µπ L, where the condition of Lemma 16 holds for L; or
(ii) M

ε
�µπ K; or

(iii) it has a prefix which is a [x:=N]-instance of a reduction M
ε

�µπ x.

6 Basically, this underlining argument was also suggested in personal correspondence by Cardone and Coppo.
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Fig. 8. Finiteness of the subterm closure using a recursive path order.

Proof. The proof is by induction on the length of the reduction. If the length is 0, then case (i) holds by setting L = M .
Otherwise,M[x:=N]

ε
�µπ K ′ → K for some term K ′ and we have by the induction hypothesis for this reduction either

(i) it is a [x:=N]-instance of a reductionM
ε

�µπ L′, where the condition of Lemma 16 holds for L′. We distinguish cases on
L′:

(y) Then, since variables are normal forms, we must have x = y and N = K ′, and we are in case (iii).
(µy.L1) If x = y then K ′ = L′ and we are in case (ii).

If x ≠ y then K ′ = µy.L1[x:=N]. If K ′ → L1[x:=N] = K then taking L = L1 brings us in case (i) using
x ≠ y to show that the condition of Lemma 16 still holds. If K ′ → L1[x:=N][y:=K ′] = K then by the α-free
Substitution Lemma K = L1[y:=L′][x:=N] and setting L = L1[y:=L′] yields case (i) again, using that chains
and free occurrences of x in L′ trace back to L along the µ-step, as established above, so the condition of
Lemma 16 still holds.

(F(L1, L2)) Then K ′ = F(L1[x:=N], L2[x:=N])→ Li[x:=N] = K and we are in case (i) setting L = Li;

(ii) M
ε

�µπ K ′, henceM
ε

�µπ K ′ → K ; or

(iii) it has a prefix which is a [x:=N]-instance of a reduction M
ε

�µπ x. Then the same holds for the reduction extended by
the step K ′ → K . �

Remark 26. The above lemma is unsatisfactory in that the second case is only there to compensate for the standard but
problematic concept ofM being considered a subterm ofµx.M . It is problematic since it allows to free bound variables, here
by means of the π-rule, breaking α-conversion. For a proper higher-order notion of subterm as introduced in Section 8, this
case can be eliminated, see Lemma 55. That holds also for every higher-order recursive program scheme [18].

Theorem 27. SC(M) is finite.

Proof. The proof is by induction and cases on the structure ofM .

(x) SC(x) = {x}.
(µx.M) SC(µx.M) ⊆ {µx.M} ∪ SC(M) ∪ SC(M)[x:=µx.M]. This is obvious in case a witness µx.M

ε
�µπ N of

minimal length to N ∈ SC(µx.M) is empty or starts with µx.M → M . Otherwise, the witness starts with
µx.M → M[x:=µx.M] and we conclude by applying the previous lemma to its suffix, noting that case (iii)
cannot occur as it would contradict minimality. Hence we conclude by the induction hypothesis forM .

(F(M1,M2)) SC(F(M1,M2)) = {F(M1,M2)}∪SC(M1)∪SC(M2) andwe conclude by the induction hypothesis for theMi. �

Remark 28. It is easy to load the induction in the proof to show that the cardinality of SC(M) is in fact bounded by 2h
− 1

with h the height ofM .

Remark 29. In the computation induced by the proof only residuals of µ-redexes in the initial term (no ‘copies’) are
contracted. That is, µ-developments suffice to compute the subterm closure.

Let us comment on this interesting analogy between the classical Finite Developments Theorem in λ-calculus on the one
hand, and the finiteness of the subterm closure SC on the other hand. We can formalize this statement easily by employing
again an underlining argument, in a way that is somewhat dual to the one above, as follows. Underline in the initial term
M all µ’s. An underlined µ that is copied (by the contraction of another underlined µ-redex) looses its underlining. Now
during the generation of SC(M), that is, during the πµ-reduction, only underlined µ-redexes may be contracted. So the
initially present underlinedµ’s have only a ‘one-shot firing power’; and a copiedµ-redex cannot fire anymore. This situation
coincides with the classical notion of developments of β-redexes in the λ-calculus, where only underlined β-redexes may
be contracted.
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5. The subterm closure and standard reductions

The subterm closure will be of fundamental importance in the coming decidability proofs. Also, the notion of standard
reduction figures prominently in these proofs. Remarkably, both notions are intimately related. We will expose this
relationship in the present section.

Definition 30. Let R : M0 →
p0
µ/α M1 →

p1
µ/α . . . be a reduction. Then R is outside-in if

∀m > n. not pm < pn

Thus, R is outside-in if later redex positions are not above earlier ones. In other words, a contraction of a redex freezes
every redex higher-up, and they remain frozen. Outside-in reductions according to the definition above coincide with
standard reductions for Rµ viewed as a HRS [5].

In an infinite µ-reduction R : M0 → M1 → · · · there can be infinitely many different redexes contracted. Remarkably,
in an infinite standard reduction this is not the case. A strengthening of this observation is as follows:

Proposition 31. Let R : M0 →
p0
µ/α M1 →

p1
µ/α · · · be a standard reduction. Then

∀i. ∀p ∈ Pos(Mi). (¬∃j < i. p < pj) =⇒ Mi|p ∈ SC(M0)

This proves in particular the observation above, that a standard reduction R contracts only finitely many redexes, even if R
is infinite. Before giving the easy proof, let us first see what this proposition amounts to, by considering two examples.

Example 32. A standard reduction starting from µx.F(x, x)

Example 33. We reconsider the term from Fig. 7, the computation of the subterm closure of µx.F(x, µy.F(x, y)):

Both examples display standard reductions. That means that an increasingly large prefix ‘crystallizes out’, becomes
frozen, by the requirement that everything above a redex contraction will be immutably fixed; no activity is allowed in
that part. In the first example the frozen part only contains F’s, but the second example freezes a µ-redex. Let us call the
separation between frozen prefix and the lower part determined by it, the snow line. Now Proposition 31 states that every
subterm having its root below the snow line, is an element of SC(M0).

Proof of Proposition 31. ForM0 the proposition is trivially true, as the frozen prefix then still is empty, andSC(M0) is closed
under subterms. If we assume as induction hypothesis (IH) that the proposition holds forMi, it is proved forMi+1 as follows.
The redex Ri = Mi|pi at pi, contracted in Mi →µ/α Mi+1, is situated below the snow line of Mi, because the reduction is
standard. Thus by (IH) Ri ∈ SC(M0). Then the claim follows since the contractum of Ri is in SC(M0) by root µ-reduction,
and SC(M0) is closed under subterms. �

Remark 34. We said above ‘increasingly large prefix’; this is so if the original term M0 does not contain an unsolvable
(circular) subterm.

Corollary 35. Let R : M0 →
p0
µ/α M1 →

p1
µ/α . . . be a standard reduction.

(i) All redexes Mi|pi contracted in R are in SC(M0).
(ii)R employs only finitely many different redexes (even if R is infinite). �
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µx.M �std N
M[x:=µx.M] �std N

µx.M �std µx.N
M �std N

F(M1,M2) �std F(N1,N2)

M1 �std N1 M2 �std N2

x �std x

Fig. 9. Proof system for �std .

If we define standard reduction in an inductive fashion, then the correspondence with the subterm closure becomes
obvious:

Definition 36. The (α-free) inductive standard relation �std on the set of capture-avoiding µ-terms is defined inductively:

(i) x �std x for every variable or constant x,
(ii) µx.M �std N wheneverM[x:=µx.M] �std N ,
(iii) µx.M �std µx.M ′ wheneverM �std M ′, and
(iv) F(M,N) �std F(M ′,N ′) whenever M �std M ′ and N �std N ′.

Observe that (ii) corresponds to µ-steps at the root, (iii) to µ-removal, and (iv) to F-decomposition in the definition of the
subterm closure. From the perspective of standard reduction, (iii) and (iv) decrease the height of the snow line, that is,
enlarge the frozen prefix of the term.

It is easy to see that for capture-avoiding µ-terms the inductive standard relation �std coincides with the reduction
relation generated byα-free standard reduction,which in turn is extensionally equivalentwith the ordinaryα-free reduction
relation �µ. These observations justify the use of the notion �std.

It is instructive to compare this definition with the various proof systems in this paper by presenting it as the proof
system depicted in Fig. 9. Here and later we present these systems flipped upside down with premises at the bottom and
conclusions on top (cf. the motivation at the start of Section 7).

6. Strong µ-equality

Although we are not primarily concerned with the infinite tree unfolding BTµ of µ-terms and the ensuing strong
µ-equality, we will briefly discuss regularity of BTµ and decidability of strong µ-equality, in order to indicate that the
methods and notions used in this paper are convenient for treating them.

Proposition 37. For all µ-terms M, BTµ(M) is a regular tree.

Proof. This is an immediate consequence of the finiteness of SC(M). Indeed, the generators of BTµ(M) can be defined as
those elements in SC(M) that are reachable fromM by a sequence of rootµ-steps, followed by an F-decomposition step. The
generators are the ‘determinants’ for BTµ. Since they are finite in number due to Theorem 27, BTµ(M) is a regular tree. �

In Example 23, Fig. 7, the generators of BTµ(M) are thus identified as {M,N}, indicated by a gray shading of their boxes
in Fig. 7.

Locally in this section we use the following notion: Given a goal equation A = B between of capture-avoiding µ-terms,
the deductive closure of the set {A = B} is the set of all equations between µ-terms that can be produced starting on the set
{A = B} by repeated application of the following two generation rules from equations to equations: F-decomposition (see
Section 4) simultaneously on either side of an equation, and root-µ-reduction (root-unfolding, see Section 4) simultaneously
on either side of an equation.

Theorem 38. Strong µ-equality=BTµ is decidable.

Proof Sketch. It suffices to showdecidability of strongµ-equality between capture-avoidingµ-termsA and B. If these terms
are not capture-avoiding, thenwe step over to capture-avoidingα-variants, using that BTµ, and hence also=BTµ , is invariant
under α-equivalence.

Given a goal equation A = B between of capture-avoidingµ-terms, we compute the deductive closure of the set {A = B}.
We find that this closure is finite, and hence can be constructed effectively: by induction on the generation of the deductive
closure it can be proved that all equations P = Q in it are contained in SC(A)×SC(B), which is a finite set, as a consequence
of Theorem 27.
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Fig. 10. Proof rendered top-down.

µx.M(x) = N
M(µx.M(x)) = N

µ-step in lhs

M = µy.N(y)
M = N(µy.N(y))

µ-step in rhs

µx.M = µx.N
M = N

µ-removal

F(M1,M2) = F(N1,N2)

M1 = N1 M2 = N2
F-decomposition

M = M axiom

Fig. 11. Original proof system of Cardone and Coppo.

In the deductive closure of {A = B}weonly have to inspectwhether it contains an ‘inconsistency’ or not (an inconsistency
is either an equation between a variable and a constant, or an equation between different variables or constants, or an
equation between a variable or a constant and a µ-term starting with F). In the latter case we conclude: A =BTµ B; and in
the former: A ≠BTµ B. �

Example 39. Consider A = µx.F(x, x) and B = µxy.F(x, y). Abbreviate C = µy.F(B, y). Then the deductive closure is
{A = B, A = C}. No inconsistency has appeared, and hence: A =BTµ B.

Remark 40. The deductive closure is intimately connected with the notion of bisimulation; in fact the equations are pairs
in what can be called a bisimulation between the µ-terms A and B. Instead of the deductive closure sketched in the proof
above, one can use the presentation of a downward growing search tree, branching at an F-decomposition, and equipped
with loop checks at repeated occurrences of equations. This loop checked tree is in fact the mirror image of a proof of A = B
in the proof system of Brandt–Henglein [4], as elaborated in Grabmayer [10,11].

7. A proof system for µ-convertibility

In this section wewill present our first proof of decidability ofµ-convertibility. It is based on amethod, including a proof
system, devised by Cardone and Coppo, as we will discuss.

Usually, proofs in a deductive system are rendered with the axioms on top, working downwards to the goal equation.
We prefer to flip over these proof figures, as in tableau proof systems, with the goal equation as the root on top, then have
unary–binary branching toward the bottom layer, the axioms, which hence are ‘terminals’ of the proof tree; see Fig. 10. In
this way it is easier to connect derivations in the systemwith the (for rewrite sequences quite intuitive) downward direction
of standard reductions that are formalized by derivations.

7.1. The proof system of Cardone and Coppo

We first recall the original proof system of Cardone and Coppo, see Fig. 11. Again, we present the system flipped upside
down with premises at the bottom and conclusions on top.



J. Endrullis et al. / Theoretical Computer Science 412 (2011) 3175–3202 3189

Note that for the proof system to work, terms have to be considered modulo α-equivalence. For example, consider the
equation

µx.µz.F(x, z) =µ/α µy.F(y, µz.F(y, z))

Then to prove the equation, we would like to employ µ-removal followed by a µ-step in the left-hand side, and finally an
axiom. However, µx-removal requires the binders on the left-hand side and on the right-hand side of the equation to be
equal. For this reason we need to consider all terms in this system modulo α-conversion.

Since the set of variables is infinite, α-equivalence classes are a priori infinite too, and we need additional arguments to
make the search space finite. A possibility to make the system from Fig. 11 finite would be to α-convert the terms in the
starting equation such that they are capture-avoiding (see Section 3), and restrict α-conversion throughout the derivation
to terms over the set of (the union of the) initially used binders. However, the latter requires a proof that completeness of
the system is not lost.

For this reason, we strive for a proof system where the µ-terms are taken literally, without α-conversion. To this end
we extend the system of Cardone and Coppo with annotations, similar in spirit to the context in Kahrs’s proof system for
deciding α-equivalence [12].

7.2. A proof system with annotations

An important notation is the use of annotated µ-bindings, written as (µx), (µy), or as vectors (µxyz) or (µx⃗). So if
M ∈ Ter(µ), then (µx)M is an annotated µ-term. We only employ the annotation vectors (µx⃗) at the root of a term.
Definition 41. An annotated µ-term is an expression of the form ()M , or (µx1 . . . xn)M where M ∈ Ter(µ), and x1, . . . , xn
are variables. (Here ()M and (µx1 . . . xn)M are the annotations of a µ-term M by an empty µ-binding prefix, and by the
µ-binding prefix µx1 . . . xn, respectively.) By AnnTer(µ) we denote the set of all annotated µ-terms.
Example 42. (i) (µx)F(µy.y, c) is an annotated µ-term.
(ii) For every µ-term M , (µx⃗y⃗)M is an annotated µ-term.

We employ the annotation vectors (µz⃗) to keep a record of the µ-bindings that have been removed (µ-removal), or in
another view, that we have passed in selecting the redex to be contracted in the standard reduction which is implicit in the
proof. For the annotated proof system S, see Fig. 12.

A priori, the annotations would grow unboundedly. In order to obtain a finite proof system, we introduce a compression
rule that removes ‘two-sided vacuous’ µ-binders from the annotations. To enforce compression, we restrict application of
the other inference rules to fully compressed formulas.
Definition 43. An occurrence of a binder µx in a term M ∈ Ter(µ) at position p is called active if x ∈ FV(M|p1), the set of
free variables ofM|p1. A non-active occurrence of a binder µxwe will also call vacuous.

For annotated terms (µx1 . . . xn)M we say that xi is active or vacuous if the respective property holds for µxi at position
1i−1 in µx1 . . . xn.M .

LetM = (µx1 . . . xn)M ′ andN = (µy1 . . . yn)N ′, and consider the annotated equation e : M = N . Then an index 1 ≤ i ≤ n
is called two-sided vacuous in e if the displayed occurrence of xi is vacuous in M , and yi is vacuous in N . The equation e is
called compressed if it has no two-sided vacuous indexes.

Example 44. All µ-unsolvables are weakly µ-equivalent to Ω = µy.y; for example M ≡ µx3x2x1.x2
x3
→µ µx2x1.x2

x1
→µ

µx2.x2 ≡α Ω . See Fig. 13 for a systematic proof search for the equation M = Ω in the proof system S. We stop the proof
search when encountering a repetition along a branch.

Example 45. For a proof employing the compression rule, we consider the equation:

µxyz.F(µu.x, z) = µx′y′.F(x′, µz ′.F(x′, z ′))

The successful part of the proof search is displayed in Fig. 14. Note that the graph contains two different edge types. The
dashed edges ‘- - -’ represent the non-deterministic choices in the proof search, while the solid edges ‘—’ stand for splits due
to F-decomposition. A node in a search tree is successful if:
(i) An inner node with outgoing ‘- - -’ edges is successful if at least one of its children is successful.
(ii) An inner node with outgoing ‘—’ edges is successful if all its children are successful (such nodes have exactly two

children).
(iii) A leaf (that is, a node without outgoing edges) is successful if and only if it is an axiom.

A proof search is successful if the root node of the proof search tree is successful. Wemark the successful nodes with⊤, and
the unsuccessful nodes with⊥.

Lemma 46 (Standard Reductions Represented by S-Derivations). The following statements are equivalent for capture-avoiding
µ-terms M and N:
(i) (µx⃗)M = (µy⃗)N .
(ii) There exist α-free standard reductions M �std M ′ and N �std N ′ such that µx⃗.M ′ ≡α µy⃗.N ′.
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The compression rule:
e : (µx1 . . . xn)M = (µy1 . . . yn)N

(µx1 . . . xi−1xi+1 . . . xn)M = (µy1 . . . yi−1yi+1 . . . yn)N

whenever i is a two-sided vacuous index in e.
The following inference rules are restricted to such instances in which the conclusion (the formula on top) is a
compressed equation:

(µz⃗)µx.M(x) = (µu⃗)N
(µz⃗)M(µx.M(x)) = (µu⃗)N

annotated µ-step in lhs

(µz⃗)M = (µu⃗)µy.N(y)
(µz⃗)M = (µu⃗)N(µy.N(y))

annotated µ-step in rhs

(µz⃗)µx.M = (µu⃗)µy.N
(µz⃗x)M = (µu⃗y)N

annotated µ-removal

(µz⃗)F(M1,M2) = (µu⃗)F(N1,N2)

(µz⃗)M1 = (µu⃗)N1 (µz⃗)M2 = (µu⃗)N2
annotated F-decomposition

(µx)x = (µy)y

()x = ()x ()c = ()c
axioms (end points, matches)

Fig. 12. Proof system S with annotations.

Fig. 13. A proof of µx3x2x1.x2 = µy.y.

Let us first comment on the intuition behind the lemma. A proof∆ : M = N can be seen as the result of an interleaving of
two standard reductions forM and N , respectively. Actually, the interleaving also contains at some points a synchronization
between the two ‘processes’ that are the respective standard reductions of M and N . Namely, note that the proof system
requires the simultaneous removal ofµ-binders,µx andµy, respectively. Indeed, the definition of standard reduction ‘freezes’
the µ’s that are passed; thereby they are turned into fixed, immutable constructors. Also F is a constructor, this one binary;
and also F’s are peeled off simultaneously in lhs and rhs, that is, the removal (which can be seen as an observation) is
simultaneous, synchronized.

Proof of Lemma 46. For showing ‘(ii)⇒ (i)’, we first argue that it suffices to show this implication only in situations in
which a compressed equation has to derived in S: For this, suppose that (ii) holds for some x⃗, y⃗, M , and N such that the
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Fig. 14. A proof of µxyz.F(µu.x, z) = µx′y′.F(x′, µz ′.F(x′, z ′)).

equation (µx⃗)M = (µy⃗)N is not compressed. Then the equation (µx⃗)M = (µy⃗)N contains a two-sided vacuous index
i. Now an application of the compression rule yields the equation (µx⃗′)M = (µy⃗′)N where x⃗′ = x1 . . . xi−1xi+1xn and
y⃗′ = x1 . . . yi−1yi+1yn. And furthermore, µx⃗.M ≡α µy⃗.N implies µx⃗′.M ′ ≡α µy⃗′.N ′. By assumption (ii) we still have α-
free standard reductionsM �std M ′ and N �std N ′. If (µx⃗′)M = (µy⃗′)N is compressed, then the restricted version of (ii)⇒
(i)’ can be applied to obtain a derivation D in S with conclusion (µx⃗′)M = (µy⃗′)N , and, by extending D by an application
of the compression rule, a derivation with conclusion (µx⃗)M = (µy⃗)N . If (µx⃗′)M = (µy⃗′)N is not compressed, then this
argument can be repeated until, after finitely many steps, the restricted version of ‘(ii)⇒ (i)’ can be applied.

Now we proceed to show ‘(ii) ⇒ (i)’ by induction on the inductive definition of the inductive standard reductions
σ : M �std M ′ and τ : N �std N ′ (induction on the lexicographic order on ⟨σ , τ ⟩) with respect to Definition 36. By
the argument above, we may assume that x⃗, y⃗, M , and N in (ii) are such that the equation (µx⃗)M = (µy⃗)N is compressed.

– The base case: σ and τ are with respect to case (i) in Definition 36. Then M ≡ M ′ and N ≡ N ′ are variables or
constants. Since (µx⃗)M = (µy⃗)N is compressed, the assumption leaves room for only the following three cases:
(i) M ≡ M ′ ≡ N ≡ N ′ is a constant, and both of x⃗ and y⃗ are empty; (ii) M ≡ M ≡ N ≡ N ′ ≡ z for a variable z,
and both of x⃗ and y⃗ are empty; (iii)M ≡ M ≡ z and N ≡ N ′ ≡ u for a variables z and u, and x⃗ = z and y⃗ = u. In all three
cases (µx⃗)M = (µy⃗)N is an axiom, which demonstrates ⊢S (µx⃗)M = (µy⃗)N .

– Assume that σ or τ starts with a µ-step at the root (that is, case (ii) in Definition 36). By symmetry let it be σ . Then
M ≡ µz.M ′′ and M ′′[z:=M] �std M ′. Then a µ-step in the left-hand side of the compressed equation (µx⃗)M = (µy⃗)N
yields (µx⃗)M ′′[z:=M] = (µy⃗)N to which the induction hypothesis is applicable.

– If σ and τ are with respect to case (iii) in Definition 36, then M ≡ µz.M2 and M ′ ≡ µz.M ′2 with M2 �std M ′2, and
N ≡ µu.N2, N ′ ≡ µu.N ′2 with N2 �std N ′2. Then a µ-removal in (µx⃗)M = (µy⃗)N , which is compressed, yields
(µx⃗z)M2 = (µy⃗u)N2; again the induction hypothesis is applicable.

– If σ and τ are with respect to case (iv) in Definition 36, then M ≡ F(M1,M2), M ′ ≡ F(M ′1,M
′

2), N ≡ F(N1,N2), and
N ′ ≡ F(N ′1,N

′

2) with M1 �std M ′1, M2 �std M ′2, N1 �std N ′1, and N2 �std N ′2. Now observe that the assumption
µx⃗.M ′ ≡α µy⃗.N ′ implies µx⃗.M ′1 ≡α µy⃗.N ′1, and µx⃗.M ′2 ≡α µy⃗.N ′2. Then the induction hypothesis can be applied to
obtain derivations of (µx⃗)M1 = (µy⃗)N1 and (µx⃗)M2 = (µy⃗)N2, respectively, fromwhich a derivation with as conclusion
the compressed equation (µx⃗)M = (µy⃗)N can be constructed by applying the F-decomposition rule.

This concludes the proof of direction ‘(ii)⇒ (i)’.
The proof of the direction ‘(i)⇒ (ii)’ works by straightforward induction on the proof of an equation in S, employing the

following key observation: if µx⃗.M1 ≡α µy⃗.N1 and µx⃗.M2 ≡α µy⃗.N2 then it follows µx⃗.F(M1,M2) ≡α µy⃗.F(N1,N2). �

Proposition 47. Provability in S is decidable.
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Fig. 15. Structure of the proof of the Theorem 48 in this section.

Proof. By induction on the depth of derivations it can be shown that if the formula (µz⃗)M ′ = (µu⃗)N ′ occurs in a derivation
D in S with (µx⃗)M = (µy⃗)N as its conclusion, then:

(i) M ′ ∈ SC(M) and N ′ ∈ SC(N) (for this the rewrite relation
ε
→µπ in the definition of SC can be used);

(ii) z⃗ = v⃗x⃗ and u⃗ = w⃗y⃗ for some vectors v⃗ and w⃗ of variables, which are contained among the bound variables of M , and
of N , respectively;

(iii) FV(M ′) ⊆ FV(M) ∪ BV(M), and FV(N ′) ⊆ FV(N) ∪ BV(N).

and furthermore, as a consequence of (iii):

(iv) For the lengths |z⃗| and |u⃗| of the annotation vectors z⃗ and u⃗ it holds: |z⃗| ≤ max{|x⃗|, nM + nN + 1} and |u⃗| ≤
max{|y⃗|, nM+nN+1}, where nM ∈ N (nN ∈ N) is the sum of the number of free variables ofM (of N) and the number of
bound variables inM (in N). (Due to (iii) there cannot be more than nM (more than nN ) non-vacuous µ-bindings among
the visible µ-bindings of µz⃗.M ′ (of µu⃗.N ′), which implies that whenever |z⃗|, |u⃗| ≥ nM + nN + 1, then the equation
(µz⃗)M ′ = (µu⃗)N ′ contains a two-sided vacuous index, which can be removed, and together with all other two-sided
vacuous indices has to be removed, by the compression rule of S if the D extends below the considered occurrence of
(µz⃗)M ′ = (µu⃗)N ′.)

The facts (i), (ii), and (iv) imply that for every given conclusion there can be, due to Theorem 27, only a finite number
of irredundant derivations, that is, derivations without formula repetitions. Now observe that every proof D in S can be
transformed into an irredundant one by a finite number of size-decreasing steps in which, respectively, some subderivation
D0 that contains a proper subderivation D ′0 with the same conclusion is replaced by D ′0. It follows that the problem of
deciding whether a given equation between annotated µ-terms is provable in S can be reduced to the problem of finding
an irredundant proof for this equation, and that the latter problem is decidable because the search space for it is always
finite. �

Theorem 48. Weak µ-equality is decidable.

Proof. In view of Lemma 46 and Proposition 47 it suffices to prove that, for all µ-terms M and N , M =µ/α N holds if and
only if there exist α-variantsM ′ and N ′ ofM and N , respectively, such that there are α-free standard reductionsM ′ �std M ′′
and N ′ �std N ′′ with M ′′ ≡α N ′′. We proceed to show this.

‘‘⇐’’ follows from M ≡α M ′ �µ M ′′ ≡α N ′′ �µ N ′ ≡α N . For showing ‘‘⇒’’, we suppose that M =µ/α N , and argue in
three steps that are illustrated in Fig. 15 to obtain the desired α-free standard reductions:

(i) Since→µ/α has the Church–Rosser property, there exists a µ-term P and a pair M �µ/α P �µ/α N of joining→µ/α-
rewrite sequences.

(ii) By standardization of these rewrite sequences (which is possible as a consequence of the fact that standardization
holds for all local (linear and fully extended) HRSs (higher-order rewriting systems), see [5, Ch. 5]), one obtains standard
reductions M �std P and N �std P that joinM and N .

(iii) Let M ′ and N ′ be capture-avoiding α-variants of M and N , respectively. Since α-conversion can be postponed over
→µ-steps, it follows that there exist α-free rewrite sequencesM ′ �µ M ′′ and N ′ �µ N ′′ that are stepwisely linked via
α-conversion to the standard reductionsM �std P andN �std P , contracting redexes at corresponding positions. Hence
these rewrite sequences are α-free standard reductions M ′ �std M ′′ and N ′ �std N ′′, and it holds: M ′′ ≡α P ≡α N ′′,
M ′ ≡α M , and N ′ ≡α N . �

7.3. More efficient proof search

We can improve the efficiency of the decision procedure for provability in S by devising (efficient) criteria for non-
provability of equations. In this subsection we consider such a criterion that discerns whether a binder µx is vacuous (not
binding an actual occurrence of x) or not.
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µx.M(x) = N
M(µx.M(x)) = N

µ-step in lhs

M = µy.N(y)
M = N(µy.N(y))

µ-step in rhs

µx.M(x) = µy.N(y)
n least not in M,N

M(n) = N(n)
µ-removal

F(M1,M2) = F(N1,N2)

M1 = N1 M2 = N2

F-decomposition

n = n c = c
axiom

Fig. 16. Higher-order Cardone and Coppo system.

Definition 49. Let M = (µx1 . . . xn)M ′ and N = (µy1 . . . yn)N ′. The annotated equation M = N is said to have a binder
mismatch if there exists an index 1 ≤ i ≤ n such that either

– xi is vacuous inM , and yi is non-vacuous in N , or
– xi is non-vacuous inM , and yi is vacuous in N .

Note that µ-reduction preserves the set of free variables:

Proposition 50. Let M �µ/α N. Then FV(M) = FV(N). �

Note that if e has a binder mismatch, then it cannot be proved in the annotated proof system. This follows immediately
from Lemma 46 and Proposition 50.

Proposition 51. Annotated equations M = N with binder mismatch cannot be proven in S. �

So whenwe encounter an annotated equation ewith binder mismatch, in the ‘meta-search tree’ in which we try to find a
proof ofM = N , we can stop that branch in the meta-search tree with failure. For example, in Fig. 13 we could have stopped
at the equations (µx3)µx2x1.x2 = (µy)y and (µx1)µx2x1.x2 = (µy)y, pruning the search tree by 4 nodes.

8. Deciding µ-convertibility by higher-order means

Thus far we treated µ-terms as far as possible as first-order terms. In this section we show that µ-convertibility is
decidable by higher-order means. That means that here we will, unlike what is the case in the rest of the paper, always
consider terms as α-equivalence classes. Higher-order syntax has the disadvantage of being less concrete than first-order
syntax, but the advantage of not having to care about binding and renaming issues, and also of enabling the use of the
extant body of theory on higher-order term rewriting ([24, Chapter 11] and [5]). In the higher-order settingµ-convertibility
is simply the convertibility relation of the HRS µ

µx.M(x)→M(µx.M(x))

with the signature of µ comprising the binding symbol µ:(o→ o)→ o, the function symbol F:o→ o→ o, and constants
c, d, . . . and numerals n, for each natural number n, all of type o.

Remark 52. Note that the HRS has a single rule, whereas in the first-order rendering µ-convertibility is generated from an
infinity of rules.

We write ⊢M = N to indicate thatM = N can be derived using the higher-order version of the proof system of Cardone
and Coppo, as displayed in Fig. 16.

Remark 53. To overcome the problem that the inference rule
µx.M = µx.N

M = N
as employed by Cardone and Coppo turns

bound occurrences of x into free ones, we have chosen here to substitute a (fresh) numeral for it (preserving closedness).
This is a common technique; one may think of De Bruijn indices or of Schroer’s technique for formalizing α-equivalence by
substituting a fresh symbol, cf. [12].

Furthermore note that in the µ-removal rule the numeral n is chosen such that, apart from n being fresh for M and N ,
the natural number n is also the least one among all those numbers m with the property that m does not occur in M nor in
N . The reason is that, for showing decidability of µ-convertibility, we will use the statement that, for every term M , only
finitely many numerals occur in the ‘subterm closure’ SC(M) ofM (cf. the definition of SC(M) based on µπ-root-reduction
below, and ultimately, Lemma 55).
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µxyz.F(µu.x, z) = µx′y′.F(x′, µz ′.F(x′, z ′))
µyz.F(µu.0, z) = µy′.F(0, µz ′.F(0, z ′))

µz.F(µu.0, z) = F(0, µz ′.F(0, z ′))
F(µu.0, µz.F(µu.0, z)) = F(0, µz ′.F(0, z ′))

µu.0 = 0
0 = 0

µz.F((µu.0), z) = µz ′.F(0, z ′)
F(µu.0, 1) = F(0, 1)
µu.0 = 0
0 = 0

1 = 1

Fig. 17. A higher-order proof of µxyz.F(µu.x, z) = µx′y′.F(x′, µz ′.F(x′, y′)).

Fig. 17 displays an example of a proof in the system of Fig. 16. The system of Fig. 16 is sound and complete for deciding
µ-convertibility.

To highlight the difference with the preceding part of the paper, and that we now work with α-equivalence classes, we
will denote the convertibility relation with respect to→ by↔∗.

Lemma 54. M ↔∗ N if and only if ⊢M = N, for closed terms M, N.

Proof. The proof of this lemma is analogous to that of Lemma 25, employing the higher-order equivalents of the notions
and results used there.

(only if) Suppose M ↔
∗ N . Since the higher-order rewrite system is orthogonal, its rewrite relation is confluent

[24, Chapter 11], hence µ-convertibility coincides with µ-joinability, and by the standardization theorem [5], we
may assume that the witnessing rewrite sequences are standard. Hence it suffices to show ⊢M = N for any pair
M →n L,N →m L of standard reductions. This we prove by induction on n+m.
In case n = 0 = m, then M = L = N and the result follows since derivability of a pair of equal (α-equivalent)
closed terms is easily inferred by induction on the size.
In case either of the reductions starts with a root step, say w.l.o.g. µx.M ′

ε
→µπ M ′[[x:=µx.M ′]] � L, then we have

⊢M ′[[x:=µx.M ′]] = N by the induction hypothesis, from which we conclude by either of the first two rules of
Fig. 16.
In case neither of the reductions starts with a root step, then by standardness none of the steps in either reduction
is a root step. HenceM and N must have the same root symbol.
In case the root symbol is µ, then M = µx.M ′ � µx.L′ = L and N = µx.N ′ � µx.L′ = L, and we have
⊢M ′[[x:=n]] = N ′[[x:=n]] by the induction hypothesis and closure of standard reductions under projection and
substitution of terms of base type, from which we conclude by the µ-congruence rule of Fig. 16.
In case the root symbol is F, then M = F(M1,M2) � F(L1, L2) = L and N = F(N1,N2) � F(L1, L2) = L, and we
have ⊢M1 = N1 and ⊢M2 = N2 by the induction hypothesis and closure of standard reductions under projection,
from which we conclude by the last rule of Fig. 16.

(if) By induction on the derivation of ⊢M = N and by cases on the inference rules.
Suppose ⊢µx.M(x) = N because ⊢M(µx.M(x)) = N . Then by the induction hypothesis M(µx.M(x)) ↔∗ N and
we conclude from µx.M(x)→ M(µx.M(x)). For the symmetric inference rule, the reasoning is analogous.
Suppose ⊢µx.M(x) = µy.N(y) because ⊢M(n) = N(n) with n least not in M,N . By the induction hypothesis
M(n)↔∗ N(n), hence, by properties of α-equivalence [12], M(z)↔∗ N(z) for a fresh variable z, and by freshness
µx.M(x) = µz.M(z)↔∗ µz.N(z) = µy.N(y).
The case for F follows straightforwardly from the induction hypothesis (twice), closure of convertibility under
contexts, and transitivity.
Of course, n↔∗ n and c↔∗ c follow from reflexivity of↔∗. �

To show decidability of the proof system of Fig. 16, we show that there are only finitely many distinct terms along a
path while searching for a proof of M = N . To that end, we consider the set of terms reachable from M and N by means of
root-reduction in the HRS µπ , comprising besides the µ-rule also the π (projection) rules µx.M(x)→M(n) with n not inM
and F(M1,M2)→Mi. Clearly, all terms in a proof search ofM = N are reachable by µπ-root-reduction from eitherM or N7

and we will show that although µπ-root-reduction need not be terminating ( e.g. µx.x reduces to itself), any infinite such
reduction must contain a cycle.

First, observe that after a µ-step µx.M → M[[x:=µx.M]] the substitution part [[x:=µx.M]] only plays a ‘passive’ role:
any reduct of M[[x:=µx.M]] is a [[x:=µx.M]]-instance of a reduct of M . The only way the substitution can be ‘activated’

7 This would even hold when n were required to be least in the µ-projection rule, as in Fig. 16. For technical reasons which will become clear in the
proof of Lemma 55, we do not require that just yet.
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is when the reduction ‘collapses’ the term M to the single variable x, which would then give rise to a cycle µx.M
ε
→µπ

M[[x:=µx.M]]
ε

�µπ x[[x:=µx.M]] = µx.M .
This leads to the higher-order version of Lemma 25 (note that the problematic second case of the lemma can be dispensed

with here).

Lemma 55 (µ-Finiteness). If M[[x:=N]]
ε

�µπ K is a µπ-root-reduction, then the reduction either

(i) has a prefix which is a [[x:=N]]-instance of a root-reduction M
ε

�µπ x; or

(ii) is a [[x:=N]]-instance of a root-reduction M
ε

�µπ L.

Proof. The proof is by induction on the length of the reduction. If the length is 0, then case (ii) holds by setting L = M .
Otherwise,M[[x:=N]]

ε
�µπ K ′

ε
→µπ K for some term K ′ and we have by the induction hypothesis for the reduction without

its final step, either

(i) it has a prefix which is a [[x:=N]]-instance of a reduction M
ε

�µπ x. Then the same holds for the reduction extended by
the step K ′

ε
→µπ K ; or

(ii) it is a [[x:=N]]-instance of a root-reduction M
ε

�µπ L′. Distinguish cases on L′ (which cannot be a constant or numeral
since these are irreducible):

(y) Then, since variables are normal forms, we must have x = y and N = K ′, and we are in case (i);
(µy.L1) By the variable convention we may assume x ≠ y and y not free in N , so K ′ = µy.L1[[x:=N]].

If K ′
ε
→µπ L1[[x:=N]][[y:=n]] = K with n not in L1[[x:=N]] then K = L1[[y:=n]][[x:=N]] by the assumption

that y not free in N , and taking L = L1 brings us in case (ii) as µy.L1
ε
→µπ L1[[y:=n]] since n not in L1.8

If K ′
ε
→µπ L1[[x:=N]][[y:=K ′]] = K then by the substitution lemma K = L1[[y:=L′]][[x:=N]] and setting

L = L1[[y:=L′]] yields case (ii) again;
(F(L1, L2)) Then K ′ = F(L1[[x:=N]], L2[[x:=N]])

ε
→µπ Li[[x:=N]] = K and we are in case (ii) setting L = Li. �

Remark 56. It is easy to see that this factorization lemma for root reduction holds in fact for all (higher-order) recursive
program schemes [18], i.e. higher-order rewrite systems such that each left-hand side of a rule consists of a single (higher-
order) function symbol applied to (higher-order) variables, of which µπ is an example.

Next, observe that although each π-step µx.M → M(n) introduces a numeral n which is fresh for M , only a bounded
number of such is ever needed.

Lemma 57 (π-Finiteness). For every closed µ-term there is a bound on the number of numerals in its µπ-reducts.

Proof. First, note that if M
ε

�µπ N , then M �µ L �π N where the first reduction is arbitrary µ-reduction and the second
a π-root-reduction. This holds since in any HRS, projection onto subterms can be postponed until after ordinary (here:
µ) reduction steps. The condition on n for the projection of a µ-binder is preserved since ordinary reduction steps do not
introduce numerals (nor erase them for that matter).

Next, note that any L as above is a closed µ-term again, as µ-reduct of the closed µ-term M . Hence each numeral n in
the term N is either already present in M or generated by some projection step from µxn.M(xn) onto M(n) along L �π N ,
and these projections give rise to a chain µxn1 , xn1 , . . . , µxnk , xnk in L. Since the length of the chains inM is bounded and by
(the proof of) Lemma 17 the length of chains does not increase along the µ-reduction to L, we conclude. �

Theorem 58. ↔∗µ is decidable, for closed µ-terms.

Proof. By Lemma 54 it suffices to show that we can decide whether ⊢M = N for closed µ-terms M , N . We claim that the
sets ofµπ-root-reducts ofM and N , where n is required to be least in the condition on theµ-projection rule, are finite, from
which the result follows by performing an exhaustive search through these sets in the proof system of Fig. 16.

We will prove the more general claim that the set of µπ-root-reducts of a closed term M , denoted by SC(M), is finite,
where n is required to be below k in the condition on the µ-projection rule, with k the bound obtained from Lemma 57. This
claim is more general indeed as k is an upper bound on the number of distinct numerals in µπ-root-reducts of M , so an
upper bound on the least numeral not in any such given reduct. The proof is by induction on the size of M and cases on its
shape.

(n) SC(n) = {n}.

8 If nwere least not in L1[[x:=N]], then it would not need to be least not in L1 .
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(µx.M) SC(µx.M) ⊆ {µx.M} ∪ SC(M)[x:=µx.M] ∪ SC(M[[x:=n]]) with n below k and not occurring inM . To see this
consider a µπ-root-reduction of minimal length µx.M

ε
�µπ N witnessing N ∈ SC(µx.M).

If the reduction is empty, then clearly its final term is an element of the first disjunct.
If the reduction starts with a µ-step µx.M

ε
→µπ M[x:=µx.M], then we conclude from applying Lemma 55 to

its suffix, that all reducts are in the second disjunct. Note that case (i) of the lemma cannot occur as it would
give rise to a cycle on µx.M , contradicting minimality of the witnessing reduction.
If the reduction starts with a π-step, µx.M

ε
→µπ M[[x:=n]]with n below k and not inM , then all reducts are in

the third disjunct.
In each case we conclude by the induction hypothesis forM .

(F(M1,M2)) SC(F(M1,M2)) = {F(M1,M2)}∪SC(M1)∪SC(M2) andwe conclude by the induction hypothesis for theMi. �

Decidability on open µ-terms is obtained as an easy corollary, closing the terms first by substituting suitable fresh
numerals for the free variables.

Remark 59. This higher-order proof of decidability of µ-convertibility is again (only) based on the notion of chain
(Lemma 57 relies on Lemma 17), underscoring the importance of the latter notion. Its connexion to the notions of paths
in λ-calculus and games in semantics seems worthwhile to investigate.

9. Deciding µ-convertibility using regular languages

Wenowpresent an alternative proof of the decidability of weakµ-equality, based on a totally different intuition, namely,
the regular nature of the set of reducts of a µ-term. The proof proceeds in the following steps:

(i) For every capture-avoiding µ-termM we construct a regular tree grammar GM generating the set of reducts ofM (with
respect to standard reduction without α-conversion).

(ii) Given a regular tree grammar G generating a set of µ-terms T ⊆ Ter(µ) over a finite set of binders B, we construct a
regular tree grammar Gα generating the closure of T under α-equivalence over the binders B.

(iii) Then weak µ-equality of two µ-terms M and N boils down to the question: L(Gα
M) ∩ L(Gα

N) ≠ ∅ ? This problem is
known to be decidable [7]. Actually it suffices to apply α-conversion to one of the terms: L(Gα

M) ∩L(GN) ≠ ∅?

We begin with a definition of regular tree grammars.

Definition 60. A regular tree grammar G is a quadruple G = (V , Σ, S, R) where

– V is a set of nonterminals,
– Σ is a finite ranked alphabet (disjoint form N),
– S ∈ V is the start symbol, and
– R is a set of rules of the form v→ t with v ∈ V and t ∈ Ter(Σ ∪ V , ∅).

Here Ter(Σ ∪ V , ∅) is the set of ground terms over Σ ∪ V , see further [24].
The language L(G) of G is the set of terms L(G) ⊆ Ter(Σ ∪ V ) defined by:

L(G) = {t | t ∈ Ter(Σ, ∅), S →∗R t} ,

that is, the set of nonterminal-free reducts of S. Here→R is standard term rewriting with respect to the TRS (Σ, R), that is,
we may replace left-hand sides of rules with the corresponding right-hand sides within arbitrary contexts.

We use regular tree grammars only for languages of µ-terms. For this reason, for the remainder of this section, we fix Σ

to be the signature of µ-terms as defined in Definition 1 with the difference, that we here regard µ-term variables x, y, . . .
as constant symbols inΣ . Moreover, we extendΣ with the nonterminal symbols V . Since we consider only term languages,
and no word languages, we will speak of (regular) languages and grammars as shorthand for (regular) tree languages and
tree grammars, respectively.

Step (i): a regular grammar for µ-reducts

For capture-avoiding terms M ∈ Ter(µ), we construct a regular grammar GM that generates the language of µ-reducts
ofM (with respect to α-free standard reduction):

Definition 61. LetM ∈ Ter(µ) be a capture-avoidingµ-term.We define the regular grammarGM = (V , Σ, S, R) as follows.
For every N ∈ SC(M), let VN be a fresh constant symbol. Let V be the set of symbols VN with N ∈ SC(M), S = VM the start
symbol, and let R consist of the following rules:

Vµx.N → VN[x:=µx.N] whenever µx.N ∈ SC(M) (2)
Vµx.N → µx.VN whenever µx.N ∈ SC(M) (3)

VF(N,N ′) → F(VN ,VN ′) whenever F(N,N ′) ∈ SC(M) (4)
Vx → x for variables and constants x ∈ SC(M) (5)
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Observe that the rules model standard reduction: rule (2) allows for µ-steps at the current position, (3) and (4) move the
rewriting activity (or snow line) downwards, that is, extending the frozen prefix. The rules (5) generate µ-term constants
or variables (which are both regarded as constants from the first-order point of view of tree grammars).

Example 62. LetM ≡ µx.µy.F(x, y), then GM consists of the rules:

Vµx.µy.F(x,y) →(2) Vµy.F(µx.µy.F(x,y),y) Vµy.F(x,y) →(2) VF(x,µy.F(x,y))

Vµx.µy.F(x,y) →(3) µx.Vµy.F(x,y) Vµy.F(x,y) →(3) µy.VF(x,y)
Vµy.F(µx.µy.F(x,y),y) →(3) µy.VF(µx.µy.F(x,y),y) VF(x,y) →(4) F(Vx,Vy)

VF(µx.µy.F(x,y),y) →(4) F(Vµx.µy.F(x,y),Vy) Vx →(5) x
VF(x,µy.F(x,y)) →(4) F(Vx,Vµy.F(x,y)) Vy →(5) y

Vµy.F(µx.µy.F(x,y),y) →(2) VF(µx.µy.F(x,y),µy.F(µx.µy.F(x,y),y))

VF(µx.µy.F(x,y),µy.F(µx.µy.F(x,y),y)) →(4) F(Vµx.µy.F(x,y),Vµy.F(µx.µy.F(x,y),y))

where the start symbol of GM is Vµx.µy.F(x,y).
Then consider the following standard reduction:

µx.µy.F(x, y)→ µy.F(µx.µy.F(x, y), y)→ µy.F(µx.F(x, µy.F(x, y)), y)

We can generate the reduct using the grammar GM as follows:

Vµx.µy.F(x,y) → Vµy.F(µx.µy.F(x,y),y) → µy.VF(µx.µy.F(x,y),y)

→ µy.F(Vµx.µy.F(x,y),Vy)→ µy.F(µx.Vµy.F(x,y),Vy)

→ µy.F(µx.Vµy.F(x,y), y)→ µy.F(µx.VF(x,µy.F(x,y)), y)
→ µy.F(µx.F(Vx,Vµy.F(x,y)), y)→ µy.F(µx.F(x,Vµy.F(x,y)), y)
→ µy.F(µx.F(x, µy.VF(x,y)), y)→ µy.F(µx.F(x, µy.F(Vx,Vy)), y)
→ µy.F(µx.F(x, µy.F(x, y)), y)→ µy.F(µx.F(x, µy.F(x, y)), y)

Note that the derivation simulates the standard reduction, and makes the steps for freezing the prefix (pushing the snow
line down) explicit.

Proposition 63. For every capture-avoiding µ-term M ∈ Ter(µ), the language L(GM) coincides with the set of all µ-reducts of
M modulo α-equivalence.

Proof. We define an interpretation [·], mapping grammar terms to µ-terms:

[VN ] = N for all N ∈ SC(M)

[µx.N] = µx.[N]

[F(N,N ′)] = F([N], [N ′])
[x] = x for variables and constants x

A position p in a µ-term [N] is called active if N|M is a nonterminal symbol.
We show that the grammar rules exactly simulate standard reduction on the interpretation. Note that the grammar

rules of form (3) and (4) preserve the interpretation while moving the activity (snow line) downwards. In particular, we
have VN →∗ N for every N ∈ SC(M) using the rules of the form (3), (4), and (5). The rules of shape (2) enable µ-steps at an
active position. That is, assume we have a grammar term N such that N|p = Vµx.P , (then [N]|p = µx.P). An application of
rule (2) at position p in N yields a term N ′ with [N ′]|q = P[x:=µx.P]; exactly modeling the (α-free) µ-unfolding in [N] at
position p. �

Step (ii): a regular grammar for α-conversion

We show that the closure of a regular language of µ-terms, under α-conversion over a finite set of binder names B, is
a regular language again. The idea of the construction is as follows. Let L be a regular language of µ-terms over a finite set
of binder names B given in form of a regular tree grammar GL. Then we construct a regular grammar Gα

L for the closure of
L under α-conversion. For this purpose we label the grammar variables with a map σ : B→ B representing the renaming,
and a set Ď ⊆ B of ‘forbidden’ variables whose occurrence would cause a name clash (capturing by a wrong binder).

Without loss of generality we may assume that regular grammars are normalized, that is, all rules are of the form
V→ f (V1, . . . ,Vn); see [7, Proposition 2.1.4].

Definition 64. Let G = (V , Σ, S, R) be a normalized regular tree grammar for a language of µ-terms over a finite set of
binder B. We define the regular grammar Gα

= (Vα, Σ, Sα, Rα) as follows. For every symbol V ∈ V, map σ : B→ B, and set
Ď ⊆ B, let Vσ ,Ď be a fresh symbol. Let Vα be the set of these symbols. We choose Sα = Sid,∅ as the start symbol of Gα , and let
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Rα consist of the rules:

(i) Vσ ,Ď → σ(x) (renaming) whenever V→ x ∈ R and x ∉ Ď,
(ii) Vσ ,Ď → F(V′σ ,Ď,V

′′
σ ,Ď) (propagation) whenever V→ F(V′,V′′) ∈ R, and

(iii) Vσ ,Ď → µy(V′
σ ′,Ď′) (picking) whenever V → µx(V′) ∈ R, and y ∈ B, where σ ′(z) = σ(z) for all z ≠ x, σ ′(x) = y, and

Ď′ = (Ď ∪ σ−1(y)) \ {x}.

Example 65. Let G consist of the rules:

V1 → µx.V2 V2 → µy.V3 V3 → F(V4,V5) V4 → x V5 → y

with start variable V1. Note that G generates the term µx.µy.F(x, y).
Let B = {x, y} be the set of binders. Then the reachable rules of Gα are:

V1,{x→x,y→y},∅ → µx.V2,{x→x,y→y},∅

V1,{x→x,y→y},∅ → µy.V2,{x→y,y→y},{y}

V2,{x→x,y→y},∅ → µy.V3,{x→x,y→y},∅

V2,{x→x,y→y},∅ → µx.V3,{x→x,y→x},{x}

V2,{x→y,y→y},{y} → µy.V3,{x→y,y→y},{x}

V2,{x→y,y→y},{y} → µx.V3,{x→y,y→x},∅

V3,σ ,Ď → F(V4,σ ,Ď,V5,σ ,Ď) for the above σ and Ď

V4,{x→x,y→y},∅ → x V5,{x→x,y→y},∅ → y
V5,{x→x,y→x},{x} → x
V5,{x→y,y→y},{x} → y

V4,{x→y,y→x},∅ → y V5,{x→y,y→x},∅ → x

Note that the grammar Gα can generate both valid α-conversions µx.µy.F(x, y) and µy.µx.F(y, x). However, if we map
both variables x and y to the same value, then we obtain a term that contains either the nonterminal V4,{x→x,y→x},{x} or
V4,{x→y,y→y},{x} for which there exist no production rules.

Proposition 66. L(Gα) is exactly the closure of L(G) under α-conversion over the finite set of binders B.

Proof. Whenever V is start variable of G, then Vid,∅ is start variable of Gα . Here, id expresses that the free variables should
not be renamed, and ∅ that there are initially no name clashes.

The rule (ii) simply propagates the α-conversion down. The interesting case is rule (iii), the case of µx. We pick the
renaming y for x (Gα contains one rule for every y ∈ B), and accordingly update the renaming function σ for the subterm. In
case there are other variables mapped to y, then we need to make sure that these variables do not occur free in the subterm
(since otherwise they would be captured by the wrong binder). We update the set of ‘forbidden’ variables Ď to include all
variables mapped to y, that is, Ď ∪ σ−1(y); from this set we remove x since it is bound by the currently innermost binder
(and may occur free). The rule (ii) executes the renaming. Note that the renaming rules require that x ∉ Ď, that is, there are
no production rules in case of a name clash. �

Step (iii): deciding weak µ-equality

Combining the Propositions 63 and 66, we can reduce weak µ-equality to the emptiness problem of the intersection of
regular tree languages. In this way we obtain a decision procedure for weak µ-equality:

Theorem 67. The following problem is decidable:

– Input: two µ-terms M and N.
– Answer: are M and N convertible?

Proof. The decision procedure proceeds in the following steps:

(i) use α-conversion to obtain capture-avoiding µ-terms M ′ ≡α M , N ′ ≡α N ,
(ii) construct the grammars GM ′ and GN ′ generating the language of µ-reducts ofM ′ and N ′, respectively,
(iii) construct the grammar Gα

M ′ over the set of binders ofM ′ and N ′, and
(iv) answer yes if L(Gα

M ′) ∩L(GN ′) ≠ ∅, and no, otherwise.

Thus,we have reduced the problemof decidingwhether twoµ-terms are convertible to a problemon regular tree languages.
For regular tree languages, the intersection is regular (a regular tree grammar can be computed), and the emptiness is
decidable (given a regular tree grammar), see [7]. Note that we also use that µ-unfolding is an orthogonal higher-order
term rewrite system, and thereby is confluent. That is, for deciding whether two terms are convertible it suffices to check
whether they have a common reduct, see [24]. �
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10. Further Results

The following result states that reachability of µ-reduction with α-conversion is decidable:

Theorem 68. Reachability with respect to �µ/α is decidable, that is, on the input of twoµ-terms M and N it is decidable whether
M �µ/α N.

Proof. Choose a capture-avoiding termM ′ ≡α M . ThenM �µ/α N if and only if N ∈ L(Gα
M ′), the set of reducts ofM ′, which

is a decidable property. �

We remark that the theorem can also be proven using an easy adaptation of the proof system from Fig. 12 by starting
from the equationM = N and restricting the proof system by disallowing µ-steps in the right-hand side of the equations.

We also obtain decidability of α-free µ-convertibility, that is, convertibility with respect to→µ. We briefly sketch the
proof. Not every occurrence of the symbolµ corresponds to a→µ-redex position since→µ-steps are forbidden if a variable
would be captured by the substitution. The following example shows that µ-steps may ‘activate’ redex positions:

Example 69. We considerM ≡ µx.F(z, µz.x). The termM does not allow for a→µ-step at the root as the variable z would
be captured. However, the inner rewrite stepµx.F(z, µz.x)→µ µx.F(z, x) ‘enables’ the redex at the root. As a consequence,
the following rewrite sequence:

µx.F(z, µz.x)→µ µx.F(z, x)→µ F(z, µx.F(z, x))

cannot be transformed into a standard reduction.

However, redex ‘activation’ is not arbitrary. The following lemma states that redexes can be ‘activated’ but not
‘deactivated’, that is, whenever a µ-position is a redex occurrence, then all its residuals are redex occurrences as well:

Lemma 70. Let M, N be µ-terms with a step σ : M →µ N and R a redex occurrence in M. Then all residuals of R in N after σ
are→µ-redex occurrences. �

As a consequence→µ can be viewed as conditional higher-order rewriting system with stable conditions (redexes stay
redexes unless reduced). Then confluence of→µ follows from known results on higher-order rewriting [24]:

Proposition 71. The α-conversion-free µ-reduction→µ is confluent. �

Remark 72. We remark that since the system→µ is orthogonal and residuals of redex occurrences are redex occurrences
again, we can alternatively establish the diamond property for multi-steps (developments). The diamond property then
immediately implies confluence of→µ.

To apply the proof system from Sections 7, or the decision procedure based on regular languages from Section 9, we
need the property that reductions can be turned into standard reductions. As we have seen in Example 69, for→µ this is in
general not possible. However, we can recover the property using the following lemma:

Lemma 73. Let M be a µ-term, and let τ be the occurrence in M of a subterm with root µ that is not a redex. Moreover, let
σ : M →µ N be a step at position p. If a descendant of τ after σ is a redex, then M|p ≡ µx.M ′ with x ∉ FV(M ′). �

Roughly speaking, the lemma states that only steps of the form µx.M ′ →µ M ′ (that is, with x ∉ FV(M ′)), that is, the
removal of vacuous µ-binders can activate redex positions. The proof of the lemma is a simple exercise.

Then we can recover standardization for those terms that do not contain such redexes:

Proposition 74. Let M be a µ-term not containing subterms of the from µx.N with x ∉ FV(N). Then for every reduction
M →µ

∗ M ′ there exists a standard reduction M →µ
∗ M ′.

Proof. AsM does not contain subterms of the form µx.N with x ∉ FV(N) the same property holds also for all reducts ofM .
Hence all ancestors and descendants of redexes are redexes. Therefore standardization can be proved with the customary
argument of swapping steps [20], [24, Sect. 8.5.3, p. 371]. �

Finally, we obtain decidability of→µ-conversion as follows. Let M and N be given. Let the terms M ′ and N ′ be obtained
from M and N by removing vacuous µ-binders. Then M ↔∗µ N if and only if M ′ ↔∗µ N ′. Now we can decide M ′ ↔∗µ N ′ by
using slightly adapted systems from Section 7 or Section 9. That is, we need to restrict theµ-unfolding rule in these systems
to→µ-unfoldings, and hence in particular, without variable capture. Consequently we obtain:

Theorem 75. Convertibility with respect to→µ-reduction is decidable. �

We remark that the above results (decidability of→µ/α-reachability as well as→µ-convertibility) do not immediately
imply decidability of→µ-reachability. The reason is that for reachability M →µ

∗ N we cannot simply drop all vacuous
µ-binders fromM and N .
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10.1. Upward-joinability for µ-reduction

In this subsection we establish decidability for the problem of upward-joinability with respect to→µ/α: Given two µ-
termsM and N , does there exist a µ-term P such thatM �µ/α P �µ/α N ?

Upward-joinabilitywith respect to→µ/α is equivalent to joinabilitywith respect to→fold/α , the converse rewrite relation
of→µ/α . Note that→fold/α = ≡α ·→fold · ≡α where→fold is induced by the conditional rewrite rule:

M[x:=µx.M] → µx.M (if µx.M is free for x inM).

We show that joinability with respect to this rewrite relation is decidable, while it is not confluent. (Note that convertibility
with respect to→fold/α coincides with convertibility with respect to→µ/α , and that therefore decidability of this relation
between µ-terms follows from the results in Sections 7–9.)

Let→ be a rewrite relation. We write M ↑ N (and respectively, M ↓ N) for the statement that M and N are upward-
joinable (M and N are joinable) with respect to→: there exists P such thatM � P � N (such thatM � P � N).

Both of the rewrite relations→µ/α and→fold/α can be split into a ‘proper’ part, steps in which actual unfoldings or,
respectively, foldings take place, and into an ‘improper’ part, steps in which vacuous bindings are eliminated or introduced,
respectively. For this we first split the rewrite relations→µ and→fold according to:

→µ =→µ-p ⊎→vbE →fold =→fold-p ⊎→vbI (6)

into proper µ-reduction and ‘vacuous-binder elimination’ relations, and respectively, into proper folding reduction and
‘vacuous-binder introduction’ relations, which are induced by the following conditional rewrite rules:

µx.M →µ-p M[x:=µx.M] M[x:=µx.M] →fold-p µx.M (if x ∈ FV(M))
µx.M →vbE M M →vbI µx.M (if x /∈ FV(M))

(In the rules for→µ-p and→fold-p furthermore µx.M has to be free for x inM .) Note that→fold-p and→vbI are the converses
of→µ-p and→vbE, respectively. The splittings (6) also induce splittings of→µ/α into→µ-p/α and→vbE/α , and of→fold/α into
→fold-p/α and→vbI/α , the extensions of the rewrite relations→µ-p,→vbE,→fold-p, and→vbI by α-conversion steps on both
sides.

While we are interested in a property of the rewrite relations→µ/α and→fold/α here, the results in this subsection
lend themselves better to formulations for rewrite relations on α-equivalence classes, which have smoother properties.
For example, →vbE/α is not confluent, because of reduction forks like µx.x ←vbE/α µy.µx.x →vbE/α µz.z that lead to
α-equivalent terms, but that cannot be joined by→vbE/α-steps; but a version of→vbE/α on α-equivalence classes turns out
to be confluent. Furthermore,→fold-p/α is non-confluent for the simple reason that there are ‘trivial’ reduction forks such as
M ←fold-p/α F(M,M)→fold-p/α M ′ leading to the α-equivalent→fold-p/α-normal forms M = µx.F(x, x) and M ′ = µy.F(y, y)
that cannot be joined by→fold-p/α-rewrite steps. Such a trivial reason for non-confluence disappears for a version of→fold-p/α
onα-equivalence classes. These examplesmay serve as indicationwhywewill use auxiliary results on versions of the rewrite
relations above defined for α-equivalence classes.

For every µ-term M , we denote by [M] := {N | N ≡α M} the α-equivalence class of M . The rewrite relations→µ/α ,
→µ-p/α ,→vbE/α as well as→fold/α ,→fold-p/α and→vbI/α induce rewrite relations→[µ],→[µ-p],→[vbE] as well as→[fold],
→[fold-p] and→[vbI] on α-equivalence classes: for example,→µ/α induces the rewrite relation→[µ] by:

[M] →[µ] [N] : ⇐⇒ M →µ/α N (for allM , N) .

Note that→vbE is strictly size-decreasing, and therefore terminating, which implies the same properties for→vbE/α and
→[vbE]. Steps in the rewrite relation→fold-p/α turn out to be either strictly size-decreasing or to have the same source and
target. This observation leads to the following proposition. (For its formulation, note that, for a rewrite relation→, by→+
we mean the transitive closure of→.)

Proposition 76. If [M] →+
[fold-p] [N], then either size(M) > size(N) holds, or M ≡α N.

Proof. It suffices to prove that, for all µ-terms M and N , M →fold-p N implies size(M) > size(N) or M ≡α N , because this
makes it possible to show the statement of the proposition by induction on→[fold-p]-rewrite sequences.

Since →fold-p-steps are of the form C[A[x:=µx.A]] →fold-p C[µx.A] with x ∈ FV(A), it remains to show that
size(A[x:=µx.A]) > size(µx.A) or A[x:=µx.A] ≡α µx.A whenever x ∈ FV(A). To show the latter, let A and x be arbitrary,
but such that x ∈ FV(A). Note that size(A[x:=µx.A]) = 2 · size(A), and size(µx.A) = 1+ size(A). Now if size(A) > 1, then
clearly size(A[x:=µx.A]) > size(µx.A) holds; and if size(A) = 1, then µx.A = µx.x because x has to occur in A, and hence
A[x:=µx.A] = A ≡α A. �

Lemma 77. Upward-joinability ↑[µ-p] w.r.t.→[µ-p] is decidable.

Proof. In order to decide, for given µ-terms M and N , whether [M] ↑[µ-p] [N] holds, it suffices to decide whether the sets
A and B of reducts of, respectively, [M] and [N] under→[fold-p] = ←[µ-p] have a non-empty intersection. Since, due to
Proposition 76, A and B are finite, and for each member of A and B a term representative can be chosen, this decision can be
taken by comparing the representatives of A with those of Bmodulo α-equivalence. �
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Proposition 78. →[fold-p] is not locally confluent, and hence, not confluent.

Proof. LetM = µy.F(c, µx.F(y, F(c, x))) and N = F(M, F(c, µx.F(M, F(c, x)))). Then:

F(M,M)←fold-p N →fold-p µx.F(M, F(c, x)) ,

and both of F(M,M) andµx.F(M, F(c, x)) are→fold-p/α-normal forms, which are not α-equivalent. Consequently we obtain:

[F(M,M)] ←[fold-p] [N] →[fold-p] [µx.F(M, F(c, x))] ,

and the α-equivalence classes left and right are different→[fold-p]-normal forms. �

Proposition 79. ↓[vbI] = ↑[vbI], and hence: ↑[vbE]=↓[vbI]=↑[vbI]=↓[vbE]. Furthermore,→[vbI] and→[vbE] are confluent.

Proof. Since→[vbI] and→[vbE] are each other’s converse relations, it suffices to show ↓[vbI] = ↑[vbI] to establish the first
sentence.

Note that, for every rewrite relation→ it holds that ↑⊆↓ if and only if→ is confluent; consequently, ↑=↓ holds if and
only if both→ and← are confluent. Hence it remains to show that→[vbI] and←[vbI] =→[vbE] are confluent. But is easy to
establish that both of these rewrite relations are sub-commutative,9 and hence confluent. �

For every µ-termM , we denote byMvbE the normal form ofM with respect to→vbE-steps, that is, the result of removing
all vacuous binders from M . Note that a µ-term M is a→vbE-normal form if and only if M is a→vbE/α-normal form, and
hence also, if and only if [M] is a→[vbE]-normal form.

Lemma 80. For all µ-terms M, N :

[M] ↑[µ] [N] ⇐⇒ [MvbE] ↑[µ-p] [NvbE] . (7)

Proof. Since→[fold] =←[µ] and→[fold-p] =←[µ-p], (7) is equivalent to:

[M] ↓[fold] [N] ⇐⇒ [MvbE] ↓[fold-p] [NvbE]. (8)

it suffices to show (8).

‘‘⇒’’: This direction can be shown by projecting a pair of joining→[fold]-reductions [M] �[fold] [P] �[fold] [N] down to a
pair of joining→[fold-p]-reductions [MvbE] �[fold-p] [PvbE] �[fold-p] [NvbE] on α-equivalence classes of→vbE-normal
forms.

‘‘⇐’’: This direction can be shown by lifting, for given µ-termsM and N , an assumed pair of joining→[fold-p]-reductions
[MvbE] �[fold-p] [P] �[fold-p] [NvbE] on →vbE/α-normal forms up to a pair of reductions, [M] �[fold] [P̂1] and
[N] �[fold]


P̂2


with


P̂1vbE


=


P̂2vbE


= [P], which by using confluence of→[vbI] = ←[vbE] (see Proposition 79)

can be extended to a joining pair [M] �[fold] [P̂1] �[fold] [P̂] �[fold] [P̂1] �[fold] [N] of→[fold]-reductions between
[M] and [N]. �

Proposition 81. →[fold] is not locally confluent, and hence, not confluent.

Proof. In view of Lemma 80, the counterexample to local confluence of→[fold-p] given in the proof of Proposition 78 can be
used here as well. �

Theorem 82. Upward-joinability ↑[µ] w.r.t.→[µ] is decidable.

Proof. In order to decide, for given µ-terms M , N , whether [M] ↑[µ] [N] holds, it suffices, due to Lemma 80, to decide
whether [MvbE] ↑[µ-p] [NvbE] holds. Since→vbE is terminating, MvbE and NvbE can be produced effectively, and hence this
decision can be to obtained by applying a decision algorithm for ↑[µ-p], which exists due to Lemma 77. �

Corollary 83. Upward-joinability ↑µ/α with respect to→µ/α is decidable.

Proof. The corollary follows from the theorem observing that there is a correspondence via projection and lifting between
→fold/α- and→[fold]-rewrite sequences, and the fact that α-equivalent µ-terms are upward-joinable with respect to→µ/α :
ifM1 ≡α M2, then we have M1 →vbI/α µx.M1 ←vbI/α M2 for some x /∈ FV(M1) = FV(M2). �

Remark 84. Note that Proposition 81 blocks the way to a quick proof of weak µ-equality=µ/α that would be facilitated by
Theorem 82 if→[fold] were confluent.

Let us, for the sake of the argument, assume that→[fold] is confluent. Let=[µ] be the convertibility relation with respect
to→[µ], or equivalently, with respect to→[fold]. Since→[fold] is confluent, it follows that it is also Church–Rosser, which
means that =[µ] ⊆ ↓[fold] holds, and implies =[µ] = ↓[fold]. Since ↓[fold] = ↑[µ] is decidable by Theorem 82, it follows that
=[µ] is decidable as well. Since for all µ-terms M and N , M =µ/α N holds if and only if [M] =[µ] [N] holds, decidability of
=µ/α follows.

But since the assumption used is actually wrong, this proof approach fails.

9 A rewrite relation → is called ‘sub-commutative’ if every pair of branching →-steps can be joined by steps or empty steps: for all M,N, P , if
N ← M → P , then there exists Q such that N →= Q ←= P , where→= := →∪= is the reflexive closure of→.
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