Random Descent

Vincent van Oostrom

Theoretical Philosophy Universiteit Utrecht
The Netherlands

November 13, 2007

Abstract Rewriting Systems

Strategies

Ordered Commutation
Sorting by Swapping
Ordered Local Commutation
Better
Applications of OLCOM
Ordered Confluence
Bowls and Beans
Ordered Local Confluence
Random Descent
Applications of OLCON
Conclusions

Evaluating an Expression

expression:
p 1

Evaluating an Expression

expression:

$$
\text { p } 1
$$

evaluation rules:

$$
\mathrm{p} x \rightarrow \text { if } x=0 \text { then } 1 \text { else } 2 \cdot \mathrm{p}(x-1)
$$

if false then x else $y \rightarrow y$
if true then x else $y \rightarrow x$

Evaluation of the Expression

Another Evaluation of the Expression

And Yet Another

if $1=0$ then 1 else $2 \cdot($ if $(1-1)=0$ then 1 else $2 \cdot p((1-1)-1))$

if $1=0$ then 1 else $2 \cdot($ if $(1-1)=0$ then 1 else $2 \cdot($ if $((1-1)-1)=0$ then 1 else $2 \cdot p(((1-1)-1)-1)))$

Abstracting away Expressions and Evaluation

Graph: Nodes as Expressions, Edges as Evaluation Steps

Abstract Rewrite System = Graph

> We are concerned with two kinds of entities, "objects" and the "moves" performed on them, and each move is associated with two objects, "initial" and "final." We are therefore dealing essentially with indexed 1-complexes (in which, therefore, a positive sense is assigned in each 1 -cell), the vertices being the "objects," and the positive 1-cells the "moves." It will be convenient to make use of this topological terminology. ${ }^{3}$ The incidence relations are in no way restricted: there may be many cells with the same vertices, and the initial and final vertices of a cell may coincide. In diagrams the positive 1-cells slope down the paper, and some of the terms used are chosen accordingly.

[^0]Newman 1942, page 224

ARSs are not relations

Rewrite relation instead of system ??

ARSs are not relations

Rewrite relation instead of system ??
$I(I(a)) \rightrightarrows I(a)$ (two evaluations) not expressible !!

Strategy?

Strategy?

No general definition on Wikipedia ...

Strategy?

No general definition on Wikipedia ...
No uniform definition in rewriting papers ...

Strategy?

No general definition on Wikipedia ...
No uniform definition in rewriting papers ...
. . . nor in Baader \& Nipkow 1998.

Strategy?

No general definition on Wikipedia ...
No uniform definition in rewriting papers ...
... nor in Baader \& Nipkow 1998.
(neither are ARSs, only rewrite relations)

Strategy?

No general definition on Wikipedia ...
No uniform definition in rewriting papers ...
. . . nor in Baader \& Nipkow 1998.
(neither are ARSs, only rewrite relations)
Definition (Terese 2003)
Strategy : sub-ARS having same objects, normal forms

Strategy Examples

ARS

Strategy Examples

ARS strategy for itself!

Strategy Examples

An optimal strategy

Strategy Examples

Original ARS again

Strategy Examples

A pessimal strategy

Arrows colour convention

step
reduction

ARS

optimal strategy

(blue, cool, open)
pessimal strategy

(red, hot, dense)

Examples of colour convention

ARS

Examples of colour convention

An optimal strategy

Examples of colour convention

ARS

Examples of colour convention

A pessimal strategy

Sorting by Swapping

Reduction graph: Arrows start at first element swapped

Sorting by Swapping Abstractly

Sorting Strategy: Inversion

Inversion: only swap elements in wrong order

Sorting Strategy: Inversion Abstractly

Sorting Strategy: Inversion Abstractly

Sorting by Swapping

Reduction graph: inversions vs. anti-inversions

Sorting by Swapping Abstractly

Strategy Analysis

- Normalising: if normal form exists, it is found

Strategy Analysis

- Normalising: if normal form exists, it is found
- Minimal: normal form reached in minimal number of steps

Strategy Analysis

- Normalising: if normal form exists, it is found
- Minimal: normal form reached in minimal number of steps

Inversion sort optimal (normalising and minimal)?

Strategy Analysis

- Normalising: if normal form exists, it is found
- Minimal: normal form reached in minimal number of steps

Inversion sort optimal (normalising and minimal)?

By local commutation of \triangleright and \rightarrow !

Local Commutation of \triangleright and \rightarrow

Ordered Local Commutation of \triangleright and \rightarrow

Ordered Local Commutation

Ordered Local Commutation

\forall local peak

Ordered Local Commutation

\forall local peak \exists valley

Ordered Local Commutation

\forall local peak \exists valley s.t. left path not longer than right path

Ordered Commutation

\forall peak \exists valley s.t. left path not longer than right path

OLCOM \Rightarrow Better

Better: max \triangleright reduction not longer than max \triangleright reduction

OLCOM \Rightarrow Better (Proof)

Induction on n

Better \Rightarrow Normalising and Minimal

Theorem
\triangleright better than $\triangleright \Rightarrow$
\triangleright normalising and minimal for $>$
Proof.

Better \Rightarrow Normalising and Minimal

Theorem
\triangleright better than $>\Rightarrow$
\triangleright normalising and minimal for \downarrow

Proof.

- Normalising: a reduction to normal form is upper bound

Better \Rightarrow Normalising and Minimal

Theorem
\triangleright better than $\triangleright \Rightarrow$
\triangleright normalising and minimal for \downarrow

Proof.

- Normalising: a reduction to normal form is upper bound
- Minimal: not longer than any reduction to normal form

Better \Rightarrow Normalising and Minimal

Theorem

\triangleright better than $>\Rightarrow$
\triangleright normalising and minimal for $>$

Proof.

- Normalising: a reduction to normal form is upper bound
- Minimal: not longer than any reduction to normal form

Corollary

Inversion sort normalising and minimal w.r.t. swapping
Proof.
$\operatorname{OLCOM}(\triangleright, \rightarrow) \Rightarrow$
$\operatorname{Better}(\triangleright, \rightarrow) \Rightarrow$
\triangleright normalising and minimal for \rightarrow.

Better \Rightarrow Perpetual and Maximal

- Perpetual: if infinite reduction exists, it is found

Better \Rightarrow Perpetual and Maximal

- Perpetual: if infinite reduction exists, it is found
- Maximal: normal form reached in maximal number of steps

Better \Rightarrow Perpetual and Maximal

- Perpetual: if infinite reduction exists, it is found
- Maximal: normal form reached in maximal number of steps

Theorem

\triangleright better than $>\Rightarrow$

- perpetual and maximal for \triangleright

Applications

- Internal needed strategy normalising, minimal (Khasidashvili) variations: Alves et al., Machkasova (WRS 2007)

Applications

- Internal needed strategy normalising, minimal (Khasidashvili) variations: Alves et al., Machkasova (WRS 2007)
- Gross-Knuth strategy normalising, minimal (folklore) aka: full substitution strategy

Applications

- Internal needed strategy normalising, minimal (Khasidashvili) variations: Alves et al., Machkasova (WRS 2007)
- Gross-Knuth strategy normalising, minimal (folklore) aka: full substitution strategy
- Limit strategy perpetual, maximal (Khasidashvili) special case: F_{∞} for λ-calculus (folklore)

Applications

- Internal needed strategy normalising, minimal (Khasidashvili) variations: Alves et al., Machkasova (WRS 2007)
- Gross-Knuth strategy normalising, minimal (folklore) aka: full substitution strategy
- Limit strategy perpetual, maximal (Khasidashvili) special case: F_{∞} for λ-calculus (folklore)
- F_{∞} strategy perpetual, maximal for λx open problem: (Bonelli PhD thesis)

Applications

- Internal needed strategy normalising, minimal (Khasidashvili) variations: Alves et al., Machkasova (WRS 2007)
- Gross-Knuth strategy normalising, minimal (folklore) aka: full substitution strategy
- Limit strategy perpetual, maximal (Khasidashvili) special case: F_{∞} for λ-calculus (folklore)
- F_{∞} strategy perpetual, maximal for λx open problem: (Bonelli PhD thesis)

Applications

- Internal needed strategy normalising, minimal (Khasidashvili) variations: Alves et al., Machkasova (WRS 2007)
- Gross-Knuth strategy normalising, minimal (folklore) aka: full substitution strategy
- Limit strategy perpetual, maximal (Khasidashvili) special case: F_{∞} for λ-calculus (folklore)
- F_{∞} strategy perpetual, maximal for λx open problem: (Bonelli PhD thesis)

Proofs by 'critical pair' analysis and setting up 'simulations'.

Completeness

Theorem (Completeness)
\triangleright is better than $\triangleright \Rightarrow \operatorname{OLCOM}(\triangleright, \triangleright)$,
if \triangleright or \triangleright equal to \rightarrow and \rightarrow has unique normal forms.

Completeness

Theorem (Completeness)
\triangleright is better than $\downarrow \Rightarrow \operatorname{OLCOM}(\triangleright, \triangleright)$,
if \triangleright or \triangleright equal to \rightarrow and \rightarrow has unique normal forms.
OLCOM is always applicable!

Bowls and Beans

Bowls and Beans

- Two-sided infinite sequence of bowls with beans: $\mathbb{Z} \rightarrow \mathbb{N}$.

Bowls and Beans

- Two-sided infinite sequence of bowls with beans: $\mathbb{Z} \rightarrow \mathbb{N}$.
- Finite number of beans \Rightarrow finite number of steps

Bowls and Beans

- Two-sided infinite sequence of bowls with beans: $\mathbb{Z} \rightarrow \mathbb{N}$.
- Finite number of beans \Rightarrow finite number of steps
- Independent of strategy, same number of steps, final state

Bean run

Terminates ...

Bean run

Terminates ... but always so?

Analysis

Random Descent: all maximal reductions have same length

Newman 1942, page 226

In these examples it is obvious that if an end-form exists it is reached by random descent. This is necessarily so in all systems with non-interference of moves:

Theorem 2. Under the conditions of Theorem 1, if there is a descending path of k cells from a to an end e, no descending path from a contains more than k cells.

If $k=1, \Sigma$ cannot contain a cell $a y$ with $y \neq e$, since if it does b exists such that $y \mu b$ and $e \mu b$, and e is not an end. In the general case let π be a descending path $\xi_{1}+\xi_{2}+\cdots+\xi_{k}$ joining a to \dot{e}, and let $\eta_{1}+\eta_{2}+\cdots+\eta_{j}$ be any descending path from a. Let ξ_{1} and η_{1} be cells $a x$ and $a y$. If $x=y$ it follows immediately from an induction that $j \leqq k$. If not, let the cells ζ and ω descend from x and y to the common vertex w. By Theorem 1 there is a descending path σ from w to a vertex $\leqq e$, i.e., since e is an end, to e itself. Since $\xi_{2}+\cdots+\xi_{k}$ has $k-1$ cells, $\zeta+\sigma$ has, by an inductive hypothesis, at most $k-1$ cells; therefore $\omega+\sigma$, and finally also $\eta_{2}+\cdots+\eta_{j}$, have at most $k-1$ cells, i.e. $j \leqq k$.

Corollary 2.1. Every descending path from a is part of a descending path of k cells from a to e (i.e. there is "random descent" to e).

Conditions of Theorem 1: join local peak in 0 or 1 steps

Analysis

Random Descent: all maximal reductions have same length

Analysis

Random Descent: all maximal reductions have same length
Bean run has random descent?

Analysis

Random Descent: all maximal reductions have same length
Bean run has random descent?

By local confluence of \rightarrow !

Local Confluence of \rightarrow

same

distinct

Ordered Local Confluence of \rightarrow

Ordered Local Confluence (OWCR)

\forall local peak

Ordered Local Confluence (OWCR)

\forall local peak \exists valley

Ordered Local Confluence (OWCR)

\forall local peak \exists valley s.t. left path not longer than right path

Ordered Confluence

\forall peak \exists valley s.t. left path not longer than right path

OWCR \Rightarrow Random Descent

$\operatorname{OWCR}(\rightarrow) \Leftrightarrow$
OLCOM $(\rightarrow, \rightarrow) \Rightarrow$
\rightarrow better than itself \Rightarrow
\rightarrow maximal, minimal!
Corollary
Bowls and beans has random descent
Proof.
OWCR \Rightarrow
RD \Rightarrow
all reductions to final state have same length

Solving bowls and beans

$R D \Rightarrow$ normalisation (WN) suffices for termination

Solving bowls and beans

$R D \Rightarrow$ normalisation (WN) suffices for termination

By induction on the number of beans

Existing generalizations of Newman's condition

Let $A=\langle D, \rightarrow\rangle$ be an abstract reduction system.
Definition 3. $A=\langle D \rightarrow\rangle$ (or \rightarrow) is balanced weakly Church-Rosser ($B W C R$) iff $\forall x, y, z \in D,\left[x \rightarrow y \wedge x \rightarrow z \Rightarrow \exists w \in D, \exists k \geq 0, y \rightarrow^{k} w \wedge z \rightarrow^{k} w\right]$ (Figure 1).

Lemma 1 (BWCR Lemma). Let $A=\langle D, \rightarrow\rangle$ be $B W C R$. Let $x=y$ and $y \in N F$. Then,
(1) x is complete,
(2) all the reductions from x to y have the same length (i.e., the same number of reduction steps).

BWCR (Toyama 92/05): join local peak in same number of steps

Existing generalizations of Newman

Existing generalizations of Newman

None has a global notion (cf. WCR without CR)

Existing generalizations of Newman

None has a global notion (cf. WCR without CR)
None covers:

Out of sync

Applications of OLCON

- Inversion sorting: optimal for swapping by sorting So: sorting by swapping is $\Omega\left(n^{2}\right)$ as some inversion sort is

Applications of OLCON

- Inversion sorting: optimal for swapping by sorting So: sorting by swapping is $\Omega\left(n^{2}\right)$ as some inversion sort is
- Interaction nets (Lafont) : all reductions have same length So: only implementation of λ-calculus strategies

Applications of OLCON

- Inversion sorting: optimal for swapping by sorting So: sorting by swapping is $\Omega\left(n^{2}\right)$ as some inversion sort is
- Interaction nets (Lafont) : all reductions have same length So: only implementation of λ-calculus strategies
- (really) Linear λ-calculi (Simpson)

Applications of OLCON

- Inversion sorting: optimal for swapping by sorting So: sorting by swapping is $\Omega\left(n^{2}\right)$ as some inversion sort is
- Interaction nets (Lafont) : all reductions have same length So: only implementation of λ-calculus strategies
- (really) Linear λ-calculi (Simpson)
- Spine strategies in λ-calculus (Barendregt et al.)

Applications of OLCON

- Inversion sorting: optimal for swapping by sorting So: sorting by swapping is $\Omega\left(n^{2}\right)$ as some inversion sort is
- Interaction nets (Lafont) : all reductions have same length So: only implementation of λ-calculus strategies
- (really) Linear λ-calculi (Simpson)
- Spine strategies in λ-calculus (Barendregt et al.)

Applications of OLCON

- Inversion sorting: optimal for swapping by sorting So: sorting by swapping is $\Omega\left(n^{2}\right)$ as some inversion sort is
- Interaction nets (Lafont) : all reductions have same length So: only implementation of λ-calculus strategies
- (really) Linear λ-calculi (Simpson)
- Spine strategies in λ-calculus (Barendregt et al.)

Proofs by 'critical pair' analysis and setting up 'simulations'.

Completeness

OWCR \Leftrightarrow RD (cf. confluence)

Completeness

$d(\mathcal{C})=$ number of forward steps minus number of backward steps OWCR \Leftrightarrow RD (cf. Church-Rosser)

Conclusions

- Positive experience: Notion of strategy of (Terese 2003)

Conclusions

- Positive experience: Notion of strategy of (Terese 2003)
- Main novel notion: Ordered commutation

Conclusions

- Positive experience: Notion of strategy of (Terese 2003)
- Main novel notion: Ordered commutation
- Paper on homepage: in colour and clickable bibliography

Conclusions

- Positive experience: Notion of strategy of (Terese 2003)
- Main novel notion: Ordered commutation
- Paper on homepage: in colour and clickable bibliography
- In paper: OLCOM for non-deterministic ARSs $\forall \exists$ instead of $\forall \forall$ notion of better

Ordered Local Commutation

\forall local peak \exists valley s.t. left path not longer than right path

[^0]: ${ }^{3}$ The notions that arise are closely related to those of the theory of partially ordered sets, but usually not identical. Except in the case of identity the terms of that theory are therefore avoided.

