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Evaluating an Expression

expression:

p 1

evaluation rules:

p x → if x = 0 then 1 else 2 · p (x − 1)

if false then x else y → y

if true then x else y → x
...
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Evaluation of the Expression

2

p 1

if 1 = 0 then 1 else 2 · p (1− 1)

if false then 1 else 2 · p (1− 1)

2 · p (1− 1)

2 · p 0

2 · (if 0 = 0 then 1 else 2 · p (0− 1))

2 · (if true then 1 else 2 · p (0− 1))

2 · 1



Another Evaluation of the Expression

2

p 1

if 1 = 0 then 1 else 2 · p (1− 1)

if 1 = 0 then 1 else 2 · p 0

if false then 1 else 2 · p 0

2 · p 0

2 · (if 0 = 0 then 1 else 2 · p (0− 1))

2 · (if true then 1 else 2 · p (0− 1))

2 · 1



And Yet Another

p 1

if 1 = 0 then 1 else 2 · p (1− 1)

if 1 = 0 then 1 else 2 · (if (1− 1) = 0 then 1 else 2 · p ((1− 1)− 1))

if 1 = 0 then 1 else 2 · (if (1− 1) = 0 then 1 else 2 · (if ((1− 1)− 1) = 0 then 1 else 2 · p (((1− 1)− 1)− 1)))

...



Abstracting away Expressions and Evaluation

Graph: Nodes as Expressions, Edges as Evaluation Steps



Abstract Rewrite System = Graph
221 M. H .  A .  NEWMAN 

As an application the normal form theorem of Church and Rosser [ I ]  in the 

conversion calculus is derived. 

2 

We are concerned with two kinds of entities, "objects" and the "mo~.es" per- 

formed on them, and each move is associated with two objects, "initial" and 

"final." \Ye are therefore dealing essentially with indexed 1-conzplexes (in 

which, therefore, a positive sense is assigned in each I-cell), the vertices being 

the "objects," and the positive 1-cells the "moves." I t  will be convenient to 

make use of this topological terminology.3 The incidence relations are in no 

way restricted: there may be many cells with the same vertices, and the initial 

and final vertices of a cell may coincide. In  diagrams the positive 1-cells slope 

down the paper, and some of the terms used are chosen accordingly. 

Vertices are denoted by italic letters, cells (the single word is used from now on 

for "positive 1-cell") by the letters (, 7, {, LO with various suffises. "sky"  
means "there is a cell with initial vertex x and final vertex y." An ordered set 

of cells , ( Z  , . . . , i n  , form a path n if there are vertices xo , X I  , . . . , X I ,  such 

that x,-1 and x ,  are the vertices of 5, for 1 5 i 5 k. The cell .$, is direct or 

rez~ersedin n according as it runs from X,-I to x ,  or from x ,  to x,-I , and the path 

i~ denoted by el& + ezE2 + . . . + e&, where e,  is &1 as i,is direct or reversed. 
If there are no reversed cells, n is a descending path. I t  is convenient to regard 

a single vertex, x ,  as a "null path" with x as initial and final vertex. A vertex 

which is not the initial vertex of any cell is a m i n i m a l  tlertex, or end.  
If th(,l.e is a t  least one non-null descending path from x to y we write x > y.  

z is a lower (upper )  bound of x and y if x L z and y 2 z (if z 2 z and z 2 y ) .  

Expressed in this terminology the confluence property is 

(A) If X I  and xz are connected by  a path in the indexed complex Z they hazle a 
lower bound. 
By a simple induction on the number of cells in a path from xl to x2 this property 

can be d6,duced from the following special case of i t :  

( B )  I j  XI and x2 have a n  upper  bound they have also a lower bound.  
This in its turn iq easily deduced from the still more special form (C): 

(C) If ups l  and a > x2 , x1 and x2 hazle a lower bound. 
The transition from (B) to (C) is a step towards localizing the property, and 

the theorems that will be proved in this paper give conditions in which the 

localization may be completed, i.e. in which (-4) may be inferred from the fol- 
lowing condition (holding for all a ,  X I  and x 2 ) :  
(D)If apxl and apx2 , X I  and x2 have a lower bound. 
SOTE.The cell and vertex terminology, although the most convenient for 

The notions t h a t  arise are closely related to  those of the t h o r y  of partially ordered sets, 

but usually not identical. Except in the case of identi ty the terms of t ha t  theory are 

therefore avoided. 
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ARSs are not relations

Rewrite relation instead of system ??

I (I (a)) ⇒ I (a) (two evaluations) not expressible !!
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Strategy?

No general definition on Wikipedia . . .
No uniform definition in rewriting papers . . .
. . . nor in Baader & Nipkow 1998.
(neither are ARSs, only rewrite relations)

Definition (Terese 2003)

Strategy : sub-ARS having same objects, normal forms
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Strategy Examples

ARS



Strategy Examples

ARS strategy for itself!



Strategy Examples

An optimal strategy



Strategy Examples

Original ARS again



Strategy Examples

A pessimal strategy



Arrows colour convention

reduction

ARS

step

optimal strategy
(blue, cool, open)

pessimal strategy
(red, hot, dense)



Examples of colour convention

ARS



Examples of colour convention

An optimal strategy



Examples of colour convention

ARS



Examples of colour convention

A pessimal strategy



Sorting by Swapping

c

a

c b a

c

b

b a bc

b a c a c b

a

Reduction graph: Arrows start at first element swapped



Sorting by Swapping Abstractly



Sorting Strategy: Inversion

c

a

c b a

c

b

b a bc

b a c a c b

a

Inversion: only swap elements in wrong order



Sorting Strategy: Inversion Abstractly
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Sorting by Swapping

c

a

c b a

c

b

b a bc

b a c a c b

a

Reduction graph: inversions vs. anti-inversions



Sorting by Swapping Abstractly



Strategy Analysis

I Normalising: if normal form exists, it is found

I Minimal: normal form reached in minimal number of steps

Inversion sort optimal (normalising and minimal)?

By local commutation of . and →!
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Local Commutation of . and →

self-overlap

ba

ab ab=

cab

acb cbacab

same

cba

bca

abc

bac acb

cab

independent

baxy

abxy bayx

abyx

overlap

‘Critical pair’ analysis



Ordered Local Commutation of . and →

≤

=

≤ ≤

≤



Ordered Local Commutation

≤

∀ local peak ∃ valley s.t. left path not longer than right path
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Ordered Commutation

≤

∀ peak ∃ valley s.t. left path not longer than right path



OLCOM ⇒ Better

Better

≤ m n⇒ ⇒ ≤

OLCOM

≤ −m + n

Bounds

Better: max . reduction not longer than max I reduction



OLCOM ⇒ Better (Proof)

Better

IH
IH

OLCOM
≤

≤ −m + n

m n⇒ ⇒ ≤

OLCOM Bounds

Induction on n



Better ⇒ Normalising and Minimal

Theorem
. better than I ⇒
. normalising and minimal for I

Proof.

I Normalising: a reduction to normal form is upper bound

I Minimal: not longer than any reduction to normal form

Corollary

Inversion sort normalising and minimal w.r.t. swapping

Proof.
OLCOM(.,→) ⇒
Better(.,→) ⇒
. normalising and minimal for →.
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Better ⇒ Perpetual and Maximal

I Perpetual: if infinite reduction exists, it is found

I Maximal: normal form reached in maximal number of steps

Theorem
. better than I ⇒
I perpetual and maximal for .
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Applications

I Internal needed strategy normalising, minimal (Khasidashvili)
variations: Alves et al., Machkasova (WRS 2007)

I Gross-Knuth strategy normalising, minimal (folklore)
aka: full substitution strategy

I Limit strategy perpetual, maximal (Khasidashvili)
special case: F∞ for λ-calculus (folklore)

I F∞ strategy perpetual, maximal for λx
open problem: (Bonelli PhD thesis)

I . . .
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Applications

I Internal needed strategy normalising, minimal (Khasidashvili)
variations: Alves et al., Machkasova (WRS 2007)

I Gross-Knuth strategy normalising, minimal (folklore)
aka: full substitution strategy

I Limit strategy perpetual, maximal (Khasidashvili)
special case: F∞ for λ-calculus (folklore)

I F∞ strategy perpetual, maximal for λx
open problem: (Bonelli PhD thesis)

I . . .

Proofs by ‘critical pair’ analysis and setting up ‘simulations’.



Completeness

Theorem (Completeness)

. is better than I ⇒ OLCOM(.,I),
if I or . equal to → and → has unique normal forms.

OLCOM is always applicable!
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Bowls and Beans

I Two-sided infinite sequence of bowls with beans: Z → N.

I Finite number of beans ⇒ finite number of steps

I Independent of strategy, same number of steps, final state
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2

2

1

0

10−1 −1 1

Terminates . . .

but always so?
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Analysis

Random Descent: all maximal reductions have same length



Newman 1942, page 226

by the insertion of one additional term,-say P-between X and Y. Then if 

S: dr S1 , the insertion of a suitable term in Sz gives a chain S: related to S: ;' 
and hence more generally any member of [Sl]can be made into a chain related 

to Sz , by the insertion of one suitable term. Two successive "positive moves" 

on [Sl]can therefore be represented by two successive insertions of new elements 

in the same chain S ,  and evidently the order in which they are inserted does 

not affect the result. The system therefore fulfils the conditions of Theorem 1. 

But any two chains descending from A to B have an "upper bound" in 2 ,  

namely the class [AB]. Therefore they have a "lower bound," and this is the 

required result. 

In these examples it is obvious that if an end-form exists it is reached by ran- 

dom descent. This is necessarily so in all systems with non-interference of 

moves : 

THEOREM2. Under  the conditions of Theorem 1, i f  there i s  a descending path 

of k cells f rom a to a n  end el n o  descending path f rom a contains more than  k cells. 

If k = 1, 2 cannot contain a cell a y  with y # el since if it does b exists such 

that yPb and epb, and e is not an end. In the general case let ?r be a descending 

path b + 5 2  + . . . + .$t joining a to 8, and let q1 + 72 + . . . + q ,  be any 

descending path from a .  Let [ I  and q1 be cells a x  and a y .  If x = y it follows 

immediately from an induction that j 5 k. If not, let the cells < and w descend 

from x and y to the common vertex w. By Theorem 1there is a descending path 

u from w to a vertex el  i.e., since e is an end, to e itself. Since EZ + . . . + .$k 
has k - 1 cells, < + a has, by an inductive hypothesis, a t  most k - 1 cells; 

therefore w + n, and finally also qz + . . . + q ,  , have a t  most k - 1 cells,- 

i.e. j 5 k. 
COROLLARY Every descending path f rom a i s  part of a descending path of k2.1. 

cells f rom a to e (i.e. there i s  " random descent" to e ) .  
That Theorem 2 and Corollary 2.1 fail if the condition is iveakened.as in 

Corollary 1.1 is shown by the example in Fig. 1, (positive cells slope downward). 

The main criteria for "confluence" are established in Theorems 3, 4, 5 ,  and 9, 

all of which are independent. It is Theorems 5 and 9 that are used in the 

application to the conversion calculus. 

THEOREM I n  a n  indexed complex in which all descending paths are jinite, 3. 

( D )  impl i e s  (A) .  
(Kote that in such a complex ">" is a proper ordering, since if x > x an 

infinite descending path is obtained by going round and round the re-entrant 

path from x to x.) 

4 Namely, if X and Y are in S:,insert P itself; if X Y Z  and X Y ' Z  are consecutive terms 

of 5, and S: respectively, insert P' = Y '  A P in S; ; if U X Y  and U X ' Y ,  insert P" = 

X'  V P .  I t  is easily shewn that in the second case X P Y Z  is related to X Y ' P ' Z ,  in .the third 

U X P Y  to U P f ' X ' Y .  Cf. Birkhoff [I]p. 37. 

Conditions of Theorem 1: join local peak in 0 or 1 steps
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Local Confluence of →

=

i ji i

same distinct



Ordered Local Confluence of →

≤

i ji i

=

≤



Ordered Local Confluence (OWCR)

≤

∀ local peak

∃ valley s.t. left path not longer than right path
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Ordered Confluence

≤

∀ peak ∃ valley s.t. left path not longer than right path



OWCR ⇒ Random Descent

OWCR(→) ⇔
OLCOM(→,→) ⇒
→ better than itself ⇒
→ maximal, minimal!

Corollary

Bowls and beans has random descent

Proof.
OWCR ⇒
RD ⇒
all reductions to final state have same length



Solving bowls and beans

RD ⇒ normalisation (WN) suffices for termination

By induction on the number of beans
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Existing generalizations of Newman’s condition

Reduction Strategies for Left-Linear Term Rewriting Systems 201

A reduction system A = 〈D, →〉 (→ for short) is strongly normalizing (or
terminating) if every reduction in A terminates, i.e., there is no infinite se-
quence x0 → x1 → x2 → · · · . A is Church-Rosser (or confluent) if ∀x, y, z ∈
D, [x→∗y ∧ x→∗z ⇒ ∃w ∈ D, y→∗w ∧ z→∗w]. A is weakly Church-Rosser (or
locally confluent) if ∀x, y, z ∈ D, [x→y ∧ x→z ⇒ ∃w ∈ D, y→∗w ∧ z→∗w]. A is
complete if A is Church-Rosser (confluent) and strongly normalizing. A has the
normal form property if ∀x ∈ D, ∀y ∈ NF , [x = y ⇒ x→∗y]. A has the unique
normal form property if ∀x, y ∈ NF , [x = y ⇒ x ≡ y]. Note that the normal
form property implies the unique normal form property.

The notions of confluent, strongly normalizing, complete on systems are re-
lated to the notions on elements. An element x ∈ D is confluent if ∀y, z ∈
D, [x→∗y ∧ x→∗z ⇒ ∃w ∈ D, y→∗w ∧ z→∗w]. x is strongly normalizing if every
reduction starting with x terminates. x is complete if x is confluent and strongly
normalizing.

Definition 1 (Reduction Strategy). Let A = 〈D, →〉 and let →s be a sub-
relation of →+ (i.e., if x→sy then x→+y) such that a normal form concerning
→s is also a normal form concerning → (i.e., the two binary relations →s and
→ have the same domain). Then, we say that →s is a reduction strategy for A
(or for →). If →s is a sub-relation of → then we call it a one step reduction
strategy; otherwise →s is called a many step reduction strategy.

Definition 2 (Normalizing Strategy). A reduction strategy →s is normal-
izing iff for each x having a normal form concerning →, there exists no infinite
sequence x ≡ x0→sx1→sx2→s · · · (i.e., every →s reduction starting with x must
eventually terminate at a normal form of x).

3 Balanced Weak Church-Rosser Property

This section introduces the balanced weak Church-Rosser property. Though in
later sections this concept will play an important role for analyzing normalizing
strategies of term rewriting systems, our results concerning the balanced weak
Church-Rosser property can be presented in an abstract framework depending
solely on the reduction relation.

Let A = 〈D, →〉 be an abstract reduction system.

Definition 3. A = 〈D, →〉 (or →) is balanced weakly Church-Rosser (BWCR)
iff ∀x, y, z ∈ D, [x → y ∧ x → z ⇒ ∃w ∈ D, ∃k ≥ 0, y→kw ∧ z→kw]
(Figure 1).

Lemma 1 (BWCR Lemma). Let A = 〈D, →〉 be BWCR. Let x = y and
y ∈ NF. Then,

(1) x is complete,
(2) all the reductions from x to y have the same length (i.e., the same number

of reduction steps).

BWCR (Toyama 92/05): join local peak in same number of steps



Existing generalizations of Newman

None has a global notion (cf. WCR without CR)
None covers:
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Applications of OLCON

I Inversion sorting: optimal for swapping by sorting
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Proofs by ‘critical pair’ analysis and setting up ‘simulations’.



Completeness

m

≤ −m + n

n

OWCR ⇔ RD (cf. confluence)



Completeness

C

d(C)

d(C) = number of forward steps minus number of backward steps

OWCR ⇔ RD (cf. Church–Rosser)
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Ordered Local Commutation

≤

∀ local peak ∃ valley s.t. left path not longer than right path
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