

Syntax-Free Developments

Vincent van Oostrom http://cl-informatik.uibk.ac.at

dedicated to Patrick Dehornoy

1. Z

2. Confluence, hyper-cofinality, ...

3. Examples (not) having Z

4. Z vs. ⟨

5. Syntax-free developments

Definition

rewrite system \rightarrow comprises:

- a set of objects
- a set of (rewrite) steps
- functions src, tgt mapping a step to its source, target object

Definition (Z)

niversitat

nsbruck

 \rightarrow has the Z-property if there is a (bullet) map \bullet from objects to objects such that for any step $a \rightarrow b$ from a to b there exist many-step reductions $b \twoheadrightarrow a^{\bullet}$ from b to a^{\bullet} (upper bound) and $a^{\bullet} \twoheadrightarrow b^{\bullet}$ from a^{\bullet} to b^{\bullet} (monotonic)

Definition (Z)

 $\exists \bullet : A \rightarrow A, \forall a, b \in A : a \rightarrow b \implies b \twoheadrightarrow a^{\bullet}, a^{\bullet} \twoheadrightarrow b^{\bullet}$

7

Theorem

If \rightarrow has the Z-property, then \rightarrow is confluent

Theorem

If ightarrow has the Z-property, then ightarrow is confluent

Theorem

If ightarrow has the Z-property, then ightarrow is confluent

Theorem

If ightarrow has the Z-property, then ightarrow is confluent

Theorem

If ightarrow has the Z-property, then ightarrow is confluent

Theorem

If ightarrow has the Z-property, then ightarrow is confluent

Theorem

If ightarrow has the Z-property, then ightarrow is confluent

Theorem

If ightarrow has the Z-property, then ightarrow is confluent

Definition (•-strategy)

▶ strategy is sub-system of \rightarrow having same normal forms (CBV is strat for λ_V , not for λ ; strats allowed to be non-deterministic)

Definition (•-strategy)

- **strategy** is sub-system of \rightarrow having same normal forms
- ► many-step strategy is →⁺-strategy (strat for many step system)

Definition (•-strategy)

- **strategy** is sub-system of \rightarrow having same normal forms
- many-step strategy is \rightarrow^+ -strategy
- $a \rightarrow a^{\bullet}$ if a is not a normal form

Definition (•-strategy)

- **strategy** is sub-system of \rightarrow having same normal forms
- many-step strategy is \rightarrow^+ -strategy
- $a \rightarrow a^{\bullet}$ if a is not a normal form

is many-step strat: if a not normal, $a \to b$ for some b, so $b \twoheadrightarrow a^{\bullet}$ by Z, so $a \to^+ a^{\bullet}$

Definition (•-strategy)

- ▶ strategy is sub-system of → having same normal forms
- many-step strategy is \rightarrow^+ -strategy
- $a \rightarrow a^{\bullet}$ if a is not a normal form

is many-step strat: if a not normal, $a \rightarrow b$ for some b, so $b \twoheadrightarrow a^{\bullet}$ by Z, so $a \rightarrow^+ a^{\bullet}$

Definition (hyper-cofinality)

- hyper-strategy: always eventually do a strategy step
- for property P, strategy is hyper-P if hyper-strategy is P
- **cofinal**: for each strategy reduction any co-initial reduction extendible to it

$Z \implies -\bullet \rightarrow$ strategy is hyper-cofinal

Theorem

ightarrow is hyper-cofinal

Theorem

ightarrow is hyper-cofinal

Theorem

ightarrow is hyper-cofinal

Theorem

ightarrow is hyper-cofinal

Theorem

ightarrow is hyper-cofinal

Theorem

ightarrow is hyper-cofinal

Theorem

ightarrow is hyper-cofinal

Some structured rewrite systems having Z-property

idea for constructing •-function for inductive structures

▶ suppose to have upper bounds \vec{t}^{\bullet} of sub-structures \vec{t} of $f(\vec{t})$ by induction

Some structured rewrite systems having Z-property

idea for constructing •-function for inductive structures

- suppose to have upper bounds \vec{t}^{\bullet} of sub-structures \vec{t} of $f(\vec{t})$ by induction
- ▶ ponder critical peak between those and head step for any rule $f(\vec{\ell}) \rightarrow r$

idea for constructing \bullet -function for λ -calculus

▶ ponder critical peak
$$(\lambda x.M^{\bullet}) N^{\bullet} \leftarrow (\lambda x.M) N \rightarrow M[x:=N]$$

idea for constructing •-function for λ -calculus

- ▶ ponder critical peak $(\lambda x.M^{\bullet}) N^{\bullet} \leftarrow (\lambda x.M) N \rightarrow M[x:=N]$
- contracting $(\lambda x.M^{\bullet}) N^{\bullet}$ reduces to $M^{\bullet}[x:=N^{\bullet}]$ reduces to $M[x:=N]^{\bullet}$ for \bullet GK

Theorem (Loader)

 \rightarrow_{β} has the Z-property for • full development (Gross–Knuth):

$$(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet} \qquad x^{\bullet} = x$$

 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if MN is a redex and $M^{\bullet} = \lambda x.M'$, otherwise $M^{\bullet}N^{\bullet}$

Theorem (Loader)

 \rightarrow_{β} has the Z-property for • full development (Gross–Knuth):

$$\begin{array}{rcl} (\lambda x.M)^{\bullet} &=& \lambda x.M^{\bullet} & x^{\bullet} &=& x \\ (MN)^{\bullet} &=& M'[x:=N^{\bullet}] & if MN is a redex and M^{\bullet} = \lambda x.M', otherwise M^{\bullet}N^{\bullet} \end{array}$$

Example

$$\blacktriangleright I^{\bullet} = I; (I = \lambda x.x)$$

▶
$$(I(II))^{\bullet} = I, (III)^{\bullet} = II;$$

$$\blacktriangleright ((\lambda xy.x)zw)^{\bullet} = (\lambda y.z)w;$$

$$\blacktriangleright ((\lambda xy.lyx)zl)^{\bullet} = (\lambda y.yz)l;$$

Theorem (Loader)

 \rightarrow_{β} has the Z-property for • full development (Gross–Knuth):

$$(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet} \qquad x^{\bullet} = x$$

 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if MN is a redex and $M^{\bullet} = \lambda x.M'$, otherwise $M^{\bullet}N^{\bullet}$

Proof by induction on term *M*:

► (Substitution)
$$M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]]$$

Theorem (Loader)

 \rightarrow_{β} has the Z-property for • full development (Gross–Knuth):

$$(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet} \qquad x^{\bullet} = x$$

 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if MN is a redex and $M^{\bullet} = \lambda x.M'$, otherwise $M^{\bullet}N^{\bullet}$

Proof by induction on term *M*:

- ▶ (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]]
- (Extensive) $M \rightarrow M^{\bullet}$

Theorem (Loader)

 \rightarrow_{β} has the Z-property for • full development (Gross–Knuth):

$$(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$$
 $x^{\bullet} = x$
 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if MN is a redex and $M^{\bullet} = \lambda x.M'$, otherwise $M^{\bullet}N$

Proof by induction on term *M*:

- ▶ (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]]
- ► (Extensive) $M \rightarrow M^{\bullet}$

► (Rhs)
$$M^{\bullet}[x:=N^{\bullet}] \rightarrow M[x:=N]^{\bullet}$$

10

Theorem (Loader)

 \rightarrow_{β} has the Z-property for • full development (Gross–Knuth):

$$(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$$
 $x^{\bullet} = x$
 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if MN is a redex and $M^{\bullet} = \lambda x.M'$, otherwise $M^{\bullet}N$

Proof by induction on term *M*:

- ▶ (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]]
- ► (Extensive) $M \rightarrow M^{\bullet}$

► (Rhs)
$$M^{\bullet}[x:=N^{\bullet}] \twoheadrightarrow M[x:=N]^{\bullet}$$

$$\blacktriangleright (\mathsf{Z}) \quad M \to N \implies N \twoheadrightarrow M^{\bullet} \twoheadrightarrow N^{\bullet}$$

Theorem (Loader)

 \rightarrow_{β} has the Z-property for • full development (Gross–Knuth):

$$(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet} \qquad x^{\bullet} = x$$

 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if MN is a redex and $M^{\bullet} = \lambda x.M'$, otherwise $M^{\bullet}N^{\bullet}$

Proof by induction on term *M*:

- ▶ (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]]
- ► (Extensive) $M \rightarrow M^{\bullet}$

iniversitāt

innsbruck

► (Rhs) $M^{\bullet}[x:=N^{\bullet}] \rightarrow M[x:=N]^{\bullet}$

$$\blacktriangleright (\mathsf{Z}) \quad M \to N \implies N \twoheadrightarrow M^{\bullet} \twoheadrightarrow N^{\bullet}$$

works for all orthogonal structured rewrite systems

Theorem (cf. Aczel)

 \rightarrow_{β} has the Z-property for • full superdevelopment:

$$(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet} \qquad x^{\bullet} = x$$

 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if MN is a term and $M^{\bullet} = \lambda x.M'$, otherwise $M^{\bullet}N^{\bullet}$

Proof by induction on term *M*:

- ► (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]]
- ► (Extensive) $M \rightarrow M^{\bullet}$

niversität

innsbruck

► (Rhs) $M^{\bullet}[x:=N^{\bullet}] \rightarrow M[x:=N]^{\bullet}$

$$\blacktriangleright (\mathsf{Z}) \quad M \to N \implies N \twoheadrightarrow M^{\bullet} \twoheadrightarrow N^{\bullet}$$

full superdevelopment; shortest mechanized proof

Definition

self-distributivity generated by rule $xyz \rightarrow xz(yz)$

Definition

self-distributivity generated by rule $xyz \rightarrow xz(yz)$

idea: distribute of 2nd argument to leaves of 1st argument

Theorem (Dehornoy)

self-distributivity has Z-property for • full distribution, t[s] uniform distribution: $x^{\bullet} = x$ (ts)• = $t^{\bullet}[s^{\bullet}]$ $t[s] = t[x_1:=x_1s, x_2:=x_2s, ...]$

Theorem (Dehornoy)

self-distributivity has Z-property for • full distribution, t[s] uniform distribution: $x^{\bullet} = x$ $(ts)^{\bullet} = t^{\bullet}[s^{\bullet}]$ $t[s] = t[x_1:=x_1s, x_2:=x_2s, ...]$

Example

Theorem (Dehornoy)

self-distributivity has Z-property for • full distribution, t[s] uniform distribution: $x^{\bullet} = x$ (ts)• = $t^{\bullet}[s^{\bullet}]$ $t[s] = t[x_1:=x_1s, x_2:=x_2s, ...]$

Proof by induction on term *t*:

• (Sequentialisation) $ts \rightarrow t[s]$

Theorem (Dehornoy)

self-distributivity has Z-property for • full distribution, t[s] uniform distribution: $x^{\bullet} = x$ (ts)• = $t^{\bullet}[s^{\bullet}]$ $t[s] = t[x_1:=x_1s, x_2:=x_2s, ...]$

Proof by induction on term *t*:

- ► (Sequentialisation) $ts \rightarrow t[s]$
- (Substitution) $t[s][r] \rightarrow t[r][s[r]]$

Theorem (Dehornoy)

self-distributivity has Z-property for • full distribution, t[s] uniform distribution: $x^{\bullet} = x$ (ts)• = $t^{\bullet}[s^{\bullet}]$ $t[s] = t[x_1:=x_1s, x_2:=x_2s, ...]$

Proof by induction on term *t*:

- (Sequentialisation) $ts \rightarrow t[s]$
- (Substitution) $t[s][r] \rightarrow t[r][s[r]]$
- ► (Extensive) $t \rightarrow t^{\bullet}$

Theorem (Dehornoy)

self-distributivity has Z-property for • full distribution, t[s] uniform distribution: $x^{\bullet} = x$ (ts)• = $t^{\bullet}[s^{\bullet}]$ $t[s] = t[x_1:=x_1s, x_2:=x_2s, ...]$

Proof by induction on term *t*:

- (Sequentialisation) $ts \rightarrow t[s]$
- (Substitution) $t[s][r] \rightarrow t[r][s[r]]$
- ► (Extensive) $t \rightarrow t^{\bullet}$
- $\blacktriangleright (Z) \quad s \twoheadrightarrow t^{\bullet} \twoheadrightarrow s^{\bullet}, \text{ if } t \to s$

Confluent rewrite systems not having the Z-property

innsbruck

suppose • were to witness Z:

- consider arbitrary a at the top
- a[•] must be at bottom, left of a as upper bound of steps from a

suppose • were to witness Z:

- consider arbitrary a at the top
- a[•] must be at bottom, left of a as upper bound of steps from a
- consider arbitrary b at top, strictly left of a[•]

suppose • were to witness Z:

- consider arbitrary a at the top
- a[•] must be at bottom, left of a as upper bound of steps from a
- consider arbitrary b at top, strictly left of a[•]
- ▶ $a^{\bullet} \rightarrow^{+} b^{\bullet}$ by b^{\bullet} being an upper bound of steps from b

suppose \bullet were to witness Z:

- consider arbitrary a at the top
- a[•] must be at bottom, left of a as upper bound of steps from a
- \blacktriangleright consider arbitrary b at top, strictly left of a^{\bullet}
- $\blacktriangleright a^{\bullet} \rightarrow^{+} b^{\bullet}$ by b^{\bullet} being an upper bound of steps from b
- $\blacktriangleright b^{\bullet} \rightarrow a^{\bullet}$ by $b \rightarrow a$ and monotonicity; contradiction

sbruck

suppose \bullet were to witness Z:

- consider arbitrary a at the top
- a[•] must be at bottom, left of a as upper bound of steps from a
- \blacktriangleright consider arbitrary b at top, strictly left of a^{\bullet}
- $\triangleright a^{\bullet} \rightarrow^{+} b^{\bullet}$ by b^{\bullet} being an upper bound of steps from b
- $\blacktriangleright b^{\bullet} \rightarrow a^{\bullet}$ by $b \rightarrow a$ and monotonicity; contradiction

sbruck

Example (less-than on $\mathbb Z$ does not have Z, but transitive reduct does)

Example (less-than on $\mathbb Z$ does not have Z, but transitive reduct does)

for given integer, no upper bound on steps from it

Lemma (Some sufficient conditions for Z)

Z holds if

b confluent and (weakly) **normalising**: map to **the** normal form

Lemma (Some sufficient conditions for Z)

Z holds if

- confluent and (weakly) normalising: map to the normal form;
- ▶ locally confluent and terminating: maps a to arbitrary a^{\bullet} in nf s.t. $a \rightarrow a^{\bullet}$ Z: $a \rightarrow b \implies a \rightarrow a^{\bullet} = b^{\bullet}$ by wf-induction on a; Newman/Winkler/Hirokawa

Lemma (Some sufficient conditions for Z)

Z holds if

- confluent and (weakly) normalising: map to the normal form;
- ▶ locally confluent and terminating: maps a to arbitrary a[•] in nf s.t. a → a[•];
- orthogonal: contract all redexes in structure

Lemma (Some sufficient conditions for Z)

Z holds if

- confluent and (weakly) normalising: map to the normal form;
- ▶ locally confluent and terminating: maps a to arbitrary a^{\bullet} in nf s.t. $a \rightarrow a^{\bullet}$;
- orthogonal: contract all redexes in structure;
- confluent and finite: map to any object in normal form quotienting out SCCs

Lemma (Some sufficient conditions for Z)

Z holds if

- confluent and (weakly) normalising: map to the normal form;
- ▶ locally confluent and terminating: maps a to arbitrary a[•] in nf s.t. a → a[•];
- orthogonal: contract all redexes in structure;
- confluent and finite: map to any object in normal form quotienting out SCCs

Example (Some further concrete systems)

weakly orthogonal: contract maximal redex-set (psps, not psps)

Lemma (Some sufficient conditions for Z)

Z holds if

- confluent and (weakly) normalising: map to the normal form;
- ▶ locally confluent and terminating: maps a to arbitrary a[•] in nf s.t. a → a[•];
- orthogonal: contract all redexes in structure;
- confluent and finite: map to any object in normal form quotienting out SCCs

Example (Some further concrete systems)

- weakly orthogonal: contract maximal redex-set
- explicit substitutions: compose maps for Beta and subs (Nakazawa & Fujita)

Lemma (Some sufficient conditions for Z)

Z holds if

- confluent and (weakly) normalising: map to the normal form;
- ▶ locally confluent and terminating: maps a to arbitrary a[•] in nf s.t. a → a[•];
- orthogonal: contract all redexes in structure;
- confluent and finite: map to any object in normal form quotienting out SCCs

Example (Some further concrete systems)

- weakly orthogonal: contract maximal redex-set
- explicit substitutions: compose maps for Beta and subs (Nakazawa & Fujita)
- generalized braids: Garside element tiling genererators (w/ Hans Zantema)

Lemma (Some sufficient conditions for Z)

Z holds if

- confluent and (weakly) normalising: map to the normal form;
- ▶ locally confluent and terminating: maps a to arbitrary a[•] in nf s.t. a → a[•];
- orthogonal: contract all redexes in structure;
- confluent and finite: map to any object in normal form quotienting out SCCs

Example (Some further concrete systems ...)

- weakly orthogonal: contract maximal redex-set
- explicit substitutions: compose maps for Beta and subs (Nakazawa & Fujita)
- generalized braids: Garside element tiling genererators (w/ Hans Zantema)

Anale

innsbruck

Definition (Terese 2003)

 \rightarrow has triangle property if there is a (bullet) map • from objects to objects such that for any step $a \rightarrow b$ from a to b there exists a step $b \rightarrow a^{\bullet}$ from b to a^{\bullet}

а \hat{O} 1 a

Definition (\langle)

$$\exists \bullet : A \to A, \forall a, b \in A : a \dashrightarrow b \implies b \dashrightarrow a^{\bullet}$$

Z vs. \langle

Theorem

for any map \bullet , $Z \iff exists \rightarrow \subseteq \longrightarrow \subseteq \twoheadrightarrow$ such that (

Proof.

Theorem

for any map \bullet , $Z \iff exists \rightarrow \subseteq \longrightarrow \subseteq \twoheadrightarrow$ such that (

Theorem

for any map \bullet , $Z \iff exists \rightarrow \subseteq \longrightarrow \subseteq \twoheadrightarrow$ such that (

Proof.

(\implies) define $a \rightarrow b$ if b between a and a^{\bullet} , i.e. $a \rightarrow b \rightarrow a^{\bullet}$:

Recover results on developments in syntax-free way?

 $a \rightarrow b$ defined as $a \rightarrow b \rightarrow a^{\bullet}$ can be seen as a \bullet -development, as a syntax-free definition of development (Church & Rosser) relative to \bullet . which results on developments can be recovered for \bullet -developments, i.e. in a syntax-free way?

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Example (Developments do not coincide with •-developments)

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Example (Developments do not coincide with •-developments)

- ▶ rules $a \rightarrow b \rightarrow c \rightarrow a$; non-terminating/cyclic
 - $a^{\bullet} = b$ but $a \bullet$ -develops to c

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Example (Developments do not coincide with •-developments)

- ▶ rules $a \rightarrow b \rightarrow c \rightarrow a$; non-terminating/cyclic
 - $a^{\bullet} = b$ but $a \bullet$ -develops to c

▶ rules
$$a \to b \to c$$
, $f(x) \to d$; erasing $f(a)^{\bullet} = d$ but $f(a)$ •-develops to $f(c)$

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Example (Developments do not coincide with •-developments)

- ▶ rules $a \rightarrow b \rightarrow c \rightarrow a$; non-terminating/cyclic
 - $a^{\bullet} = b$ but $a \bullet$ -develops to c

▶ rules
$$a \to b \to c$$
, $f(x) \to d$; erasing $f(a)^{\bullet} = d$ but $f(a)$ •-develops to $f(c)$

▶ rules
$$g(x) \rightarrow h(x) \rightarrow i(x) \rightarrow x$$
; collapsing
 $i(h(g(a)))^{\bullet} = i(h(a))$ but $i(h(g(a)))$ •-develops to $i(h(i(a)))$

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Theorem

for terminating, non-collapsing, and non-erasing orthogonal TRSs, developments and •-developments coincide.

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Theorem

for terminating, non-collapsing, and non-erasing orthogonal TRSs, developments and •-developments coincide.

Proof.

conditions guarantee absence of syntactic accidents (Lévy): $t \twoheadrightarrow s \twoheadrightarrow t^{\bullet}$, at most one reduction up to permutation equivalence between two terms \Longrightarrow development $t \twoheadrightarrow t^{\bullet}$, so each step in $t \twoheadrightarrow s$ contracts residual of redex in $t \Longrightarrow t \twoheadrightarrow s$ is a development.

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Theorem

for terminating, non-collapsing, and non-erasing orthogonal TRSs, developments and •-developments coincide.

Remark

can be regained for arbitrary orthogonal TRSs by lifting: add creation depths (to overcome collapsingness and non-termination; Hyland–Wadsworth/Lévy labels) to yield reconstructibility, and memory (to overcome erasingness; cf. Nederpelt's scars) to yield invertibility. Question: other systems (λ , SD)?

introduced Z-property

- introduced Z-property
- showed interest of Z: entails confluence, gives hyper-cofinal strategy (computable if • is), allows to characterise recurrence (Statman),...

- introduced Z-property
- showed interest of Z: entails confluence, gives hyper-cofinal strategy (computable if • is), allows to characterise recurrence (Statman),...
- convenient because of choice of monotonic upper bound function does not always exist though even if confluent

- introduced Z-property
- showed interest of Z: entails confluence, gives hyper-cofinal strategy (computable if • is), allows to characterise recurrence (Statman),...
- convenient because of choice of monotonic upper bound function does not always exist though even if confluent
- equivalent to triangle property (e.g. Takahashi) but conceptually minimal: no need for separate inductive definition of parallel reduction

- introduced Z-property
- showed interest of Z: entails confluence, gives hyper-cofinal strategy (computable if • is), allows to characterise recurrence (Statman),...
- convenient because of choice of monotonic upper bound function does not always exist though even if confluent
- equivalent to triangle property (e.g. Takahashi) but conceptually minimal: no need for separate inductive definition of parallel reduction
- spin-off: syntax-free notion of •-development; left-divisors (complete developments) of parallel reduction not closed under left-division

▶ find methods for showing the Z-property does **not** hold $(\lambda \beta \overline{\eta}?)$

- find methods for showing the Z-property does not hold ($\lambda\beta\overline{\eta}$?)
- try to turn Z into automatable method (for confluence tools)?

- ▶ find methods for showing the Z-property does not hold ($\lambda\beta\overline{\eta}$?)
- try to turn Z into automatable method (for confluence tools)?
- what exactly do programming languages want to import?
 PLFA (Wadler, Kokke) uses some version of angle/Z to get confluence

- ▶ find methods for showing the Z-property does not hold ($\lambda\beta\overline{\eta}$?)
- try to turn Z into automatable method (for confluence tools)?
- what exactly do programming languages want to import?
 PLFA (Wadler, Kokke) uses some version of angle/Z to get confluence
- what exactly do proof assistants want to import (for partial functions)? Agda (Cockx) allows some version of angle/Z to get confluence Dedukti allows confluent HRS rules (external check, e.g. via CSI-ho or ACPH)

- ▶ find methods for showing the Z-property does not hold ($\lambda\beta\overline{\eta}$?)
- try to turn Z into automatable method (for confluence tools)?
- what exactly do programming languages want to import?
 PLFA (Wadler, Kokke) uses some version of angle/Z to get confluence
- what exactly do proof assistants want to import (for partial functions)?
 Agda (Cockx) allows some version of angle/Z to get confluence
 Dedukti allows confluent HRS rules (external check, e.g. via CSI-ho or ACPH)
- does your favourite rewrite system have the Z-property?

Further future hobby?

- ▶ find methods for showing the Z-property does not hold ($\lambda\beta\overline{\eta}$?)
- try to turn Z into automatable method (for confluence tools)?
- what exactly do programming languages want to import?
 PLFA (Wadler, Kokke) uses some version of angle/Z to get confluence
- what exactly do proof assistants want to import (for partial functions)? Agda (Cockx) allows some version of angle/Z to get confluence Dedukti allows confluent HRS rules (external check, e.g. via CSI-ho or ACPH)
- does your favourite rewrite system have the Z-property?

Further future hobby?

- ▶ find methods for showing the Z-property does not hold ($\lambda\beta\overline{\eta}$?)
- try to turn Z into automatable method (for confluence tools)?
- what exactly do programming languages want to import?
 PLFA (Wadler, Kokke) uses some version of angle/Z to get confluence
- what exactly do proof assistants want to import (for partial functions)? Agda (Cockx) allows some version of angle/Z to get confluence Dedukti allows confluent HRS rules (external check, e.g. via CSI-ho or ACPH)
- does your favourite rewrite system have the Z-property?