

Syntax-Free Developments

Vincent van Oostrom
http://cl-informatik.uibk.ac.at

dedicated to Patrick Dehornoy

1. Z

2. Confluence, hyper-cofinality, ...
3. Examples (not) having Z
4. Z vs. 〈
5. Syntax-free developments

Definition

rewrite system \rightarrow comprises:

- a set of objects
- a set of (rewrite) steps
- functions src, tgt mapping a step to its source, target object

Definition (Z)

\rightarrow has the Z-property if there is a (bullet) map • from objects to objects such that for any step $a \rightarrow b$ from a to b there exist many-step reductions $b \rightarrow a^{\bullet}$ from b to a^{\bullet} (upper bound) and $a^{\bullet} \rightarrow b^{\bullet}$ from a^{\bullet} to b^{\bullet} (monotonic)

Definition (Z)

$\exists \bullet: A \rightarrow A, \forall a, b \in A: a \rightarrow b \Longrightarrow b \rightarrow a^{\bullet}, a^{\bullet} \rightarrow b^{\bullet}$

$Z \Longrightarrow$ confluence

Theorem

If \rightarrow has the Z-property, then \rightarrow is confluent
Proof.

$Z \Longrightarrow$ confluence

Theorem

If \rightarrow has the Z-property, then \rightarrow is confluent
Proof.

$Z \Longrightarrow$ confluence

Theorem

If \rightarrow has the Z-property, then \rightarrow is confluent
Proof.

$Z \Longrightarrow$ confluence

Theorem

If \rightarrow has the Z-property, then \rightarrow is confluent
Proof.

$Z \Longrightarrow$ confluence

Theorem

If \rightarrow has the Z-property, then \rightarrow is confluent
Proof.

$Z \Longrightarrow$ confluence

Theorem

If \rightarrow has the Z-property, then \rightarrow is confluent
Proof.

$Z \Longrightarrow$ confluence

Theorem

If \rightarrow has the Z-property, then \rightarrow is confluent

Proof.

$Z \Longrightarrow$ confluence

Theorem

If \rightarrow has the Z-property, then \rightarrow is confluent

Proof.

$Z \Longrightarrow \bullet$ strategy is hyper-cofinal

Definition (o-strategy)

- strategy is sub-system of \rightarrow having same normal forms (CBV is strat for λ_{V}, not for λ; strats allowed to be non-deterministic)

$Z \Longrightarrow \bullet$ strategy is hyper-cofinal

Definition (o-strategy)

- strategy is sub-system of \rightarrow having same normal forms
- many-step strategy is \rightarrow^{+}-strategy (strat for many step system)

$Z \Longrightarrow \bullet$ strategy is hyper-cofinal

Definition (o-strategy)

- strategy is sub-system of \rightarrow having same normal forms
- many-step strategy is \rightarrow^{+}-strategy
- $a \rightarrow a^{\bullet}$ if a is not a normal form

$Z \Longrightarrow \bullet$ strategy is hyper-cofinal

Definition (e-strategy)

- strategy is sub-system of \rightarrow having same normal forms
- many-step strategy is \rightarrow^{+}-strategy
- $a \rightarrow a^{\bullet}$ if a is not a normal form
is many-step strat: if a not normal, $a \rightarrow b$ for some b, so $b \rightarrow a^{\bullet}$ by Z, so $a \rightarrow^{+} a^{\bullet}$
$Z \Longrightarrow \bullet$ strategy is hyper-cofinal

Definition (o-strategy)

- strategy is sub-system of \rightarrow having same normal forms
- many-step strategy is \rightarrow^{+}-strategy
- $a \rightarrow a^{\bullet}$ if a is not a normal form
is many-step strat: if a not normal, $a \rightarrow b$ for some b, so $b \rightarrow a^{\bullet}$ by Z, so $a \rightarrow^{+} a^{\bullet}$

Definition (hyper-cofinality)

- hyper-strategy: always eventually do a strategy step
- for property P, strategy is hyper- P if hyper-strategy is P
- cofinal: for each strategy reduction any co-initial reduction extendible to it

$Z \Longrightarrow \rightarrow$ strategy is hyper-cofinal

hyper: always eventually a \bullet-step

$Z \Longrightarrow \rightarrow$ strategy is hyper-cofinal

$Z \Longrightarrow \rightarrow$ strategy is hyper-cofinal

$Z \Longrightarrow \bullet$ strategy is hyper-cofinal
Theorem
\bullet is hyper-cofinal
Proof.
$Z \Longrightarrow \bullet$ strategy is hyper-cofinal

Theorem

\rightarrow is hyper-cofinal
Proof.

$Z \Longrightarrow \bullet$ strategy is hyper-cofinal

Theorem

\rightarrow is hyper-cofinal
Proof.

$Z \Longrightarrow \bullet$ strategy is hyper-cofinal

Theorem

\rightarrow is hyper-cofinal
Proof.

$Z \Longrightarrow \bullet$ strategy is hyper-cofinal

Theorem

\rightarrow is hyper-cofinal
Proof.

$Z \Longrightarrow \bullet$ strategy is hyper-cofinal

Theorem

\rightarrow is hyper-cofinal
Proof.

$\mathrm{Z} \Longrightarrow \longrightarrow$ strategy is hyper-cofinal

Theorem

\rightarrow is hyper-cofinal
Proof.

induction

Some structured rewrite systems having Z-property

idea for constructing e-function for inductive structures

- suppose to have upper bounds \vec{t}^{\bullet} of sub-structures \vec{t} of $f(\vec{t})$ by induction

Some structured rewrite systems having Z-property

idea for constructing e-function for inductive structures

- suppose to have upper bounds \vec{t}^{\bullet} of sub-structures \vec{t} of $f(\vec{t})$ by induction
- ponder critical peak between those and head step for any rule $f(\vec{\ell}) \rightarrow r$

Example of Z : λ-calculus

idea for constructing e-function for λ-calculus

\downarrow ponder critical peak $\left(\lambda x . M^{\bullet}\right) N^{\bullet} \leftarrow(\lambda x . M) N \rightarrow M[x:=N]$

Example of Z: λ-calculus

idea for constructing e-function for λ-calculus

- ponder critical peak $\left(\lambda x . M^{\bullet}\right) N^{\bullet} \leftarrow(\lambda x . M) N \rightarrow M[x:=N]$
- contracting $\left(\lambda x . M^{\bullet}\right) N^{\bullet}$ reduces to $M^{\bullet}\left[x:=N^{\bullet}\right]$ reduces to $M[x:=N]^{\bullet}$ for $\bullet G K$

Example of $Z: \lambda$-calculus

Theorem (Loader)

\rightarrow_{β} has the Z-property for \bullet full development (Gross-Knuth):
$(\lambda x . M)^{\bullet}=\lambda x . M^{\bullet} \quad x^{\bullet}=x$
$(M N)^{\bullet}=M^{\prime}\left[x:=N^{\bullet}\right] \quad$ if $M N$ is a redex and $M^{\bullet}=\lambda x . M^{\prime}$, otherwise $M^{\bullet} N^{\bullet}$

Example of Z: λ-calculus

Theorem (Loader)

\rightarrow_{β} has the Z-property for \bullet full development (Gross-Knuth):
$(\lambda x . M)^{\bullet}=\lambda x . M^{\bullet} \quad x^{\bullet}=x$
$(M N)^{\bullet}=M^{\prime}\left[x:=N^{\bullet}\right] \quad$ if $M N$ is a redex and $M^{\bullet}=\lambda x . M^{\prime}$, otherwise $M^{\bullet} N^{\bullet}$

Example

$\rightarrow I^{\bullet}=I ;(I=\lambda x \cdot x)$

- $(I(I I))^{\bullet}=I,(I I I)^{\bullet}=I I ;$
- $((\lambda x y . x) z w)^{\bullet}=(\lambda y . z) w$;
- $((\lambda x y . \mid y x) z I)^{\bullet}=(\lambda y . y z)!;$

Example of Z: λ-calculus

Theorem (Loader)

\rightarrow_{β} has the Z-property for \bullet full development (Gross-Knuth):

$$
(\lambda x \cdot M)^{\bullet}=\lambda x \cdot M^{\bullet} \quad x^{\bullet}=x
$$

$$
(M N)^{\bullet}=M^{\prime}\left[x:=N^{\bullet}\right] \quad \text { if } M N \text { is a redex and } M^{\bullet}=\lambda x . M^{\prime} \text {, otherwise } M^{\bullet} N^{\bullet}
$$

Proof by induction on term M :

(Substitution) $M[y:=P][x:=N]=M[x:=N][y:=P[x:=N]]$

Example of Z: λ-calculus

Theorem (Loader)

\rightarrow_{β} has the Z-property for \bullet full development (Gross-Knuth):

$$
(\lambda x \cdot M)^{\bullet}=\lambda x \cdot M^{\bullet} \quad x^{\bullet}=x
$$

$$
(M N)^{\bullet}=M^{\prime}\left[x:=N^{\bullet}\right] \quad \text { if } M N \text { is a redex and } M^{\bullet}=\lambda x . M^{\prime} \text {, otherwise } M^{\bullet} N^{\bullet}
$$

Proof by induction on term M:

(Substitution) $\quad M[y:=P][x:=N]=M[x:=N][y:=P[x:=N]]$

- (Extensive) $M \rightarrow M^{\bullet}$

Example of Z: λ-calculus

Theorem (Loader)

\rightarrow_{β} has the Z-property for \bullet full development (Gross-Knuth):

$$
(\lambda x . M)^{\bullet}=\lambda x . M^{\bullet} \quad x^{\bullet}=x
$$

$$
(M N)^{\bullet}=M^{\prime}\left[x:=N^{\bullet}\right] \quad \text { if } M N \text { is a redex and } M^{\bullet}=\lambda x . M^{\prime} \text {, otherwise } M^{\bullet} N^{\bullet}
$$

Proof by induction on term M :

(Substitution) $\quad M[y:=P][x:=N]=M[x:=N][y:=P[x:=N]]$

- (Extensive) $M \rightarrow M^{\bullet}$
(Rhs) $M^{\bullet}\left[x:=N^{\bullet}\right] \rightarrow M[x:=N]^{\bullet}$

Example of Z: λ-calculus

Theorem (Loader)

\rightarrow_{β} has the Z-property for \bullet full development (Gross-Knuth):

$$
(\lambda x \cdot M)^{\bullet}=\lambda x . M^{\bullet} \quad x^{\bullet}=x
$$

$$
(M N)^{\bullet}=M^{\prime}\left[x:=N^{\bullet}\right] \quad \text { if } M N \text { is a redex and } M^{\bullet}=\lambda x . M^{\prime} \text {, otherwise } M^{\bullet} N^{\bullet}
$$

Proof by induction on term M :

(Substitution) $\quad M[y:=P][x:=N]=M[x:=N][y:=P[x:=N]]$

- (Extensive) $M \rightarrow M^{\bullet}$
- (Rhs) $M^{\bullet}\left[x:=N^{\bullet}\right] \rightarrow M[x:=N]^{\bullet}$
- (Z) $M \rightarrow N \Longrightarrow N \rightarrow M^{\bullet} \rightarrow N^{\bullet}$

Example of Z : λ-calculus

Theorem (Loader)

\rightarrow_{β} has the Z-property for \bullet full development (Gross-Knuth):

$$
\begin{aligned}
(\lambda x . M)^{\bullet} & =\lambda x \cdot M^{\bullet}
\end{aligned} \quad x^{\bullet}=x .
$$

Proof by induction on term M:

(Substitution) $M[y:=P][x:=N]=M[x:=N][y:=P[x:=N]]$

- (Extensive) $M \rightarrow M^{\bullet}$
- (Rhs) $M^{\bullet}\left[x:=N^{\bullet}\right] \rightarrow M[x:=N]^{\bullet}$
- (Z) $M \rightarrow N \Longrightarrow N \rightarrow M^{\bullet} \rightarrow N^{\bullet}$
works for all orthogonal structured rewrite systems

Example of Z : λ-calculus

Theorem (cf. Aczel)

\rightarrow_{β} has the Z-property for \bullet full superdevelopment:

$$
\begin{aligned}
(\lambda x . M)^{\bullet} & =\lambda x \cdot M^{\bullet} \quad x^{\bullet}=x \\
(M N)^{\bullet} & =M^{\prime}\left[x:=N^{\bullet}\right] \quad \text { if } M N \text { is a term and } M^{\bullet}=\lambda x . M^{\prime} \text {, otherwise } M^{\bullet} N^{\bullet}
\end{aligned}
$$

Proof by induction on term M :

(Substitution) $M[y:=P][x:=N]=M[x:=N][y:=P[x:=N]]$

- (Extensive) $M \rightarrow M^{\bullet}$
- (Rhs) $M^{\bullet}\left[x:=N^{\bullet}\right] \rightarrow M[x:=N]^{\bullet}$
- (Z) $M \rightarrow N \Longrightarrow N \rightarrow M^{\bullet} \rightarrow N^{\bullet}$
full superdevelopment; shortest mechanized proof

Example of Z: self-distributivity

Definition

self-distributivity generated by rule $x y z \rightarrow x z(y z)$

Example of Z: self-distributivity

Definition

self-distributivity generated by rule $x y z \rightarrow x z(y z)$
idea: distribute of 2 nd argument to leaves of 1st argument

Example of Z: self-distributivity

Theorem (Dehornoy)

self-distributivity has Z-property for \bullet full distribution, $t[s]$ uniform distribution:

$$
x^{\bullet}=x \quad(t s)^{\bullet}=t^{\bullet}\left[s^{\bullet}\right] \quad t[s]=t\left[x_{1}:=x_{1} s, x_{2}:=x_{2} s, \ldots\right]
$$

Example of Z: self-distributivity

Theorem (Dehornoy)

self-distributivity has Z-property for \bullet full distribution, $t[s]$ uniform distribution:

$$
x^{\bullet}=x \quad(t s)^{\bullet}=t^{\bullet}\left[s^{\bullet}\right] \quad t[s]=t\left[x_{1}:=x_{1} s, x_{2}:=x_{2} s, \ldots\right]
$$

Example

- $(x y)^{\bullet}=x[y]=x[x:=x y]=x y$
- $(x y z)^{\bullet}=(x y)[x:=x z, y:=y z]=x z(y z)$

Example of Z: self-distributivity

Theorem (Dehornoy)

self-distributivity has Z-property for \bullet full distribution, $t[s]$ uniform distribution:

$$
x^{\bullet}=x \quad(t s)^{\bullet}=t^{\bullet}\left[s^{\bullet}\right] \quad t[s]=t\left[x_{1}:=x_{1} s, x_{2}:=x_{2} s, \ldots\right]
$$

Proof by induction on term t :

- (Sequentialisation) $t s \rightarrow t[s]$

Example of Z: self-distributivity

Theorem (Dehornoy)

self-distributivity has Z-property for \bullet full distribution, $t[s]$ uniform distribution:

$$
x^{\bullet}=x \quad(t s)^{\bullet}=t^{\bullet}\left[s^{\bullet}\right] \quad t[s]=t\left[x_{1}:=x_{1} s, x_{2}:=x_{2} s, \ldots\right]
$$

Proof by induction on term t :

- (Sequentialisation) $t s \rightarrow t[s]$
- (Substitution) $t[s][r] \rightarrow t[r][s[r]]$

Example of Z: self-distributivity

Theorem (Dehornoy)

self-distributivity has Z-property for \bullet full distribution, $t[s]$ uniform distribution:

$$
x^{\bullet}=x \quad(t s)^{\bullet}=t^{\bullet}\left[s^{\bullet}\right] \quad t[s]=t\left[x_{1}:=x_{1} s, x_{2}:=x_{2} s, \ldots\right]
$$

Proof by induction on term t :

- (Sequentialisation) $t s \rightarrow t[s]$
- (Substitution) $t[s][r] \rightarrow t[r][s[r]]$
- (Extensive) $t \rightarrow t^{\bullet}$

Example of Z: self-distributivity

Theorem (Dehornoy)

self-distributivity has Z-property for \bullet full distribution, $t[s]$ uniform distribution:

$$
x^{\bullet}=x \quad(t s)^{\bullet}=t^{\bullet}\left[s^{\bullet}\right] \quad t[s]=t\left[x_{1}:=x_{1} s, x_{2}:=x_{2} s, \ldots\right]
$$

Proof by induction on term t :

- (Sequentialisation) $t s \rightarrow t[s]$
- (Substitution) $t[s][r] \rightarrow t[r][s[r]]$
- (Extensive) $t \rightarrow t^{\bullet}$
- (Z) $s \rightarrow t^{\bullet} \rightarrow s^{\bullet}$, if $t \rightarrow s$

Confluent rewrite systems not having the Z-property

Transitivity considered harmful

Example (Confluent but not admitting Z)

confluent (by decreasing diagrams); no transitive steps (own transitive reduct)

Transitivity considered harmful

Example (Confluent but not admitting Z)

suppose \bullet were to witness Z :

- consider arbitrary a at the top

Transitivity considered harmful

Example (Confluent but not admitting Z)

suppose • were to witness Z :

- consider arbitrary a at the top
- a^{\bullet} must be at bottom, left of a as upper bound of steps from a

Transitivity considered harmful

Example (Confluent but not admitting Z)

suppose • were to witness Z :

- consider arbitrary a at the top
- a^{\bullet} must be at bottom, left of a as upper bound of steps from a
- consider arbitrary b at top, strictly left of a^{\bullet}

Transitivity considered harmful

Example (Confluent but not admitting Z)

suppose • were to witness Z :
\rightarrow consider arbitrary a at the top

- a^{\bullet} must be at bottom, left of a as upper bound of steps from a
- consider arbitrary b at top, strictly left of a^{\bullet}
- $a^{\bullet} \rightarrow^{+} b^{\bullet}$ by b^{\bullet} being an upper bound of steps from b

Transitivity considered harmful

Example (Confluent but not admitting Z)

suppose • were to witness Z :

- consider arbitrary a at the top
- a^{\bullet} must be at bottom, left of a as upper bound of steps from a
- consider arbitrary b at top, strictly left of a^{\bullet}
- $a^{\bullet} \rightarrow^{+} b^{\bullet}$ by b^{\bullet} being an upper bound of steps from b
$\rightarrow b^{\bullet} \rightarrow a^{\bullet}$ by $b \rightarrow a$ and monotonicity; contradiction
Buenos Aires (Virtual); FSCD 2021 19-07-2021

Transitivity considered harmful

Example (Confluent but not admitting Z)

suppose • were to witness Z :

- consider arbitrary a at the top
- a^{\bullet} must be at bottom, left of a as upper bound of steps from a
- consider arbitrary b at top, strictly left of a^{\bullet}
- $a^{\bullet} \rightarrow^{+} b^{\bullet}$ by b^{\bullet} being an upper bound of steps from b
$\rightarrow b^{\bullet} \rightarrow a^{\bullet}$ by $b \rightarrow a$ and monotonicity; contradiction
Buenos Aires (Virtual); FSCD 2021 19-07-2021

Transitivity considered harmful

Example (Confluent but not admitting Z)

Example (less-than on \mathbb{Z} does not have \mathbb{Z}, but transitive reduct does)

Transitivity considered harmful

Example (Confluent but not admitting Z)

Example (less-than on \mathbb{Z} does not have \mathbb{Z}, but transitive reduct does)

for given integer, no upper bound on steps from it

Further examples of rewrite systems having Z

Lemma (Some sufficient conditions for Z)

Z holds if

- confluent and (weakly) normalising: map to the normal form

Further examples of rewrite systems having Z

Lemma (Some sufficient conditions for Z)

Z holds if

- confluent and (weakly) normalising: map to the normal form;
- locally confluent and terminating: • maps a to arbitrary a^{\bullet} in nf s.t. a $\rightarrow a^{\bullet}$ $Z: a \rightarrow b \Longrightarrow a \rightarrow a^{\bullet}=b^{\bullet}$ by wf-induction on a; Newman/Winkler/Hirokawa

Further examples of rewrite systems having Z

Lemma (Some sufficient conditions for Z)

Z holds if

- confluent and (weakly) normalising: map to the normal form;
- locally confluent and terminating: • maps a to arbitrary a^{\bullet} in nf s.t. $a \rightarrow a^{\bullet}$;
- orthogonal: contract all redexes in structure

Further examples of rewrite systems having Z

Lemma (Some sufficient conditions for Z)

Z holds if

- confluent and (weakly) normalising: map to the normal form;
- locally confluent and terminating: • maps a to arbitrary a^{\bullet} in nf s.t. $a \rightarrow a^{\bullet}$;
- orthogonal: contract all redexes in structure;
- confluent and finite: map to any object in normal form quotienting out SCCs

Further examples of rewrite systems having Z

Lemma (Some sufficient conditions for Z)

Z holds if

- confluent and (weakly) normalising: map to the normal form;
- locally confluent and terminating: • maps a to arbitrary a^{\bullet} in nf s.t. $a \rightarrow a^{\bullet}$;
- orthogonal: contract all redexes in structure;
- confluent and finite: map to any object in normal form quotienting out SCCs

Example (Some further concrete systems)

- weakly orthogonal: contract maximal redex-set ($\underline{p s \overline{p s}, \text { not } p s p s \text {) }) ~(1)}$

Further examples of rewrite systems having Z

Lemma (Some sufficient conditions for Z)

Z holds if

- confluent and (weakly) normalising: map to the normal form;
- locally confluent and terminating: • maps a to arbitrary a^{\bullet} in nf s.t. $a \rightarrow a^{\bullet}$;
- orthogonal: contract all redexes in structure;
- confluent and finite: map to any object in normal form quotienting out SCCs

Example (Some further concrete systems)

- weakly orthogonal: contract maximal redex-set
- explicit substitutions: compose maps for Beta and subs (Nakazawa \& Fujita)

Further examples of rewrite systems having Z

Lemma (Some sufficient conditions for Z)

Z holds if

- confluent and (weakly) normalising: map to the normal form;
- locally confluent and terminating: • maps a to arbitrary a^{\bullet} in nf s.t. $a \rightarrow a^{\bullet}$;
- orthogonal: contract all redexes in structure;
- confluent and finite: map to any object in normal form quotienting out SCCs

Example (Some further concrete systems)

- weakly orthogonal: contract maximal redex-set
- explicit substitutions: compose maps for Beta and subs (Nakazawa \& Fujita)
- generalized braids: Garside element tiling genererators (w/ Hans Zantema)

Further examples of rewrite systems having Z

Lemma (Some sufficient conditions for Z)

Z holds if

- confluent and (weakly) normalising: map to the normal form;
- locally confluent and terminating: • maps a to arbitrary a^{\bullet} in nf s.t. $a \rightarrow a^{\bullet}$;
- orthogonal: contract all redexes in structure;
- confluent and finite: map to any object in normal form quotienting out SCCs

Example (Some further concrete systems . . .)

- weakly orthogonal: contract maximal redex-set
- explicit substitutions: compose maps for Beta and subs (Nakazawa \& Fujita)
- generalized braids: Garside element tiling genererators (w/ Hans Zantema)

Angle

Definition (Terese 2003)

\rightarrow has triangle property if there is a (bullet) map • from objects to objects such that for any step $a \rightarrow b$ from a to b there exists a step $b \rightarrow a^{\bullet}$ from b to a^{\bullet}

Definition (\langle)

$\exists \bullet: A \rightarrow A, \forall a, b \in A: a \longrightarrow b \Longrightarrow b \longrightarrow a^{\bullet}$

Z vs. 〈

Z vs. 〈

Theorem

for any map $\bullet, Z \Longleftrightarrow$ exists $\rightarrow \subseteq \rightarrow \subseteq \rightarrow$ such that 〈

Proof.

Z vs. 〈

Theorem

for any map $\bullet, Z \Longleftrightarrow$ exists $\rightarrow \subseteq \rightarrow \subseteq \rightarrow$ such that 〈

Proof.

(\Longleftarrow) see paper

Z vs. 〈

Theorem

for any map $\bullet, Z \Longleftrightarrow$ exists $\rightarrow \subseteq \rightarrow \subseteq \rightarrow$ such that \langle

Proof.

(\Longrightarrow) define $a \rightarrow b$ if b between a and a^{\bullet}, i.e. $a \rightarrow b \rightarrow a^{\bullet}:$

Syntax-free developments

Recover results on developments in syntax-free way?

$a \rightarrow b$ defined as $a \rightarrow b \rightarrow a^{\bullet}$ can be seen as a •-development, as a syntax-free definition of development (Church \& Rosser) relative to •. which results on developments can be recovered for \bullet-developments, i.e. in a syntax-free way?

Syntax-free developments

Recover results on developments in syntax-free way?

which results on developments can be recovered for \bullet-developments?

Example (Developments do not coincide with o-developments)

let • be full-development map (contract all redexes in term) for orthogonal TRS

Syntax-free developments

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Example (Developments do not coincide with o-developments)

let • be full-development map (contract all redexes in term) for orthogonal TRS

- rules $a \rightarrow b \rightarrow c \rightarrow a ;$ non-terminating/cyclic $a^{\bullet}=b$ but $a \bullet$-develops to c

Syntax-free developments

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Example (Developments do not coincide with o-developments)

let • be full-development map (contract all redexes in term) for orthogonal TRS

- rules $a \rightarrow b \rightarrow c \rightarrow a$; non-terminating/cyclic $a^{\bullet}=b$ but $a \bullet$-develops to c
- rules $a \rightarrow b \rightarrow c, f(x) \rightarrow d$; erasing $f(a)^{\bullet}=d$ but $f(a) \bullet$-develops to $f(c)$

Syntax-free developments

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Example (Developments do not coincide with o-developments)

let • be full-development map (contract all redexes in term) for orthogonal TRS

- rules $a \rightarrow b \rightarrow c \rightarrow a$; non-terminating/cyclic
$a^{\bullet}=b$ but $a \bullet$-develops to c
- rules $a \rightarrow b \rightarrow c, f(x) \rightarrow d$; erasing
$f(a)^{\bullet}=d$ but $f(a) \bullet$-develops to $f(c)$
- rules $g(x) \rightarrow h(x) \rightarrow i(x) \rightarrow x$; collapsing $i(h(g(a)))^{\bullet}=i(h(a))$ but $i(h(g(a))) \bullet$-develops to $i(h(i(a)))$

Syntax-free developments

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Theorem

for terminating, non-collapsing, and non-erasing orthogonal TRSs, developments and •-developments coincide.

Syntax-free developments

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Theorem

for terminating, non-collapsing, and non-erasing orthogonal TRSs, developments and •-developments coincide.

Proof.

conditions guarantee absence of syntactic accidents (Lévy): $t \rightarrow s \rightarrow t^{\bullet}$, at most one reduction up to permutation equivalence between two terms \Longrightarrow development $t \rightarrow t^{\bullet}$, so each step in $t \rightarrow s$ contracts residual of redex in $t \Longrightarrow$ $t \rightarrow s$ is a development.

Syntax-free developments

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Theorem

for terminating, non-collapsing, and non-erasing orthogonal TRSs, developments and •-developments coincide.

Remark

can be regained for arbitrary orthogonal TRSs by lifting: add creation depths (to overcome collapsingness and non-termination; Hyland-Wadsworth/Lévy labels) to yield reconstructibility, and memory (to overcome erasingness; cf. Nederpelt's scars) to yield invertibility. Question: other systems ($\lambda, S D$)?

Conclusion

- introduced Z-property

Conclusion

- introduced Z-property
- showed interest of Z: entails confluence, gives hyper-cofinal strategy (computable if • is), allows to characterise recurrence (Statman),...

Conclusion

- introduced Z-property
- showed interest of Z: entails confluence, gives hyper-cofinal strategy (computable if • is), allows to characterise recurrence (Statman),...
- convenient because of choice of monotonic upper bound function • does not always exist though even if confluent

Conclusion

- introduced Z-property
- showed interest of Z: entails confluence, gives hyper-cofinal strategy (computable if • is), allows to characterise recurrence (Statman),...
- convenient because of choice of monotonic upper bound function • does not always exist though even if confluent
- equivalent to triangle property (e.g. Takahashi) but conceptually minimal: no need for separate inductive definition of parallel reduction

Conclusion

- introduced Z-property
- showed interest of Z: entails confluence, gives hyper-cofinal strategy (computable if • is), allows to characterise recurrence (Statman),...
- convenient because of choice of monotonic upper bound function • does not always exist though even if confluent
- equivalent to triangle property (e.g. Takahashi) but conceptually minimal: no need for separate inductive definition of parallel reduction
- spin-off: syntax-free notion of •-development; left-divisors (complete developments) of parallel reduction not closed under left-division

Further future work?

- find methods for showing the Z-property does not hold ($\lambda \beta \bar{\eta}$?)

Further future work?

- find methods for showing the Z-property does not hold ($\lambda \beta \bar{\eta}$?)
- try to turn Z into automatable method (for confluence tools)?

Further future work?

- find methods for showing the Z-property does not hold ($\lambda \beta \bar{\eta}$?)
- try to turn Z into automatable method (for confluence tools)?
- what exactly do programming languages want to import? PLFA (Wadler, Kokke) uses some version of angle/Z to get confluence

Further future work?

- find methods for showing the Z-property does not hold ($\lambda \beta \bar{\eta}$?)
- try to turn Z into automatable method (for confluence tools)?
- what exactly do programming languages want to import? PLFA (Wadler, Kokke) uses some version of angle/Z to get confluence
- what exactly do proof assistants want to import (for partial functions)? Agda (Cockx) allows some version of angle/Z to get confluence Dedukti allows confluent HRS rules (external check, e.g. via CSI-ho or ACPH)

Further future work?

- find methods for showing the Z-property does not hold ($\lambda \beta \bar{\eta}$?)
- try to turn Z into automatable method (for confluence tools)?
- what exactly do programming languages want to import?

PLFA (Wadler, Kokke) uses some version of angle/Z to get confluence

- what exactly do proof assistants want to import (for partial functions)?

Agda (Cockx) allows some version of angle/Z to get confluence Dedukti allows confluent HRS rules (external check, e.g. via CSI-ho or ACPH)

- does your favourite rewrite system have the Z-property?

Further future hobby?

- find methods for showing the Z-property does not hold ($\lambda \beta \bar{\eta}$?)
- try to turn Z into automatable method (for confluence tools)?
- what exactly do programming languages want to import?

PLFA (Wadler, Kokke) uses some version of angle/Z to get confluence

- what exactly do proof assistants want to import (for partial functions)?

Agda (Cockx) allows some version of angle/Z to get confluence
Dedukti allows confluent HRS rules (external check, e.g. via CSI-ho or ACPH)

- does your favourite rewrite system have the Z-property?
- ...

Further future hobby?

- find methods for showing the Z-property does not hold ($\lambda \beta \bar{\eta}$?)
- try to turn Z into automatable method (for confluence tools)?
- what exactly do programming languages want to import?

PLFA (Wadler, Kokke) uses some version of angle/Z to get confluence

- what exactly do proof assistants want to import (for partial functions)?

Agda (Cockx) allows some version of angle/Z to get confluence
Dedukti allows confluent HRS rules (external check, e.g. via CSI-ho or ACPH)

- does your favourite rewrite system have the Z-property?
- ...

