Modularity of Confluence Constructed

Vincent van Oostrom

Theoretical Philosophy Universiteit Utrecht The Netherlands

IJCAR'08, August 14, 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

constructing confluence

proof idea

ranking the terms balancing the terms constructing confluence by decreasing diagrams

proving property of rewrite system via its components

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

proving property of rewrite system via its components Definition property *P* is modular if $P(T_1 \uplus T_2) \iff P(T_1) \& P(T_2)$

proving confluence of rewrite system via its components Definition confluence is modular if $Con(\mathcal{T}_1 \uplus \mathcal{T}_2) \iff Con(\mathcal{T}_1) \& Con(\mathcal{T}_2)$

for each pair of reductions with common source

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for each pair of reductions with common source

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

exists pair of reductions with common reduct

for each pair of reductions with common source

<=>> = ∽Q@

exists pair of reductions with common reduct Consequences:

- consistency (if distinct normal forms)
- uniqueness of results (normal forms)
- decidable convertibility (if \rightarrow terminating)
- ▶ existence of lower bounds (w.r.t. → order)

Confluence is not modular Example (Klop 1980) $(\lambda x.M(x))N \rightarrow M(N)$

\mathbb{H}

$e(x,x) \rightarrow \top$

disjoint confluent components

Example (Klop 1980)

$$(\lambda x.M(x))N \rightarrow M(N) \ e(x,x) \rightarrow \top$$

disjoint union of components not confluent

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example (Klop 1980)

$$(\lambda x.M(x))N \rightarrow M(N) \ e(x,x) \rightarrow \top$$

disjoint union of components not confluent

Theorem (Toyama 1987) confluence is modular for TRSs

Theorem (Toyama 1987) confluence is modular for TRSs

Example

$$\begin{array}{rcl} \mathbb{Q}(I(),x) & \to & x\\ \mathbb{Q}(\mathbb{Q}(K(),x),y) & \to & x\\ \mathbb{Q}(\mathbb{Q}(\mathbb{Q}(S(),x),y),z) & \to & \mathbb{Q}(\mathbb{Q}(x,z),\mathbb{Q}(y,z))\\ & *(x,x) & \to & x\\ & a() & \to & b() \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

confluent?

Theorem (Toyama 1987) confluence is modular for TRSs

Example

$$\begin{array}{rccc} lx & \to & x \\ Kxy & \to & x \\ Sxyz & \to & xz(yz) \\ x*x & \to & x \\ a & \to & b \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

confluent?

Theorem (Toyama 1987) confluence is modular for TRSs

Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\mathcal{CL} \uplus \mathcal{E} \text{ confluent?}$

Theorem (Toyama 1987) confluence is modular for TRSs

Example

 $\begin{array}{l} \mathcal{CL} \uplus \mathcal{E} \text{ confluent} \\ \mathcal{CL} \text{ orthogonal } \Rightarrow \text{ confluent (Rosen)} \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Toyama 1987) confluence is modular for TRSs

Example

 $\begin{array}{l} \mathcal{CL} \uplus \mathcal{E} \text{ confluent}? \\ \mathcal{CL} \text{ orthogonal } \Rightarrow \text{ confluent (Rosen)} \\ \mathcal{E} \text{ terminating and no critical pairs } \Rightarrow \text{ confluent (Huet)} \end{array}$

Theorem (Toyama 1987) confluence is modular for TRSs

Example

 $C\mathcal{L} \uplus \mathcal{E}$ confluent? $C\mathcal{L}$ orthogonal \Rightarrow confluent (Rosen) \mathcal{E} terminating and no critical pairs \Rightarrow confluent (Huet) disjoint confluent components \Rightarrow union confluent (Toyama)

exist constructions f, g such that for each pair \mathcal{R} , \mathcal{S} of reductions with common source

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

exist constructions f, g such that for each pair \mathcal{R} , \mathcal{S} of reductions with common source

 $f(\mathcal{S},\mathcal{R})$, $g(\mathcal{R},\mathcal{S})$ is pair of reductions with common reduct

exist constructions f, g such that for each pair \mathcal{R} , \mathcal{S} of reductions with common source

 $f(S, \mathcal{R})$, $g(\mathcal{R}, S)$ is pair of reductions with common reduct Extra consequence:

▶ computation of lower bounds (w.r.t. → order)

Example

$$lx \rightarrow x$$
 $Kxy \rightarrow x$ $Sxyz \rightarrow xz(yz)$

Example

$$lx \rightarrow x$$
 $Kxy \rightarrow x$ $Sxyz \rightarrow xz(yz)$

► CL orthogonal \Rightarrow f = g = project 1st over 2nd (extract from Rosen)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

$$lx \rightarrow x$$
 $Kxy \rightarrow x$ $Sxyz \rightarrow xz(yz)$

- CL orthogonal \Rightarrow f = g =project 1st over 2nd (extract from Rosen)
- gives greatest lower bounds (up to syntactical accidents)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

$$lx \rightarrow x$$
 $Kxy \rightarrow x$ $Sxyz \rightarrow xz(yz)$

- $C\mathcal{L}$ orthogonal \Rightarrow f = g = project 1st over 2nd (extract from Rosen)
- gives greatest lower bounds (up to syntactical accidents)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$e(x,x) \rightarrow x \qquad a \rightarrow b$$

Example

$$Ix \rightarrow x$$
 $Kxy \rightarrow x$ $Sxyz \rightarrow xz(yz)$

- $C\mathcal{L}$ orthogonal \Rightarrow f = g = project 1st over 2nd (extract from Rosen)
- gives greatest lower bounds (up to syntactical accidents)

$$e(x,x) \rightarrow x \qquad a \rightarrow b$$

• \mathcal{E} terminating and no critical pairs \Rightarrow f = g =reduce 2nd to normal form (extract from Huet)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

$$Ix \rightarrow x$$
 $Kxy \rightarrow x$ $Sxyz \rightarrow xz(yz)$

- $C\mathcal{L}$ orthogonal \Rightarrow f = g = project 1st over 2nd (extract from Rosen)
- gives greatest lower bounds (up to syntactical accidents)

$$e(x,x) \rightarrow x \qquad a \rightarrow b$$

E terminating and no critical pairs ⇒
 f = g = reduce 2nd to normal form (extract from Huet)
 > gives least lower bounds

Example

$$lx \rightarrow x$$
 $Kxy \rightarrow x$ $Sxyz \rightarrow xz(yz)$

- $C\mathcal{L}$ orthogonal \Rightarrow f = g = project 1st over 2nd (extract from Rosen)
- gives greatest lower bounds (up to syntactical accidents)

$$e(x,x) \rightarrow x \qquad a \rightarrow b$$

E terminating and no critical pairs ⇒
 f = g = reduce 2nd to normal form (extract from Huet)
 gives least lower bounds
 construction for CL ⊎ E?

Example

$$lx \rightarrow x$$
 $Kxy \rightarrow x$ $Sxyz \rightarrow xz(yz)$

- $C\mathcal{L}$ orthogonal \Rightarrow f = g = project 1st over 2nd (extract from Rosen)
- gives greatest lower bounds (up to syntactical accidents)

$$e(x,x) \rightarrow x \qquad a \rightarrow b$$

E terminating and no critical pairs ⇒
f = g = reduce 2nd to normal form (extract from Huet)
 gives least lower bounds
construction for CL ⊎ E? extract from Toyama?

Example

for \mathcal{CL} -terms t, s, u with $t \rightarrow_{\mathcal{CL}} u$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Example

for \mathcal{CL} -terms t, s, u with $t \rightarrow_{\mathcal{CL}} u$

Example

for \mathcal{CL} -terms t, s, u with $t \rightarrow_{\mathcal{CL}} u$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

expected...

Example

for \mathcal{CL} -terms t, s, u with $t \rightarrow_{\mathcal{CL}} u$

expected...not given by proofs (Toyama, Klop et al., Jouannaud)

Example

for \mathcal{CL} -terms t, s, u with $t \rightarrow_{\mathcal{CL}} u$

expected...**not** given by proofs (Toyama, Klop et al., Jouannaud) rely on test: can *t* * *s* collapse?

Example

for \mathcal{CL} -terms t, s, u with $t \rightarrow_{\mathcal{CL}} u$

expected...not given by proofs (Toyama, Klop et al., Jouannaud) rely on test: can t * s collapse? but undecidable whether t, s have common reduct
Proof by commutation?

Lemma (Hindley-Rosen)

 $\rightarrow_1 \cup \rightarrow_2$ confluent, if \rightarrow_i are, and commute:

Proof by commutation?

Lemma (Hindley-Rosen)

 $\rightarrow_1 \cup \rightarrow_2$ confluent, if \rightarrow_i are, and commute:

hence would suffice to show commutation

Proof by commutation?

Lemma (constructive Hindley–Rosen) $\rightarrow_1 \cup \rightarrow_2$ constructively confluent, if \rightarrow_i are, and commute constructively:

hence would suffice to show constructive commutation

Proof by commutation fails Example

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Proof by commutation fails Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

impossible because of non-left-linearity of rule $x * x \rightarrow x$

Proof by commutation fails Example

impossible because of non-left-linearity of rule $x * x \rightarrow x$ S * (IS) needs to be balanced first

Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

commute 'up to' balancing $\rightarrow_{\mathcal{CL}}$ -step which is smaller:

Example

commute 'up to' balancing $\rightarrow_{\mathcal{CL}}$ -step which is smaller:

CL-term rewritten has lower rank than whole term

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example

commute 'up to' balancing $\rightarrow_{\mathcal{CL}}$ -step which is smaller:

- CL-term rewritten has lower rank than whole term
- ▶ step $S * (IS) \rightarrow_{CL} S * S$ decreases imbalance of whole term

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proof idea

proof by induction on rank per rank: proof by induction on imbalance

Proof idea

proof by induction on rank per rank: proof by induction on imbalance Example (Running) T_1 over alphabet $\{a, f\}$ (small) $f(x, x) \rightarrow x$

 \mathcal{T}_2 over alphabet $\{I, J, K, G, H\}$ (caps)

$$\begin{array}{rccc} G(x) & \to & I \\ I & \to & K \\ G(x) & \to & H(x) \\ H(x) & \to & J \\ J & \to & K \end{array}$$

f(I, G(a)) first stratified into layers:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

rank of f(I, G(a)) is #alternations of layers:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

f(I, G(a)) has rank 2:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

f(I, G(a)) has rank 2:

Fact rank does not increase along rewriting in TRSs

Proof by induction on rank

Theorem

for every rank, reductions from terms up to that rank are constructively confluent, if components are

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Proof.

Proof by induction on rank

Theorem

for every rank, reductions from terms up to that rank are constructively confluent, if components are

Proof.

 base case 0: peak entirely within one TRS use constructive confluence on components... (standard)

Proof by induction on rank

Theorem

for every rank, reductions from terms up to that rank are constructively confluent, if components are

Proof.

- base case 0: peak entirely within one TRS use constructive confluence on components... (standard)
- step case r + 1: by induction on imbalance ... (novel)

f(I, G(a)) for rank 2: first find tall aliens (aliens of rank 1):

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

f(I, G(a)) for rank 2: next base is context of tall aliens:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proof by induction on imbalance: term decomposition f(I, [G(a)]) for rank 2: base-tall alien decomposition

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof by induction on imbalance: term decomposition f(I, [G(a)]) for rank 2: base-tall alien decomposition

Fact

term decomposes uniquely into base and vector of tall aliens both with rank up to r, so both constructively confluent by IH

Definition imbalance of term is #tall aliens (as set)

classify steps according to location of redex-pattern:

- ▶ base-step ▶: redex-pattern in base
- ► tall alien-step ▷: redex-pattern in tall alien

classify steps according to location of redex-pattern:

- ▶ base-step ▶: redex-pattern in base
- ► tall alien-step ▷: redex-pattern in tall alien

$$f(I,G(a)) \to f(I,I) \to f(I,K)$$

classify steps according to location of redex-pattern:

- ▶ base-step ▶: redex-pattern in base
- ► tall alien-step ▷: redex-pattern in tall alien

 $f(I, G(a)) \rightarrow f(I, I) \rightarrow f(I, K)$

classify steps according to location of redex-pattern:

- ▶ base-step ▶: redex-pattern in base
- ► tall alien-step ▷: redex-pattern in tall alien

 $f(I, G(a)) \rightarrow f(I, I) \rightarrow f(I, K)$

イロト 不得 トイヨト イヨト

-

Fact

every redex-pattern either base or tall alien (by disjointness)

classify steps according to location of redex-pattern:

- ▶ base-step ▶: redex-pattern in base
- ► tall alien-step ▷: redex-pattern in tall alien

 $f(I,G(a)) \to f(I,I) \to f(I,K)$

Fact

every redex-pattern either base or tall alien (by disjointness)

- ▶ base-reduction ▶: ▶-steps, ends when collapsed to tall alien
- ▶ tall alien-reduction ▷: ▷-steps, labelled with imbalance target

Constructive confluence by decreasing diagrams

Theorem (de Bruijn 1978,vO 1994)

 \rightarrow confluent,

if $\rightarrow = \bigcup_{i \in I} \rightarrow_i$, \prec well-founded order on I, such that:

Constructive confluence by decreasing diagrams

Theorem (DD special case needed here)

 \rightarrow confluent,

if $\rightarrow = \bigcup_{i \in I} \rightarrow_i$, \prec well-founded order on I, such that:

Constructive confluence by decreasing diagrams: by cases on base-tall alien decomposition

э

Constructive confluence by decreasing diagrams: by cases on base-tall alien decomposition

< ∃→

Theorem each case is decreasing

Proof.

Set $\triangleright < \bowtie_{\iota} < \bowtie_{\kappa}$, for $\iota < \kappa$.

Decreasing diagram: base case

Decreasing diagram: base case

 base reduction confluent by induction hypothesis (bases of rank up to r)

Decreasing diagram: base case

- base reduction confluent by induction hypothesis (bases of rank up to r)
- cannot create new tall aliens (only replicate existing ones)
Decreasing diagram: base case

- base reduction confluent by induction hypothesis (bases of rank up to r)
- cannot create new tall aliens (only replicate existing ones)
- may collapse to tall alien (then results in base term)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

<ロト <回ト < 注ト < 注ト

æ

 tall alien reduction confluent by induction hypothesis (tall aliens of rank up to r)

- tall alien reduction confluent by induction hypothesis (tall aliens of rank up to r)
- tail of tall alien reduction may turn into base reduction (if tall alien is decreased in rank)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- tall alien reduction confluent by induction hypothesis (tall aliens of rank up to r)
- tail of tall alien reduction may turn into base reduction (if tall alien is decreased in rank)

 then imbalance does not increase (#tall aliens, as set) Decreasing diagram: tall alien case with imbalances

996

Decreasing diagram: tall alien case with imbalances

- tall alien reduction confluent by induction hypothesis (tall aliens of rank up to r)
- tail of tall alien reduction may turn into base reduction (if tall alien is decreased in rank)

► then imbalance *ι* does not increase (#tall aliens, as set)

・ロト・日本・日本・日本・日本・日本

< □ > < 同 > < 回 > .

3 N 3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

base reduction and tall alien reduction commute

- base reduction and tall alien reduction commute
- base reduction may need balancing tall alien reduction (as in critical pair lemma, then imbalance ι decreases)

- base reduction and tall alien reduction commute
- base reduction may need balancing tall alien reduction (as in critical pair lemma, then imbalance ι decreases)
- tail of tall alien reduction may turn into base reduction (then imbalance ι does not increase)

Decreasing diagram: mix case with imbalances

▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ ヨ ■ ● の Q (?)

Decreasing diagram: mix case with imbalances

- base reduction and tall alien reduction commute
- base reduction may need balancing tall alien reduction (as in critical pair lemma, then imbalance ι decreases)
- tail of tall alien reduction may turn into base reduction (then imbalance ι does not increase)

Example displaying all three cases

confluence constructed by tiling!

Motivating example is trivial

for \mathcal{CL} -terms t, s, u with $t \rightarrow_{\mathcal{CL}} u$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

expected

Motivating example is trivial

for \mathcal{CL} -terms t, s, u with $t \rightarrow_{\mathcal{CL}} u$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

yes, in case $t \neq s$ or t = s = u

Motivating example is trivial

for \mathcal{CL} -terms t, s, u with $t \rightarrow_{\mathcal{CL}} u$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

in case $t = s \neq u$, balancing is performed

Extensions

Theorem

constructive confluence is modular when sharing constructors, if opaque: no constructor lifting, no collapse

Proof.

reduction to modularity by combining non-shared-constructors with all shared constructors below them. $\hfill\square$

Extensions

extra-variable TRSs: confluence not preserved under decomposition Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{array}{cccccccc} T_1 & T_2 \\ f(x,y) & \to & f(z,z) & m(y,x,x) & \to & y \\ f(b,c) & \to & a & m(x,x,y) & \to & y \\ b & \to & d \\ c & \to & d \end{array}$$

 $\mathcal{T}_1 \uplus \mathcal{T}_2$ confluent, \mathcal{T}_1 not: $a \leftarrow f(b,c) \rightarrow f(z,z)$

Extensions

extra-variable TRSs: confluence not preserved under decomposition Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{array}{cccccccc} T_1 & T_2 \\ f(x,y) & \to & f(z,z) & m(y,x,x) & \to & y \\ f(b,c) & \to & a & m(x,x,y) & \to & y \\ b & \to & d \\ c & \to & d \end{array}$$

 $\mathcal{T}_1 \uplus \mathcal{T}_2$ confluent, \mathcal{T}_1 not: $a \leftarrow f(b,c) \rightarrow f(z,z)$

< 口 > < 唇 > < 흔 > < 흔 > 트 - 키익()

 other modularity of confluence results: conditional systems, extra-variables

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- other modularity of confluence results: conditional systems, extra-variables
- base-tall alien decomposition useful in other contexts?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- other modularity of confluence results: conditional systems, extra-variables
- base-tall alien decomposition useful in other contexts?

implementation (by extraction)

- other modularity of confluence results: conditional systems, extra-variables
- base-tall alien decomposition useful in other contexts?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- implementation (by extraction)
- complexity analysis