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Confluence is not modular

Example (Klop 1980)

(λx .M(x))N → M(N)

]

e(x , x) → >

disjoint confluent components

A � CA
↓↓ ↓↓

CA C (CA)
↓↓ ↓↓

e(A,CA) Ce(A,CA)
↓↓ ↓↓
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> ↓ ?? C>

where C =def Y (λca.e(a, ca)) A =def YC
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Proof by commutation?
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R
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S
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G
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I

Fact
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I step case r + 1: by induction on imbalance . . .
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term decomposes uniquely into base and vector of tall aliens
both with rank up to r , so both constructively confluent by IH

Definition
imbalance of term is #tall aliens (as set)
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I base-step I: redex-pattern in base

I tall alien-step .: redex-pattern in tall alien
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0
I G
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I I

f
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Fact
every redex-pattern either base or tall alien (by disjointness)

I base-reduction II: I-steps, ends when collapsed to tall alien

I tall alien-reduction ..: .-steps, labelled with imbalance target
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Constructive confluence by decreasing diagrams

Theorem (de Bruijn 1978,vO 1994)

→ confluent,
if → =

⋃
i∈I →i , ≺ well-founded order on I , such that:
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=
≺j

ji
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j

≺i ∨ ≺j ≺i ∨ ≺j

i

=



Constructive confluence by decreasing diagrams

Theorem (DD special case needed here)

→ confluent,
if → =

⋃
i∈I →i , ≺ well-founded order on I , such that:

LD

j

j =

≺i ∨ ≺j ≺i ∨ ≺j

i=

i



Constructive confluence by decreasing diagrams:
by cases on base–tall alien decomposition

≤ι∧κ

κ ι

≤ι∧κ
==

<ι

ι

≤ι
=

∗

base tall alien mix

= = =

Theorem
each case is decreasing

Proof.
Set II < ..ι < ..κ, for ι < κ.
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=

I base reduction confluent by induction hypothesis
(bases of rank up to r)

I cannot create new tall aliens
(only replicate existing ones)

I may collapse to tall alien
(then results in base term)
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Example displaying all three cases

G (a)

f (I ,K )

mix
f (I , I )

tall alien
f (I , J)f (I , [H(a)])

f (I , [G (a)])

f ([G (a)], [G (a)])

base
f (K ,K ) K

I

confluence constructed by tiling!
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Motivating example is trivial

for CL-terms t,s,u with t →CL u

0

1

(u ∗ u)b

(u ∗ s)a

(t ∗ s)a

(t ∗ s)b

0

(u ∗ u)a

in case t = s 6= u, balancing is performed



Extensions

Theorem
constructive confluence is modular when sharing constructors,
if opaque: no constructor lifting, no collapse

Proof.
reduction to modularity by combining non-shared-constructors with
all shared constructors below them.
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