Modularity of Confluence Constructed

Vincent van Oostrom
Theoretical Philosophy Universiteit Utrecht
The Netherlands

IJCAR'08, August 14, 2008
modularity of confluence
constructing confluence
proof idea
ranking the terms
balancing the terms
constructing confluence by decreasing diagrams

Modularity of confluence

proving property of rewrite system via its components

Modularity of confluence

proving property of rewrite system via its components
Definition
property P is modular if $P\left(\mathcal{T}_{1} \uplus \mathcal{T}_{2}\right) \Longleftrightarrow P\left(\mathcal{T}_{1}\right) \& P\left(\mathcal{T}_{2}\right)$

Modularity of confluence

proving confluence of rewrite system via its components
Definition
confluence is modular if $\operatorname{Con}\left(\mathcal{T}_{1} \uplus \mathcal{T}_{2}\right) \Longleftrightarrow \operatorname{Con}\left(\mathcal{T}_{1}\right) \& \operatorname{Con}\left(\mathcal{T}_{2}\right)$

Modularity of confluence

for each pair of reductions with common source

Modularity of confluence

for each pair of reductions with common source

exists pair of reductions with common reduct

Modularity of confluence

for each pair of reductions with common source

exists pair of reductions with common reduct Consequences:

- consistency (if distinct normal forms)
- uniqueness of results (normal forms)
- decidable convertibility (if \rightarrow terminating)
- existence of lower bounds (w.r.t. \rightarrow order)

Confluence is not modular

Example (Klop 1980)

$$
\begin{aligned}
(\lambda x \cdot M(x)) N & \rightarrow M(N) \\
& \uplus \\
e(x, x) & \rightarrow \top
\end{aligned}
$$

disjoint confluent components

Confluence is not modular

Example (Klop 1980)

$$
\begin{aligned}
(\lambda x \cdot M(x)) N & \rightarrow M(N) \\
e(x, x) & \rightarrow T
\end{aligned}
$$

disjoint union of components not confluent

Confluence is not modular

Example (Klop 1980)

$$
\begin{aligned}
(\lambda x \cdot M(x)) N & \rightarrow M(N) \\
e(x, x) & \rightarrow T
\end{aligned}
$$

disjoint union of components not confluent

where $C==^{\text {def }} Y(\lambda c a . e(a, c a)) \quad A==^{\text {def }} Y C$

Confluence is modular

Theorem (Toyama 1987)
confluence is modular for TRSs

Confluence is modular

Theorem (Toyama 1987)
confluence is modular for TRSs
Example

$$
\begin{aligned}
@(I(), x) & \rightarrow x \\
@(@(K(), x), y) & \rightarrow x \\
@(@(@(S(), x), y), z) & \rightarrow @(@(x, z), @(y, z)) \\
*(x, x) & \rightarrow x \\
a() & \rightarrow b()
\end{aligned}
$$

confluent?

Confluence is modular

Theorem (Toyama 1987)
confluence is modular for TRSs
Example

$$
\begin{aligned}
1 x & \rightarrow x \\
K x y & \rightarrow x \\
S x y z & \rightarrow x z(y z) \\
x * x & \rightarrow x \\
a & \rightarrow b
\end{aligned}
$$

confluent?

Confluence is modular

Theorem (Toyama 1987) confluence is modular for TRSs

Example

$$
\begin{aligned}
1 x & \rightarrow x \\
K x y & \rightarrow x \\
S x y z & \rightarrow x z(y z) \\
& \uplus \\
x * x & \rightarrow x \\
a & \rightarrow b
\end{aligned}
$$

$\mathcal{C L} \uplus \mathcal{E}$ confluent?

Confluence is modular

Theorem (Toyama 1987)
confluence is modular for TRSs
Example

$$
\begin{aligned}
1 x & \rightarrow x \\
K x y & \rightarrow \\
\text { Sxyz } & \rightarrow x z(y z) \\
& \uplus \\
x * x & \rightarrow x \\
a & \rightarrow b
\end{aligned}
$$

$\mathcal{C} \mathcal{L} \uplus \mathcal{E}$ confluent?
$\mathcal{C} \mathcal{L}$ orthogonal \Rightarrow confluent (Rosen)

Confluence is modular

Theorem (Toyama 1987)
confluence is modular for TRSs
Example

$$
\begin{aligned}
1 x & \rightarrow x \\
K x y & \rightarrow x \\
S x y z & \rightarrow x z(y z) \\
& \uplus \\
x * x & \rightarrow x \\
a & \rightarrow b
\end{aligned}
$$

$\mathcal{C} \mathcal{L} \uplus \mathcal{E}$ confluent?
$\mathcal{C} \mathcal{L}$ orthogonal \Rightarrow confluent (Rosen)
\mathcal{E} terminating and no critical pairs \Rightarrow confluent (Huet)

Confluence is modular

Theorem (Toyama 1987)
confluence is modular for TRSs
Example

$$
\begin{aligned}
1 x & \rightarrow x \\
K x y & \rightarrow x \\
S x y z & \rightarrow x z(y z) \\
& \uplus \\
x * x & \rightarrow x \\
a & \rightarrow b
\end{aligned}
$$

$\mathcal{C} \mathcal{L} \uplus \mathcal{E}$ confluent?
$\mathcal{C} \mathcal{L}$ orthogonal \Rightarrow confluent (Rosen)
\mathcal{E} terminating and no critical pairs \Rightarrow confluent (Huet) disjoint confluent components \Rightarrow union confluent (Toyama)

Can common reduct be constructed?

Can common reduct be constructed ?

exist constructions f, g such that for each pair \mathcal{R}, \mathcal{S} of reductions with common source

Can common reduct be constructed ?

exist constructions f, g such that for each pair \mathcal{R}, \mathcal{S} of reductions with common source

$f(\mathcal{S}, \mathcal{R}), g(\mathcal{R}, \mathcal{S})$ is pair of reductions with common reduct

Can common reduct be constructed ?

exist constructions f, g such that for each pair \mathcal{R}, \mathcal{S} of reductions with common source

$f(\mathcal{S}, \mathcal{R}), g(\mathcal{R}, \mathcal{S})$ is pair of reductions with common reduct Extra consequence:

- computation of lower bounds (w.r.t. \rightarrow order)

Can common reduct be constructed ?

Example

$$
I x \rightarrow x \quad K x y \rightarrow x \quad S x y z \rightarrow x z(y z)
$$

Can common reduct be constructed ?

Example

$$
I x \rightarrow x \quad K x y \rightarrow x \quad S x y z \rightarrow x z(y z)
$$

- $\mathcal{C} \mathcal{L}$ orthogonal \Rightarrow
$f=g=$ project 1st over 2nd (extract from Rosen)

Can common reduct be constructed ?

Example

$$
1 x \rightarrow x \quad K x y \rightarrow x \quad S x y z \rightarrow x z(y z)
$$

- $\mathcal{C} \mathcal{L}$ orthogonal \Rightarrow
$f=g=$ project 1st over 2nd (extract from Rosen)
- gives greatest lower bounds (up to syntactical accidents)

Can common reduct be constructed ?

Example

$$
1 x \rightarrow x \quad K x y \rightarrow x \quad S x y z \rightarrow x z(y z)
$$

- $\mathcal{C} \mathcal{L}$ orthogonal \Rightarrow
$f=g=$ project 1st over 2nd (extract from Rosen)
- gives greatest lower bounds (up to syntactical accidents)

$$
e(x, x) \rightarrow x \quad a \rightarrow b
$$

Can common reduct be constructed ?

Example

$$
1 x \rightarrow x \quad K x y \rightarrow x \quad S x y z \rightarrow x z(y z)
$$

- $\mathcal{C L}$ orthogonal \Rightarrow
$f=g=$ project 1st over 2nd (extract from Rosen)
- gives greatest lower bounds (up to syntactical accidents)
$e(x, x) \rightarrow x \quad a \rightarrow b$
- \mathcal{E} terminating and no critical pairs \Rightarrow
$f=g=$ reduce 2nd to normal form (extract from Huet)

Can common reduct be constructed ?

Example

$$
1 x \rightarrow x \quad K x y \rightarrow x \quad S x y z \rightarrow x z(y z)
$$

- $\mathcal{C L}$ orthogonal \Rightarrow
$f=g=$ project 1st over 2nd (extract from Rosen)
- gives greatest lower bounds (up to syntactical accidents)
$e(x, x) \rightarrow x \quad a \rightarrow b$
- \mathcal{E} terminating and no critical pairs \Rightarrow
$f=g=$ reduce 2nd to normal form (extract from Huet)
- gives least lower bounds

Can common reduct be constructed ?

Example

$$
1 x \rightarrow x \quad K x y \rightarrow x \quad S x y z \rightarrow x z(y z)
$$

- $\mathcal{C L}$ orthogonal \Rightarrow
$f=g=$ project 1st over 2nd (extract from Rosen)
- gives greatest lower bounds (up to syntactical accidents)
$e(x, x) \rightarrow x \quad a \rightarrow b$
- \mathcal{E} terminating and no critical pairs \Rightarrow
$f=g=$ reduce 2nd to normal form (extract from Huet)
- gives least lower bounds
construction for $\mathcal{C} \mathcal{L} \uplus \mathcal{E}$?

Can common reduct be constructed ?

Example

$$
I x \rightarrow x \quad K x y \rightarrow x \quad S x y z \rightarrow x z(y z)
$$

- $\mathcal{C} \mathcal{L}$ orthogonal \Rightarrow
$f=g=$ project 1st over 2nd (extract from Rosen)
- gives greatest lower bounds (up to syntactical accidents)
$e(x, x) \rightarrow x \quad a \rightarrow b$
- \mathcal{E} terminating and no critical pairs \Rightarrow
$f=g=$ reduce 2nd to normal form (extract from Huet)
- gives least lower bounds
construction for $\mathcal{C} \mathcal{L} \uplus \mathcal{E}$? extract from Toyama?

Can common reduct be constructed modularly ?

Example

 for $\mathcal{C} \mathcal{L}$-terms t, s, u with $t \rightarrow \mathcal{C L} u$

Can common reduct be constructed modularly ?

Example

 for $\mathcal{C} \mathcal{L}$-terms t, s, u with $t \rightarrow \mathcal{C L} u$

Can common reduct be constructed modularly ?

Example

 for $\mathcal{C} \mathcal{L}$-terms t, s, u with $t \rightarrow \mathcal{C L} u$
expected...

Can common reduct be constructed modularly ?

Example

 for $\mathcal{C} \mathcal{L}$-terms t, s, u with $t \rightarrow \mathcal{C L} u$
expected. . . not given by proofs (Toyama, Klop et al., Jouannaud)

Can common reduct be constructed modularly ?

Example

 for $\mathcal{C L}$-terms t, s, u with $t \rightarrow \mathcal{C} \mathcal{L} u$
expected... not given by proofs (Toyama, Klop et al., Jouannaud) rely on test: can $t * s$ collapse?

Can common reduct be constructed modularly ?

Example

 for $\mathcal{C L}$-terms t, s, u with $t \rightarrow \mathcal{C L} u$
expected. . . not given by proofs (Toyama, Klop et al., Jouannaud) rely on test: can $t * s$ collapse?
but undecidable whether t, s have common reduct

Proof by commutation?

Lemma (Hindley-Rosen)

$\rightarrow_{1} \cup \rightarrow_{2}$ confluent,
if \rightarrow_{i} are, and commute:

Proof by commutation?

Lemma (Hindley-Rosen)

$\rightarrow_{1} \cup \rightarrow_{2}$ confluent,
if \rightarrow_{i} are, and commute:

hence would suffice to show commutation ...

Proof by commutation?

Lemma (constructive Hindley-Rosen)

$\rightarrow_{1} \cup \rightarrow_{2}$ constructively confluent,
if \rightarrow_{i} are, and commute constructively:

hence would suffice to show constructive commutation ...

Proof by commutation fails

Example

Proof by commutation fails

Example

impossible because of non-left-linearity of rule $x * x \rightarrow x$

Proof by commutation fails

Example

impossible because of non-left-linearity of rule $x * x \rightarrow x$
$S *(I S)$ needs to be balanced first

Proof by commutation fails

Example

Proof by commutation fails

Example

commute 'up to' balancing $\rightarrow \mathcal{C}$-step which is smaller:

Proof by commutation fails

Example

commute 'up to' balancing $\rightarrow \mathcal{C} \mathcal{L}$-step which is smaller:

- $\mathcal{C} \mathcal{L}$-term rewritten has lower rank than whole term

Proof by commutation fails

Example

commute 'up to' balancing $\rightarrow \mathcal{C}$-step which is smaller:

- $\mathcal{C} \mathcal{L}$-term rewritten has lower rank than whole term
- step $S *(I S) \rightarrow_{\mathcal{C L}} S * S$ decreases imbalance of whole term

Proof idea

proof by induction on rank
per rank: proof by induction on imbalance

Proof idea

proof by induction on rank
per rank: proof by induction on imbalance
Example (Running)
\mathcal{T}_{1} over alphabet $\{a, f\}$ (small)

$$
f(x, x) \rightarrow x
$$

\mathcal{T}_{2} over alphabet $\{I, J, K, G, H\}$ (caps)

$$
\begin{aligned}
G(x) & \rightarrow I \\
I & \rightarrow K \\
G(x) & \rightarrow H(x) \\
H(x) & \rightarrow J \\
J & \rightarrow K
\end{aligned}
$$

Proof by induction on rank: ranking the terms

$f(I, G(a))$ first stratified into layers:

Proof by induction on rank: ranking the terms

rank of $f(I, G(a))$ is \#alternations of layers:

Proof by induction on rank: ranking the terms

$f(I, G(a))$ has rank 2:

Proof by induction on rank: ranking the terms

$f(I, G(a))$ has rank 2:

Fact
rank does not increase along rewriting in TRSs

Proof by induction on rank

Theorem
for every rank, reductions from terms up to that rank are constructively confluent, if components are

Proof.

Proof by induction on rank

Theorem
for every rank, reductions from terms up to that rank are constructively confluent, if components are

Proof.

- base case 0: peak entirely within one TRS use constructive confluence on components... (standard)

Proof by induction on rank

Theorem
for every rank, reductions from terms up to that rank are constructively confluent, if components are

Proof.

- base case 0: peak entirely within one TRS use constructive confluence on components... (standard)
- step case $r+1$: by induction on imbalance ... (novel)

Proof by induction on imbalance: term decomposition

 $f(I, G(a))$ for rank 2: first find tall aliens (aliens of rank 1):

Proof by induction on imbalance: term decomposition

 $f(I, G(a))$ for rank 2: next base is context of tall aliens:

Proof by induction on imbalance: term decomposition

$f(I,[G(a)])$ for rank 2: base-tall alien decomposition

Proof by induction on imbalance: term decomposition

$f(I,[G(a)])$ for rank 2: base-tall alien decomposition

Fact
term decomposes uniquely into base and vector of tall aliens both with rank up to r, so both constructively confluent by IH

Definition
imbalance of term is \#tall aliens (as set)

Proof by induction on imbalance: step decomposition classify steps according to location of redex-pattern:

- base-step - : redex-pattern in base
- tall alien-step \triangleright : redex-pattern in tall alien

Proof by induction on imbalance: step decomposition

 classify steps according to location of redex-pattern:- base-step - : redex-pattern in base
- tall alien-step \triangleright : redex-pattern in tall alien

$$
f(I, G(a)) \rightarrow f(I, I) \rightarrow f(I, K)
$$

Proof by induction on imbalance: step decomposition

 classify steps according to location of redex-pattern:- base-step - : redex-pattern in base
- tall alien-step \triangleright : redex-pattern in tall alien

$$
f(I, G(a)) \rightarrow f(I, I) \rightarrow f(I, K)
$$

Proof by induction on imbalance: step decomposition

 classify steps according to location of redex-pattern:- base-step - : redex-pattern in base
- tall alien-step \triangleright : redex-pattern in tall alien

$$
f(I, G(a)) \rightarrow f(I, I) \rightarrow f(I, K)
$$

Fact
every redex-pattern either base or tall alien (by disjointness)

Proof by induction on imbalance: step decomposition

 classify steps according to location of redex-pattern:- base-step - : redex-pattern in base
- tall alien-step \triangleright : redex-pattern in tall alien

$$
f(I, G(a)) \rightarrow f(I, I) \rightarrow f(I, K)
$$

Fact
every redex-pattern either base or tall alien (by disjointness)

- base-reduction \rightarrow-steps, ends when collapsed to tall alien
- tall alien-reduction \triangleright : \triangleright-steps, labelled with imbalance target

Constructive confluence by decreasing diagrams

Theorem (de Bruijn 1978,vO 1994)
\rightarrow confluent,
if $\rightarrow=\bigcup_{i \in I} \rightarrow i, \prec$ well-founded order on I, such that:

Constructive confluence by decreasing diagrams

Theorem (DD special case needed here)
\rightarrow confluent,
if $\rightarrow=\bigcup_{i \in I} \rightarrow_{i}, \prec$ well-founded order on I, such that:

Constructive confluence by decreasing diagrams: by cases on base-tall alien decomposition

Constructive confluence by decreasing diagrams: by cases on base-tall alien decomposition

Theorem
each case is decreasing
Proof.
Set $\triangleq<\infty_{\iota}<\infty_{\kappa}$, for $\iota<\kappa$.

Decreasing diagram: base case

Decreasing diagram: base case

Decreasing diagram: base case

- base reduction confluent by induction hypothesis (bases of rank up to r)

Decreasing diagram: base case

- base reduction confluent by induction hypothesis (bases of rank up to r)
- cannot create new tall aliens (only replicate existing ones)

Decreasing diagram: base case

- base reduction confluent by induction hypothesis (bases of rank up to r)
- cannot create new tall aliens (only replicate existing ones)
- may collapse to tall alien (then results in base term)

Decreasing diagram: tall alien case

Decreasing diagram: tall alien case

Decreasing diagram: tall alien case

- tall alien reduction confluent by induction hypothesis (tall aliens of rank up to r)

Decreasing diagram: tall alien case

- tall alien reduction confluent by induction hypothesis (tall aliens of rank up to r)
- tail of tall alien reduction may turn into base reduction (if tall alien is decreased in rank)

Decreasing diagram: tall alien case

- tall alien reduction confluent by induction hypothesis (tall aliens of rank up to r)
- tail of tall alien reduction may turn into base reduction (if tall alien is decreased in rank)
- then imbalance does not increase (\#tall aliens, as set)

Decreasing diagram: tall alien case with imbalances

Decreasing diagram: tall alien case with imbalances

- tall alien reduction confluent by induction hypothesis (tall aliens of rank up to r)
- tail of tall alien reduction may turn into base reduction (if tall alien is decreased in rank)
- then imbalance ι does not increase (\#tall aliens, as set)

Decreasing diagram: mix case

Decreasing diagram: mix case

Decreasing diagram: mix case

- base reduction and tall alien reduction commute

Decreasing diagram: mix case

- base reduction and tall alien reduction commute
- base reduction may need balancing tall alien reduction (as in critical pair lemma, then imbalance ι decreases)

Decreasing diagram: mix case

- base reduction and tall alien reduction commute
- base reduction may need balancing tall alien reduction (as in critical pair lemma, then imbalance ι decreases)
- tail of tall alien reduction may turn into base reduction (then imbalance ι does not increase)

Decreasing diagram: mix case with imbalances

Decreasing diagram: mix case with imbalances

- base reduction and tall alien reduction commute
- base reduction may need balancing tall alien reduction (as in critical pair lemma, then imbalance ι decreases)
- tail of tall alien reduction may turn into base reduction (then imbalance ι does not increase)

Example displaying all three cases

confluence constructed by tiling!

Motivating example is trivial

for $\mathcal{C L}$-terms t, s, u with $t \rightarrow \mathcal{C L} u$

expected

Motivating example is trivial

for $\mathcal{C} \mathcal{L}$-terms t, s, u with $t \rightarrow \mathcal{C L} u$

yes, in case $t \neq s$ or $t=s=u$

Motivating example is trivial

for $\mathcal{C} \mathcal{L}$-terms t, s, u with $t \rightarrow \mathcal{C L} u$

in case $t=s \neq u$, balancing is performed

Extensions

Theorem
constructive confluence is modular when sharing constructors, if opaque: no constructor lifting, no collapse

Proof.
reduction to modularity by combining non-shared-constructors with all shared constructors below them.

Extensions

extra-variable TRSs: confluence not preserved under decomposition
Example

$$
\begin{array}{rlrll}
& \mathcal{T}_{1} & & \mathcal{T}_{2} & \\
f(x, y) & \rightarrow f(z, z) & m(y, x, x) & \rightarrow y \\
f(b, c) & \rightarrow a & m(x, x, y) & \rightarrow y \\
b & \rightarrow d & & \\
c & \rightarrow d & &
\end{array}
$$

$\mathcal{T}_{1} \uplus \mathcal{T}_{2}$ confluent, \mathcal{I}_{1} not: $a \leftarrow f(b, c) \rightarrow f(z, z)$

Extensions

extra-variable TRSs: confluence not preserved under decomposition
Example

$$
\begin{array}{rlrll}
& \mathcal{T}_{1} & & \mathcal{T}_{2} & \\
f(x, y) & \rightarrow f(z, z) & m(y, x, x) & \rightarrow y \\
f(b, c) & \rightarrow a & m(x, x, y) & \rightarrow y \\
b & \rightarrow d & & \\
c & \rightarrow d & &
\end{array}
$$

$\mathcal{T}_{1} \uplus \mathcal{T}_{2}$ confluent, \mathcal{I}_{1} not: $a \leftarrow f(b, c) \rightarrow f(z, z)$

Further Work

Further Work

- other modularity of confluence results: conditional systems, extra-variables

Further Work

- other modularity of confluence results: conditional systems, extra-variables
- base-tall alien decomposition useful in other contexts?

Further Work

- other modularity of confluence results: conditional systems, extra-variables
- base-tall alien decomposition useful in other contexts?
- implementation (by extraction)

Further Work

- other modularity of confluence results: conditional systems, extra-variables
- base-tall alien decomposition useful in other contexts?
- implementation (by extraction)
- complexity analysis

