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Introduction



Motivation

various concrete rewrite systems

graph rewrite systemsstring rewrite systems

term rewrite systems lambda−calculus

how to prove properties uniformly?



Motivation

objects structured in different ways

acyclic objects

string rewrite systems

term rewrite systems lambda−calculus

graph rewrite systems

cyclic objects

how to prove properties uniformly?



Motivation

steps manipulate objects in different ways

duplicating or erasing rules

string rewrite systems

term rewrite systems lambda−calculus

graph rewrite systems

linear rules (no implicit replication)

how to prove properties uniformly?



More complex or more simple?

one complex format to rule them all?

complex objects (higher−order rewriting modulo equations)

string rewrite systems

term rewrite systems lambda−calculus

graph rewrite systems

never complex enough, complexity needs learning



More complex or more simple?

one simple format to rule them all?

simple objects (no structure) + axioms

string rewrite systems

term rewrite systems lambda−calculus

graph rewrite systems

different axioms, simplicity needs imagination/axiom checking



Abstract rewriting

I Newman 1942 (confluence, orthogonality)

I Hindley, Rosen, de Bruijn (orthogonality, commutation)

I Klop, Huet, Geser (abstract reduction as framework)

I Jouannaud/Kirchner, Ohlebusch (rewriting modulo)

I Melliès, Khasidashvili (standardisation, neededness)

I Ghani/Lüth (substitution)

I . . .
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Abstract rewriting

I abstract study of confluence (examples from mathematics)

I abstract study of orthogonality (application to λ-calculus)



Abstract rewriting

I confluence ⇒ uniqueness of normal forms

I confluence ⇒ consistency (Church–Rosser)

I confuence ⇒ decidable convertibility, if → is terminating



Standard notions

Newman modern notations I use

cell step →
path conversion ↔∗

descending path reduction/rewriting seq. �
lower bound common reduct ↓
upper bound common ancestor ↑
property A Church–Rosser property ↔∗ ⊆� ·�
property B confluence property � ·� ⊆� ·� (↑ ⊆ ↓)
property C semi-confluence ← ·� ⊆� ·�
property D local confluence ← ·→ ⊆� ·�

derivate residual /
conversion calc. λ-calculus



Plan

I Monday

I formalism: abstract rewrite relations (whether, Terese Ch. 1)

I A set of objects

I → ⊆ A× A rewrite relation on A

I confluence property, lower bounds

I proof method: decreasing diagrams (Terese Ch. 14)

I proof method: Z property



Plan

I Wednesday

I formalism: abstract rewrite systems (how, Terese Ch. 8)

I A set of objects

I → set of rewrite steps with source/target maps

I orthogonality, greatest lower bounds

I axiomatisation: residual systems (Terese Ch. 8.7)

I proof method: confluification into multi-steps



Confluence by decreasing diagrams



Newman’s Lemma

Theorem (Newman 1942)

⇒



Newman’s Lemma

Theorem (Newman 1942)

local confluence implies confluence, if → terminating

⇒



Newman’s Lemma

various proofs in literature:

I Newman: see my homepage for modern rendering

I Huet: short proof by Noetherian induction on →+

I Klop: proving absence of ambiguous points

I . . .

I here: by analysing tiling of Kleene counterexample



Newman’s Lemma

Proof.
non-terminating Kleene system: b ← a↔ a′ → c

if repeated tiling terminates then confluent. . .
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. . . but if it does not, then infinite reduction?



Newman’s Lemma

Proof.
non-terminating Kleene system: b ← a↔ a′ → c

. . . but if it does not, then infinite reduction!



Newman’s Lemma

Proof.
Escher diagram: finite peak, infinite filled diagram
try to construct an infinite reduction in Escher diagram

∞



Newman’s Lemma

Proof.
Escher diagram: finite peak, infinite filled diagram
if infinite, there’s a filled local peak

∞∞



Newman’s Lemma

Proof.
Escher diagram: finite peak, infinite filled diagram
is right sub-diagram Escher?

∞?



Newman’s Lemma

Proof.
Escher diagram: finite peak, infinite filled diagram
if right sub-diagram Escher, go right

∞



Newman’s Lemma

Proof.
Escher diagram: finite peak, infinite filled diagram
if right sub-diagram Escher, go right

repeat



Newman’s Lemma

Proof.
Escher diagram: finite peak, infinite filled diagram
if right sub-diagram not Escher, left sub-diagram is

∞

¬∞



Newman’s Lemma

Proof.
Escher diagram: finite peak, infinite filled diagram
if right sub-diagram not Escher, go left

∞

¬∞



Newman’s Lemma

Proof.
Escher diagram: finite peak, infinite filled diagram
if right sub-diagram not Escher, go left

repeat



Diamond property

Theorem (Newman 1942)

Proof.



Diamond property

Theorem (Newman 1942)

diamond property (← ·→ ⊆ → ·←) implies confluence
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Diamond property

Theorem (Newman 1942)

diamond property (← ·→ ⊆ → ·←) implies confluence

Proof.

repeat: fill in diamonds



Diamond property

Theorem (Newman 1942)

diamond property (← ·→ ⊆ → ·←) implies confluence

Proof.

must stop: area to fill becomes smaller



From confluence to commutation

Theorem
/ ·I ⊆ I · / implies // ·II ⊆ II · //

Proof.



One method to rule them all (Newman,diamond)?



Decreasing Diagrams

Theorem (de Bruijn 1978,vO 1994)

locally decreasing implies confluence

LD ⇒
≺i

= =

j i

≺i ∨ ≺j ≺i ∨ ≺j

i j

≺j

→ =
⋃

i∈I →i , ≺ well-founded order on I
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Decreasing Diagrams

Theorem (vO 1994)

locally decreasing implies commutation

LD ⇒
≺i

= =

j i

≺i ∨ ≺j ≺i ∨ ≺j

i j

≺j

. =
⋃

i∈I .i , I =
⋃

j∈J Ij , ≺ well-founded order on I ∪ J



Decreasing Diagrams

Theorem (vO 1994)

locally decreasing implies commutation

LD ⇒
≺i

= =

j i

≺i ∨ ≺j ≺i ∨ ≺j

i j

≺j

. =
⋃

i∈I .i , I =
⋃

j∈J Ij , ≺ well-founded order on I ∪ J



Decreasing Diagrams

Proof.
by decreasingness

D

σ τ

τ ′ σ′

peak σ,τ as large as lhs στ ′ and rhs τσ′ after filtering



Decreasing Diagrams

Proof.
by decreasingness

τ

τ ′ σ′

σ

measure peak by multiset sum |σ| ] |τ |
| | filters smaller labels to right, |32343| = [3, 3, 4]



Decreasing Diagrams

Proof.
by decreasingness

τ ′ σ′

σ τ

decreasing if |σ| ] |τ | as large as both |στ ′| and |τσ′|
in multiset-extension of ≺



Decreasing Diagrams

Proof.
(1) locally decreasing ⇒ decreasing

=

i j

LD

=
≺i ≺j

j i

≺i ∨ ≺j ≺i ∨ ≺j

peak |i | ] |j |
lhs |i(≺i)∗(j + ε)(≺i +≺j)∗|



Decreasing Diagrams

Proof.
(1) locally decreasing ⇒ decreasing

=

i j

D

=
≺i ≺j

j i

≺i ∨ ≺j ≺i ∨ ≺j

|i | ] |j | is [i ] ] [j ] = [i , j ]
|i(≺i)∗(j + ε)(≺i +≺j)∗| is [i ], [i , j ] or [i , j1, . . . , jn]



Decreasing Diagrams

Proof.
(2) decreasingness preserved under pasting

D

D



Decreasing Diagrams
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D
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Decreasing Diagrams

Proof.
(2) decreasingness preserved under pasting on right

D



Decreasing Diagrams

Proof.
(3) filling with decreasing diagram decreases measure

σ τ

υ



Decreasing Diagrams

Proof.
(3) filling with decreasing diagram decreases measure

D

υ

σ τ

τ ′ σ′



Decreasing Diagrams

Proof.
(3) filling with decreasing diagram decreases measure

D

τ ′ σ′ υ

σ τ

|σ| ] |τυ| greater than |σ′| ] |υ|



Decreasing Diagrams

Proof.
LD ⇒ D by (1) assumption, (2) pasting, and (3) filling

σ τ

i j
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Decreasing Diagrams

Proof.
LD ⇒ D by (1) assumption, (2) pasting, and (3) filling

σ τ

i

D

D

j



Decreasing Diagrams

Proof.
LD ⇒ D by (1) assumption, (2) pasting, and (3) filling

j

τ

i

D

σ



Newman’s Lemma by decreasingness
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local confluence ⇒ confluence, if → terminating

f

a

b c

d e

label steps by their source, order labels by →+
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Newman’s Lemma by decreasingness

Proof.
local confluence ⇒ confluence, if → terminating

e

aa

b

d

c

label steps by their source, order labels by →+



Newman’s Lemma by decreasingness

Proof.
local confluence ⇒ confluence, if → terminating

≺ a

aa

≺ a

≺ a

≺ a

label steps by their source, order labels by →+



Diamond by decreasingness

Theorem
diamond property (← ·→ ⊆ → ·←) implies confluence

Proof.
take empty labelling



Diamond by decreasingness

Theorem
diamond property (← ·→ ⊆ → ·←) implies confluence

Proof.
take empty labelling



Lemma of Hindley/uet

Theorem (Huet 1980)

strong confluence implies confluence

=

⇒



Lemma of Hindley/uet

Theorem (Hindley 1964)

strong commutation implies commutation

=

⇒



Lemma of Hindley/uet

Proof.
intuition: tiling terminates since only . steps are split

repeat: fill in local peak with local diagram
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Lemma of Hindley/uet

Proof.
intuition: tiling terminates since only . steps are split

repeat: fill in local peak with local diagram



Lemma of Hindley/uet

Proof.
intuition: tiling terminates since only . steps are split

must stop: each I stripe is eventualy filled



Lemma of Hindley/uet by decreasingness



Lemma of Hindley/uet by decreasingness

Proof.
strong confluence ⇒ confluence

r

l r

l

l

l

label steps by their direction (l or r), order r above l



Lemma of Hindley/uet by decreasingness

Proof.
strong confluence ⇒ confluence

r

l r

≺r

≺r

≺r

label steps by their direction (l or r), order r above l



Lemma of Hindley/uet by decreasingness

Proof.
strong commutation ⇒ commutation

r

l r

≺r

≺r

≺r

label steps by their direction (. by l , I by r), order r above l



Geser/Di Cosmo/Piperno Lemma by decreasingness

Theorem (Geser)

commutation holds, if I terminating and

+



Geser/Di Cosmo/Piperno Lemma by decreasingness

equivalent (Bachmair & Dershowitz) to:

Theorem (Geser)

commutation holds, if I// (= // ·I · //) terminating and

+



Geser/Di Cosmo/Piperno Lemma by decreasingness

equivalent (Bachmair & Dershowitz) to:

Theorem (Geser)

commutation holds, if I// (= // ·I · //) terminating and

+

Proof.
label steps by their target, order by I//



But isn’t this just another ad hoc method?



(In)completeness of decreasing diagrams

Theorem
if a countable rewrite relation is confluent, then it can be proven so
by decreasing diagrams.

Proof.



(In)completeness of decreasing diagrams

Theorem
if a countable rewrite relation is confluent, then it can be proven so
by decreasing diagrams.

Proof.
suffices to consider ↔∗-equivalence class



(In)completeness of decreasing diagrams

Theorem
if a countable rewrite relation is confluent, then it can be proven so
by decreasing diagrams.

Proof.
construct a cofinal reduction (use countability)



(In)completeness of decreasing diagrams

Theorem
if a countable rewrite relation is confluent, then it can be proven so
by decreasing diagrams.

Proof.
cofinal reduction: such that all objects reduce to it



(In)completeness of decreasing diagrams

Theorem
if a countable rewrite relation is confluent, then it can be proven so
by decreasing diagrams.

Proof.
complete local peaks by reducing to cofinal reduction



(In)completeness of decreasing diagrams

Theorem
if a countable rewrite relation is confluent, then it can be proven so
by decreasing diagrams.

Proof.
label steps with distance to cofinal reduction

1

0

0

0

0

0

0

3
1

2

2



(In)completeness of decreasing diagrams

decreasing diagrams is incomplete for commutation
(Endrullis,Grabmayer, ISR 2008)

Example

d J b / a1 /I a2 I c . d

Proof by contradiction.

consider triples of shape b /i a1 /Ij a2 Ik c with labels [i , j , k].
suppose w.l.o.g. a1 Ij a2. then b /i a1 Ij a2 can only be closed by
b /i ′ a1 /j ′ a2. distinguish cases on the origin of the label j ′:

I if j ′ < j , then consider the triple with labels [i , j ′, k].

I suppose j ′ = i . if i ′ < i consider the triple with labels [i ′, j , k],
else i ′ < j and consider the triple with labels [i ′, i , k].



Application to TRSs

heuristic: label step by rule-name in a term rewriting system

Theorem
linear TRS is confluent, if critical peaks are locally decreasing.

Example
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Application to TRSs

heuristic: label step by rule-name in a term rewriting system

Theorem
linear TRS is confluent, if critical peaks are locally decreasing.

Example

1. nats→ 0 : inc(nats)

2. inc(x : y)→ s(x) : inc(y)

3. hd(x : y)→ x

4. tl(x : y)→ y

5. inc(tl(nats))→ tl(inc(nats))

one critical peak



Application to TRSs

heuristic: label step by rule-name in a term rewriting system

Theorem
linear TRS is confluent, if critical peaks are locally decreasing.

Example

1

2

4

15

tl(s(0) : inc(inc(nats)))

inc(tl(nats))

tl(inc(nats)) inc(tl(0 : inc(nats)))

tl(inc(0 : inc(nats)))

inc(inc(nats))

4

order?



(Trough) decreasingness  seascape decreasingness

Theorem
locally decreasing seascape ⇒ confluence

⇒

i

≺j
= =

j i

≺i ∨ ≺j ≺i ∨ ≺j

∗ ∗

∗

j

≺i

→ =
⋃

i∈I →i , ≺ well-founded order on I



(Trough) decreasingness  seascape decreasingness

Theorem
locally decreasing seascape ⇒ commutation

⇒

j

≺j
= =

j i

≺i ∨ ≺j ≺i ∨ ≺j

∗ ∗

∗

i

≺i

. =
⋃

i∈I .i , I =
⋃

j∈J Ij , ≺ well-founded order on I ∪ J



(Trough) decreasingness  seascape decreasingness

Proof.
same measure of peaks, but local peak may not be base case

i j

i
j

≺j
≺i ∨ ≺j



(Trough) decreasingness  seascape decreasingness

Proof.
but its peaks can be filled in by induction

i j

i
j

≺j
≺i ∨ ≺j



(Trough) decreasingness  seascape decreasingness

Proof.
but its peaks can be filled in by induction.

i j

j
≺i ∨ ≺j i

≺j



(Trough) decreasingness  seascape decreasingness

Proof.
but its peaks can be filled in by induction..

i j

j
≺i ∨ ≺j i

≺j



(Trough) decreasingness  seascape decreasingness

Proof.
giving in the end a (trough) locally decreasing diagram

≺i ∨ ≺j

j

j

i

≺j

LD

≺i ∨ ≺j

i



Winkler & Buchberger’s Lemma



Winkler & Buchberger’s Lemma

Theorem (Winkler & Buchberger 1983)

local confluence below ⇒ confluence, if → terminating

⇒

Definition
below: all objects in seascape →+-reachable from top



Winkler & Buchberger’s Lemma

Theorem
local commutation below ⇒ commutation, if . ∪I terminating

⇒

Definition
below: all objects in seascape (. ∪I)+-reachable from top



Winkler & Buchberger’s Lemma

Theorem
local commutation below ⇒ commutation, if .+ ·I+ terminating

⇒

Definition
below: if a . b in seascape, a (. ∪I)+-reachable from top with I



Winkler & Buchberger’s Lemma

Theorem
local commutation below ⇒ commutation, if .+ ·I+ terminating

⇒

Definition
below: if a I b in seascape, a (. ∪I)+-reachable from top with .



Exercises on decreasing diagrams

Exercise
(splitting headache)
Any Escher diagram for a locally confluent rewrite relation → has
an infinite path through infinitely many splitting points.
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Exercise
(splitting headache)
Any Escher diagram for a locally confluent rewrite relation → has
an infinite path through infinitely many splitting points.

points
splitting



Exercises on decreasing diagrams

Exercise
(commuting splitting headache)
Let ., I be locally commuting rewrite relations. Show that any
(commutation) Escher diagram has

I an infinite path,

I which is zigzagging, and

I goes through infinitely many splitting points



Exercises on decreasing diagrams

Exercise
(Pous Lemma for process algebra)
Show that if .,I commute locally, and .+ ·I+ is terminating,
then ., I commute by

I an infinite diagram argument using the previous exercise;

I decreasing diagrams.



Exercises on decreasing diagrams

Exercise
(Geser)
Fully prove Geser’s Lemma, as found in the slides above, by means
of the decreasing diagrams technique.



Exercises on decreasing diagrams

Exercise
(Rosen)
Show that if .,I both have the diamond property, and
/ ·I ⊆ I ·J · / (. requests I), then . ∪I is confluent.
Could you think of how to weaken the requests-condition without
losing confluence?



Exercises on decreasing diagrams

Exercise
(decreasing critical peaks)*
For a left-linear term rewrite system, is it true that if all critical
peaks can be completed into decreasing diagrams, when indexing
steps by the rule applied and well-foundedly ordering these, then
the term rewrite system itself is confluent?



Exercises on decreasing diagrams

Exercise
(Newman’s error)*
Newman’s axioms for proving confluence as developed in Sections
8–12 of his paper, fail in their

. Find what goes wrong!



Answers to exercises

(decreasing critical peaks)
No, f (b, b) and c convertible but not joinable:

f (b, b)

f (a, b)

f (b, a)

f (a, a) c

for left-linear (but not right-linear) TRS:

1: a → b
2:f (b, x) → f (x , x)
3:f (x , b) → f (x , x)
4: f (a, a) → c

(three) critical pairs decreasing ordering rules as 1 > 2, 3, 4
Remark ‘half’ of Lévy’s TRS (see e.g. Section 2.8, Terese)
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