ISR 2008, Obergurgl, Austria

Vincent van Oostrom

Theoretical Philosophy Utrecht University Netherlands

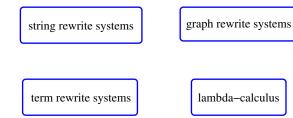
16:00 - 17:30, Mon/Wednesday July 21, ISR 2008

Introduction

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Motivation

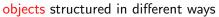
various concrete rewrite systems

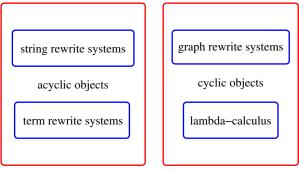


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

how to prove properties uniformly?

Motivation



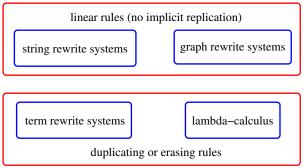


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

how to prove properties uniformly?

Motivation

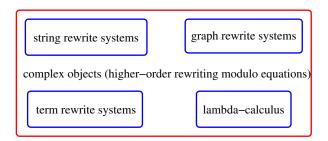
steps manipulate objects in different ways



how to prove properties uniformly?

More complex or more simple?

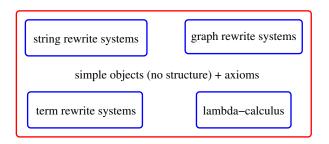
one complex format to rule them all?



never complex enough, complexity needs learning

More complex or more simple?

one simple format to rule them all?



different axioms, simplicity needs imagination/axiom checking

- Newman 1942 (confluence, orthogonality)
- Hindley, Rosen, de Bruijn (orthogonality, commutation)
- Klop, Huet, Geser (abstract reduction as framework)
- Jouannaud/Kirchner, Ohlebusch (rewriting modulo)
- Melliès, Khasidashvili (standardisation, neededness)

- Ghani/Lüth (substitution)
- ▶ ...

- Newman 1942 (confluence, orthogonality)
- Hindley, Rosen, de Bruijn (orthogonality, commutation)
- Klop, Huet, Geser (abstract reduction as framework)
- Jouannaud/Kirchner, Ohlebusch (rewriting modulo)
- Melliès, Khasidashvili (standardisation, neededness)

- Ghani/Lüth (substitution)
- ▶ ...

On Theories with a Combinatorial Definition of "Equivalence"

M. H. A. Newman

The Annals of Mathematics, 2nd Ser., Vol. 43, No. 2. (Apr., 1942), pp. 223-243.

Stable URL: http://links.jstor.org/sici?sici=0003-486X%28194204%292%3A43%3A2%3C223%3AOTWACD%3E2.0.CO%3B2-C

The Annals of Mathematics is currently published by Annals of Mathematics.

- abstract study of confluence (examples from mathematics)
- abstract study of orthogonality (application to λ -calculus)

On Theories with a Combinatorial Definition of "Equivalence"

M. H. A. Newman

The Annals of Mathematics, 2nd Ser., Vol. 43, No. 2. (Apr., 1942), pp. 223-243.

Stable URL: http://links.jstor.org/sici?sici=0003-486X%28194204%292%3A43%3A2%3C223%3AOTWACD%3E2.0.CO%3B2-C

The Annals of Mathematics is currently published by Annals of Mathematics.

- confluence \Rightarrow uniqueness of normal forms
- ► confluence ⇒ consistency (Church–Rosser)
- \blacktriangleright confuence \Rightarrow decidable convertibility, if \rightarrow is terminating

Standard notions

Newman	modern	notations I use
cell	step	\rightarrow
path	conversion	\leftrightarrow^*
descending path	reduction/rewriting seq.	
lower bound	common reduct	\downarrow
upper bound	common ancestor	↑
property A	Church–Rosser property	$\leftrightarrow^* \subseteq \twoheadleftarrow \cdot \twoheadrightarrow$
property B	confluence property	
property C	semi-confluence	$\leftarrow \cdot \twoheadrightarrow \subseteq \twoheadrightarrow \cdot \twoheadleftarrow$
property D	local confluence	$\leftarrow \cdot \rightarrow \subseteq \twoheadrightarrow \cdot \twoheadleftarrow$
derivate	residual	/
conversion calc.	λ -calculus	

Plan

Monday

▶ formalism: abstract rewrite relations (whether, Terese Ch. 1)

- A set of objects
- $\blacktriangleright \rightarrow \subseteq A \times A \text{ rewrite relation on } A$
- confluence property, lower bounds
- proof method: decreasing diagrams (Terese Ch. 14)
- proof method: Z property

Plan

Wednesday

formalism: abstract rewrite systems (how, Terese Ch. 8)

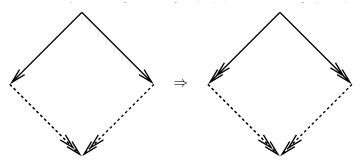
- A set of objects
- $\blacktriangleright \rightarrow$ set of rewrite steps with source/target maps
- orthogonality, greatest lower bounds
- axiomatisation: residual systems (Terese Ch. 8.7)
- proof method: confluification into multi-steps

Confluence by decreasing diagrams

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへの

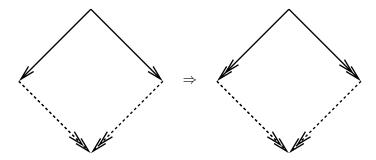
Theorem (Newman 1942)

THEOREM 3. In an indexed complex in which all descending paths are finite, (D) implies (A).



Theorem (Newman 1942)

local confluence implies confluence, if \rightarrow terminating

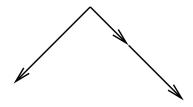


various proofs in literature:

- Newman: see my homepage for modern rendering
- \blacktriangleright Huet: short proof by Noetherian induction on \rightarrow^+
- Klop: proving absence of ambiguous points
- ▶ ...
- here: by analysing tiling of Kleene counterexample

Proof.

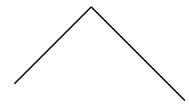
non-terminating Kleene system: $b \leftarrow a \leftrightarrow a' \rightarrow c$



if repeated tiling terminates then confluent...

Proof.

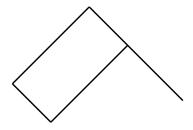
non-terminating Kleene system: $b \leftarrow a \leftrightarrow a' \rightarrow c$



if repeated tiling terminates then confluent...

Proof.

non-terminating Kleene system: $b \leftarrow a \leftrightarrow a' \rightarrow c$

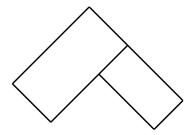


if repeated tiling terminates then confluent...

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Proof.

non-terminating Kleene system: $b \leftarrow a \leftrightarrow a' \rightarrow c$

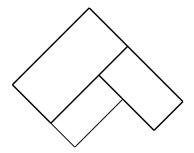


if repeated tiling terminates then confluent...

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Proof.

non-terminating Kleene system: $b \leftarrow a \leftrightarrow a' \rightarrow c$

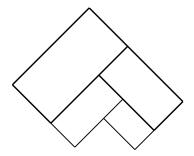


if repeated tiling terminates then confluent...

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Proof.

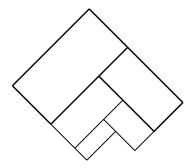
non-terminating Kleene system: $b \leftarrow a \leftrightarrow a' \rightarrow c$



if repeated tiling terminates then confluent...

Proof.

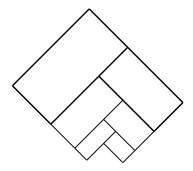
non-terminating Kleene system: $b \leftarrow a \leftrightarrow a' \rightarrow c$



if repeated tiling terminates then confluent...

Proof.

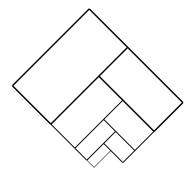
non-terminating Kleene system: $b \leftarrow a \leftrightarrow a' \rightarrow c$



if repeated tiling terminates then confluent...

Proof.

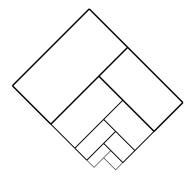
non-terminating Kleene system: $b \leftarrow a \leftrightarrow a' \rightarrow c$



if repeated tiling terminates then confluent...

Proof.

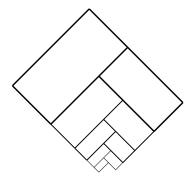
non-terminating Kleene system: $b \leftarrow a \leftrightarrow a' \rightarrow c$



if repeated tiling terminates then confluent...

Proof.

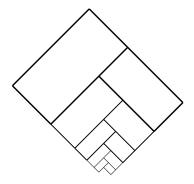
non-terminating Kleene system: $b \leftarrow a \leftrightarrow a' \rightarrow c$



if repeated tiling terminates then confluent...

Proof.

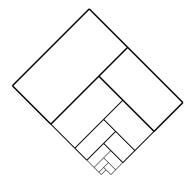
non-terminating Kleene system: $b \leftarrow a \leftrightarrow a' \rightarrow c$



if repeated tiling terminates then confluent...

Proof.

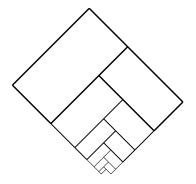
non-terminating Kleene system: $b \leftarrow a \leftrightarrow a' \rightarrow c$



if repeated tiling terminates then confluent...

Proof.

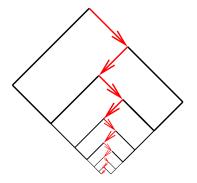
non-terminating Kleene system: $b \leftarrow a \leftrightarrow a' \rightarrow c$



... but if it does not, then infinite reduction?

Proof.

non-terminating Kleene system: $b \leftarrow a \leftrightarrow a' \rightarrow c$

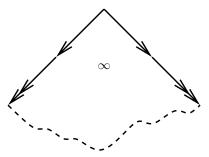


... but if it does not, then infinite reduction!

Proof. Escher diagram: finite peak, infinite filled diagram try to construct an infinite reduction in Escher diagram

・ロト ・ 一下・ ・ モト・ ・ モト・

э

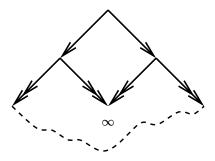


Proof.

Escher diagram: finite peak, infinite filled diagram if infinite, there's a filled local peak

・ロト ・聞ト ・ヨト ・ヨト

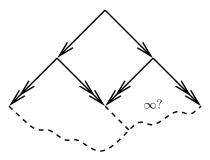
э



Proof. Escher diagram: finite peak, infinite filled diagram is right sub-diagram Escher?

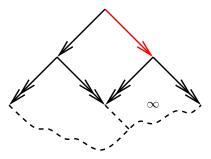
(日)、

э

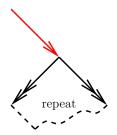


Proof. Escher diagram: finite peak, infinite filled diagram if right sub-diagram Escher, go right

イロト イポト イヨト イヨト



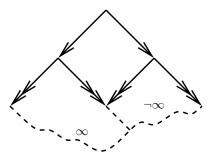
Proof. Escher diagram: finite peak, infinite filled diagram if right sub-diagram Escher, go right



Proof.

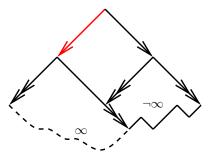
Escher diagram: finite peak, infinite filled diagram if right sub-diagram not Escher, left sub-diagram is

イロト イポト イヨト イヨト



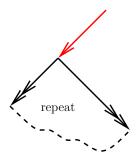
Proof. Escher diagram: finite peak, infinite filled diagram if right sub-diagram not Escher, go left

・ロト ・聞ト ・ヨト ・ヨト



Proof. Escher diagram: finite peak, infinite filled diagram if right sub-diagram not Escher, go left

・ロト ・ 雪 ト ・ ヨ ト



Theorem (Newman 1942)

THEOREM 1. Let Σ be such that if $a\mu x$ and $a\mu y$, and $x \neq y$, there exists b such that $x\mu b$ and $y\mu b$. Then property (A) holds:

Proof.

Theorem (Newman 1942) diamond property ($\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$) implies confluence

Proof.

Theorem (Newman 1942) diamond property ($\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$) implies confluence

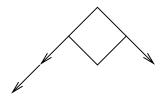
Proof.

Theorem (Newman 1942) diamond property ($\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$) implies confluence

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

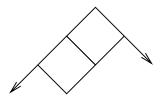
э.

Proof.



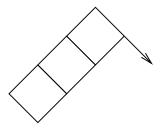
Theorem (Newman 1942) diamond property ($\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$) implies confluence

Proof.



Theorem (Newman 1942) diamond property ($\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$) implies confluence

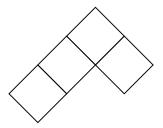
Proof.



Theorem (Newman 1942) diamond property ($\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$) implies confluence

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

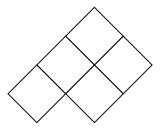
Proof.



Theorem (Newman 1942) diamond property ($\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$) implies confluence

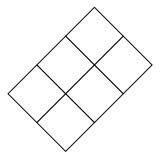
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof.



Theorem (Newman 1942) diamond property ($\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$) implies confluence

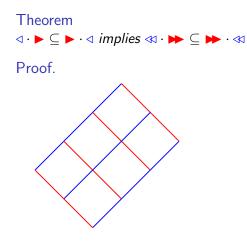
Proof.



must stop: area to fill becomes smaller

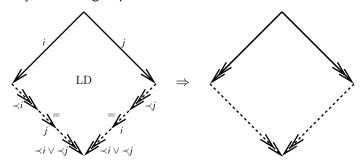
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

From confluence to commutation



One method to rule them all (Newman, diamond)?

Theorem (de Bruijn 1978,vO 1994) locally decreasing implies confluence

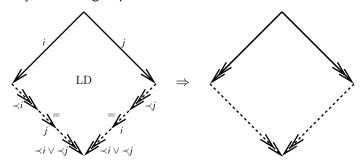


(日)、

3

 $\rightarrow = \bigcup_{i \in I} \rightarrow_i$, \prec well-founded order on I

Theorem (de Bruijn 1978,vO 1994) locally decreasing implies confluence



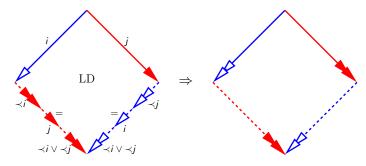
(日)、

3

 $\rightarrow = \bigcup_{i \in I} \rightarrow_i$, \prec well-founded order on I

Theorem (vO 1994)

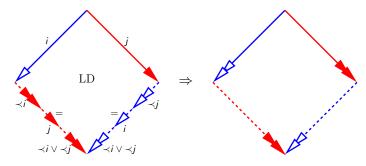
locally decreasing implies commutation



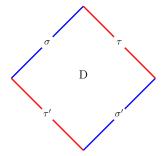
 $\triangleright = \bigcup_{i \in I} \triangleright_i$, $\blacktriangleright = \bigcup_{j \in J} \triangleright_j$, \prec well-founded order on $I \cup J$

Theorem (vO 1994)

locally decreasing implies commutation



 $\triangleright = \bigcup_{i \in I} \triangleright_i$, $\blacktriangleright = \bigcup_{j \in J} \triangleright_j$, \prec well-founded order on $I \cup J$

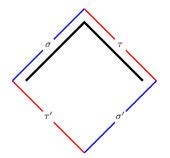


peak σ , τ as large as lhs $\sigma\tau'$ and rhs $\tau\sigma'$ after filtering

(日)、

э.

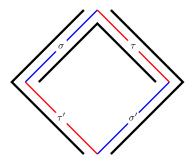
Proof. by decreasingness



measure peak by multiset sum $|\sigma| \uplus |\tau|$ |_| filters smaller labels to right, |32343| = [3, 3, 4]

Proof.

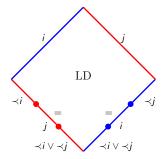
by decreasingness



decreasing if $|\sigma| \uplus |\tau|$ as large as both $|\sigma\tau'|$ and $|\tau\sigma'|$ in multiset-extension of \prec

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Proof. (1) locally decreasing \Rightarrow decreasing

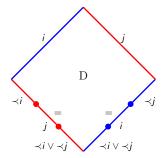


```
peak |i| \uplus |j|
Ihs |i(\prec i)^*(j + \varepsilon)(\prec i + \prec j)^*|
```

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Proof. (1) locally decreasing \Rightarrow decreasing

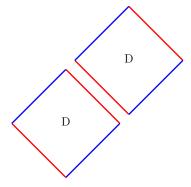


 $\begin{aligned} |i| & \uplus |j| \text{ is } [i] & \uplus [j] = [i, j] \\ |i(\prec i)^* (j + \varepsilon) (\prec i + \prec j)^* | \text{ is } [i], [i, j] \text{ or } [i, j_1, \dots, j_n] \end{aligned}$

(日) (同) (日) (日)

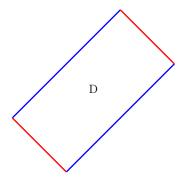
Proof. (2) decreasingness preserved under pasting

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

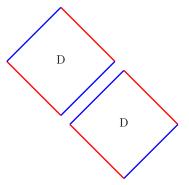


Proof. (2) decreasingness preserved under pasting on left

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

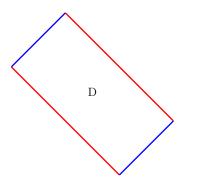


Proof. (2) decreasingness preserved under pasting



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

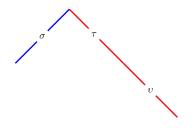
Proof. (2) decreasingness preserved under pasting on right



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Proof.

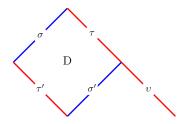
(3) filling with decreasing diagram decreases measure



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Proof.

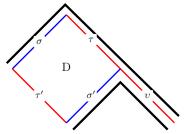
(3) filling with decreasing diagram decreases measure



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proof.

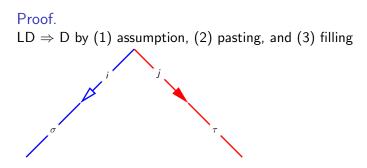
(3) filling with decreasing diagram decreases measure



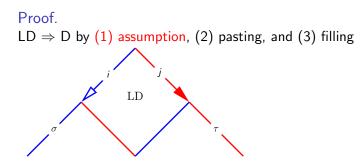
E nar

(日) (同) (日) (日)

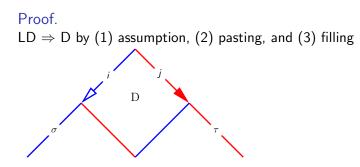
 $|\sigma| \uplus |\tau v|$ greater than $|\sigma'| \uplus |v|$



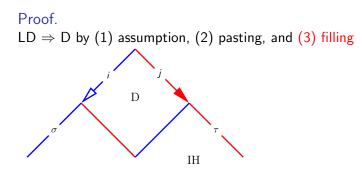
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④�?



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



<ロト <回ト < 注ト < 注ト

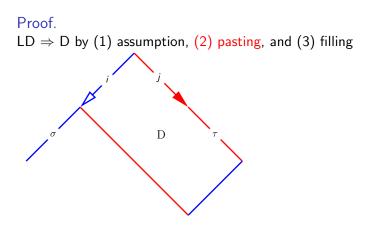


・ロト ・ 日本・ 小田・ 小田・ 一日・ 今日・

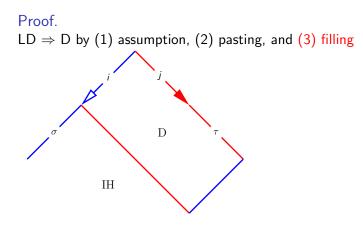


イロト イポト イヨト イヨト

э

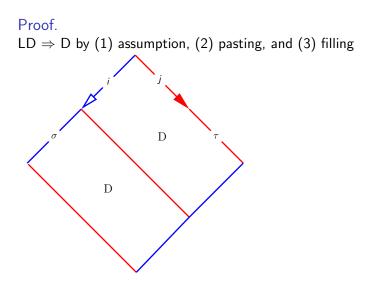


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

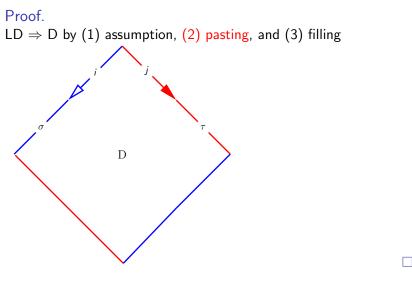


イロト イポト イヨト イヨト

э



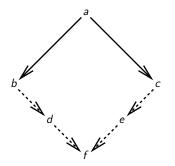
▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト の Q ()



▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Proof.

local confluence \Rightarrow confluence, if \rightarrow terminating

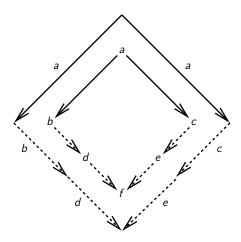


label steps by their source, order labels by \rightarrow^+

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Proof.

local confluence \Rightarrow confluence, if \rightarrow terminating

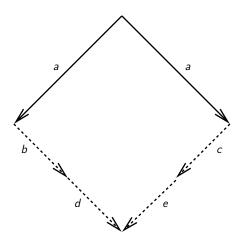


label steps by their source, order labels by \rightarrow^+

・ロト ・ 日 ・ ・ ヨ ・

Proof.

local confluence \Rightarrow confluence, if \rightarrow terminating

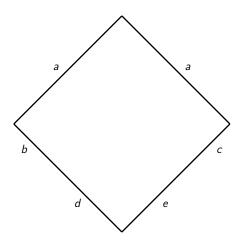


label steps by their source, order labels by \rightarrow^+

<ロト <回ト < 注ト < 注ト

Proof.

local confluence \Rightarrow confluence, if \rightarrow terminating



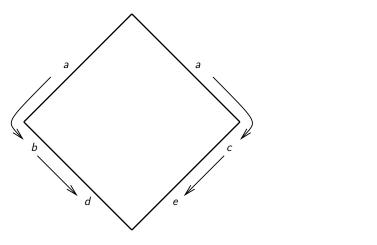
label steps by their source, order labels by \rightarrow^+

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э.

Proof.

local confluence \Rightarrow confluence, if \rightarrow terminating



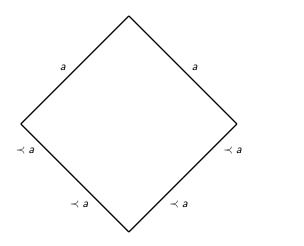
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

label steps by their source, order labels by \rightarrow^+

Proof.

local confluence \Rightarrow confluence, if \rightarrow terminating



label steps by their source, order labels by \rightarrow^+

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э.

Diamond by decreasingness

Theorem diamond property ($\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$) implies confluence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Diamond by decreasingness

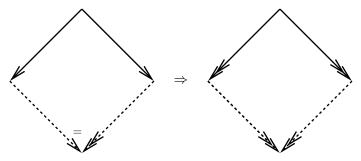
Theorem diamond property ($\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$) implies confluence

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof. take empty labelling

Theorem (Huet 1980)

strong confluence implies confluence

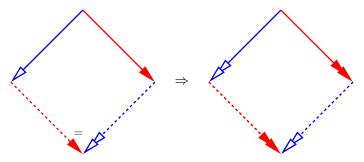


(日)、

э

Theorem (Hindley 1964)

strong commutation implies commutation

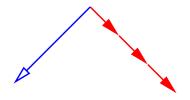


(日)、

э

Proof.

intuition: tiling terminates since only > steps are split

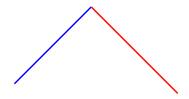


repeat: fill in local peak with local diagram

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof.

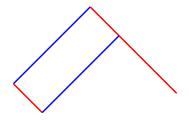
intuition: tiling terminates since only > steps are split



repeat: fill in local peak with local diagram

Proof.

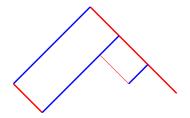
intuition: tiling terminates since only > steps are split



repeat: fill in local peak with local diagram

Proof.

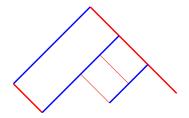
intuition: tiling terminates since only > steps are split



repeat: fill in local peak with local diagram

Proof.

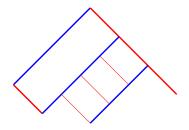
intuition: tiling terminates since only > steps are split



repeat: fill in local peak with local diagram

Proof.

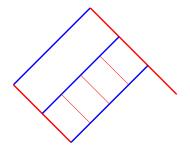
intuition: tiling terminates since only > steps are split



repeat: fill in local peak with local diagram

Proof.

intuition: tiling terminates since only > steps are split

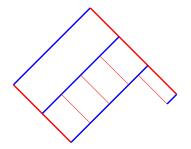


repeat: fill in local peak with local diagram

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Proof.

intuition: tiling terminates since only > steps are split

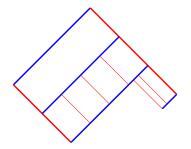


repeat: fill in local peak with local diagram

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Proof.

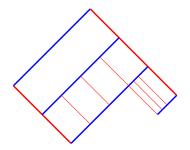
intuition: tiling terminates since only > steps are split



repeat: fill in local peak with local diagram

Proof.

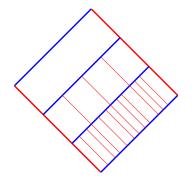
intuition: tiling terminates since only > steps are split



repeat: fill in local peak with local diagram

Proof.

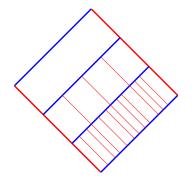
intuition: tiling terminates since only > steps are split



repeat: fill in local peak with local diagram

Proof.

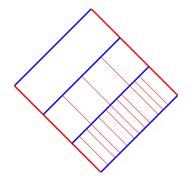
intuition: tiling terminates since only > steps are split



repeat: fill in local peak with local diagram

Proof.

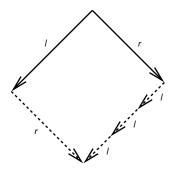
intuition: tiling terminates since only > steps are split



must stop: each ► stripe is eventualy filled

Proof.

strong confluence \Rightarrow confluence

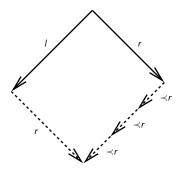


label steps by their direction (I or r), order r above I

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Proof.

strong confluence \Rightarrow confluence



label steps by their direction (*I* or *r*), order *r* above *I*

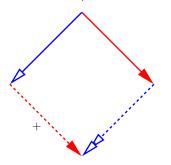
Proof. strong commutation \Rightarrow commutation

label steps by their direction (\triangleright by l, \triangleright by r), order r above l

Geser/Di Cosmo/Piperno Lemma by decreasingness

э

Theorem (Geser) commutation holds, if ► terminating and



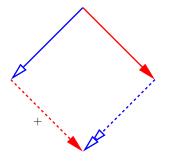
Geser/Di Cosmo/Piperno Lemma by decreasingness

equivalent (Bachmair & Dershowitz) to:

Theorem (Geser)

commutation holds, if $\blacktriangleright / \triangleleft (= \blacktriangleleft \cdot \blacktriangleright \cdot \triangleleft)$ terminating and

- ▲□ ▶ ▲ ■ ▶ ▲ ■ ● ● ● ●



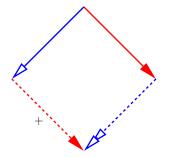
Geser/Di Cosmo/Piperno Lemma by decreasingness

equivalent (Bachmair & Dershowitz) to:

Theorem (Geser)

commutation holds, if $\blacktriangleright / \triangleleft (= \blacktriangleleft \cdot \blacktriangleright \cdot \blacktriangleleft)$ terminating and

(日) (同) (日) (日)



But isn't this just another ad hoc method?

Theorem

if a countable rewrite relation is confluent, then it can be proven so by decreasing diagrams.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proof.

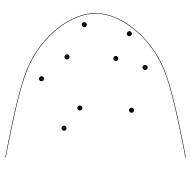
Theorem

if a countable rewrite relation is confluent, then it can be proven so by decreasing diagrams.

イロト イポト イヨト イヨト

Proof.

suffices to consider $\leftrightarrow^*\text{-equivalence class}$

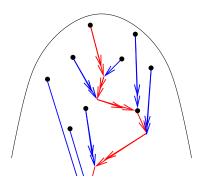


Theorem

if a countable rewrite relation is confluent, then it can be proven so by decreasing diagrams.

Proof.

construct a cofinal reduction (use countability)



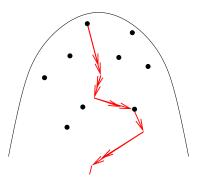
Theorem

if a countable rewrite relation is confluent, then it can be proven so by decreasing diagrams.

イロト イポト イヨト イヨト

Proof.

cofinal reduction: such that all objects reduce to it



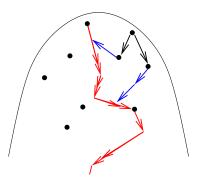
Theorem

if a countable rewrite relation is confluent, then it can be proven so by decreasing diagrams.

< ロ > < 同 > < 回 > < 回 >

Proof.

complete local peaks by reducing to cofinal reduction



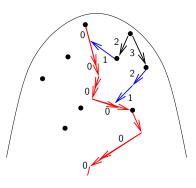
Theorem

if a countable rewrite relation is confluent, then it can be proven so by decreasing diagrams.

イロト イポト イヨト イヨト

Proof.

label steps with distance to cofinal reduction



decreasing diagrams is incomplete for commutation (Endrullis, Grabmayer, ISR 2008)

Example

 $d \triangleleft b \triangleleft a_1 > a_2 \triangleright c \triangleright d$

Proof by contradiction.

consider triples of shape $b \triangleleft_i a_1 \bowtie_j a_2 \triangleright_k c$ with labels [i, j, k]. suppose w.l.o.g. $a_1 \triangleright_j a_2$. then $b \triangleleft_i a_1 \triangleright_j a_2$ can only be closed by $b \triangleleft_{i'} a_1 \triangleleft_{j'} a_2$. distinguish cases on the origin of the label j':

- if j' < j, then consider the triple with labels [i, j', k].
- Suppose j' = i. if i' < i consider the triple with labels [i', j, k], else i' < j and consider the triple with labels [i', i, k].</p>

Application to TRSs

heuristic: label step by rule-name in a term rewriting system

heuristic: label step by rule-name in a term rewriting system Theorem *linear TRS is confluent, if critical peaks are locally decreasing.*

Application to TRSs

heuristic: label step by rule-name in a term rewriting system

Theorem *linear TRS is confluent, if critical peaks are locally decreasing.*

Example

- 1. nats \rightarrow 0 : inc(nats)
- 2. $\operatorname{inc}(x:y) \to \operatorname{s}(x): \operatorname{inc}(y)$
- 3. $hd(x:y) \rightarrow x$
- 4. $tl(x:y) \rightarrow y$
- 5. $inc(tl(nats)) \rightarrow tl(inc(nats))$

one critical peak

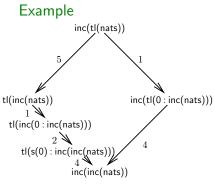
Application to TRSs

heuristic: label step by rule-name in a term rewriting system

Theorem

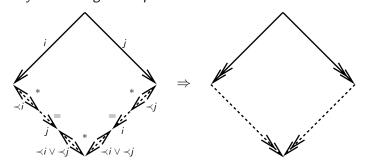
linear TRS is confluent, if critical peaks are locally decreasing.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ



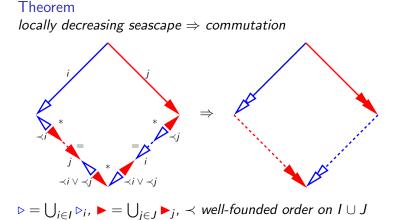
order?

Theorem locally decreasing seascape \Rightarrow confluence



・ロット 全部 マート・ キャー

 $\rightarrow = \bigcup_{i \in I} \rightarrow_i$, \prec well-founded order on I



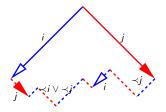
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Proof.

same measure of peaks, but local peak may not be base case

イロト イポト イヨト イヨト

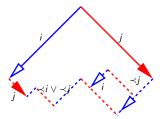
э



(日) (同) (日) (日)

3

Proof. but its peaks can be filled in by induction

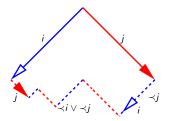


イロト イポト イヨト イヨト

э

Proof.

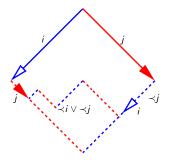
but its peaks can be filled in by induction.



э

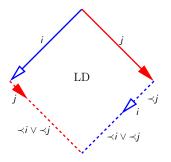
Proof.

but its peaks can be filled in by induction ..



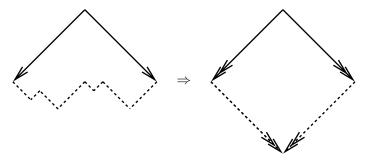
Proof.

giving in the end a (trough) locally decreasing diagram



<ロ>

Theorem (Winkler & Buchberger 1983) local confluence below \Rightarrow confluence, if \rightarrow terminating



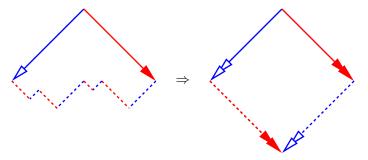
Definition

below: all objects in seascape \rightarrow^+ -reachable from top

イロト 不得 トイヨト イヨト

Theorem

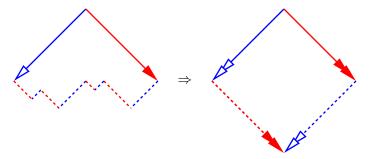
local commutation below \Rightarrow commutation, if $\triangleright \cup \triangleright$ terminating



Definition

below: all objects in seascape $(\triangleright \cup \blacktriangleright)^+$ -reachable from top

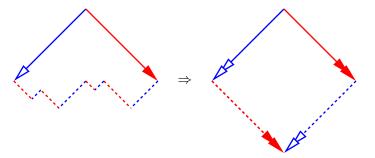
Theorem local commutation below \Rightarrow commutation, if $\triangleright^+ \cdot \triangleright^+$ terminating



Definition

below: if $a \triangleright b$ in seascape, $a (\triangleright \cup \triangleright)^+$ -reachable from top with \triangleright

Theorem local commutation below \Rightarrow commutation, if $\triangleright^+ \cdot \triangleright^+$ terminating

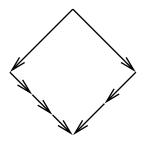


Definition below: if $a \triangleright b$ in seascape, $a (\triangleright \cup \triangleright)^+$ -reachable from top with \triangleright

Exercise

(splitting headache) Any Escher diagram for a locally confluent rewrite relation \rightarrow has an infinite path through infinitely many splitting points.

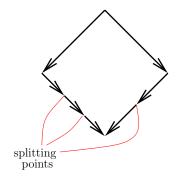
イロト イポト イヨト イヨト



Exercise

(splitting headache) Any Escher diagram for a locally confluent rewrite relation \rightarrow has an infinite path through infinitely many splitting points.

イロト 不得 トイヨト イヨト 三日



Exercise

(commuting splitting headache)

Let \triangleright , \blacktriangleright be locally commuting rewrite relations. Show that any (commutation) Escher diagram has

- an infinite path,
- which is zigzagging, and
- goes through infinitely many splitting points

Exercise

(Pous Lemma for process algebra) Show that if \triangleright , \triangleright commute locally, and $\triangleright^+ \cdot \triangleright^+$ is terminating, then \triangleright , \triangleright commute by

an infinite diagram argument using the previous exercise;

decreasing diagrams.

Exercise

(Geser) Fully prove Geser's Lemma, as found in the slides above, by means of the decreasing diagrams technique.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Exercise (Rosen) Show that if \triangleright , \triangleright both have the diamond property, and $\triangleleft \cdot \triangleright \subseteq \triangleright \cdot \triangleleft \cdot \triangleleft (\triangleright requests \triangleright)$, then $\triangleright \cup \triangleright$ is confluent. Could you think of how to weaken the requests-condition without losing confluence?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Exercise

(decreasing critical peaks)*

For a left-linear term rewrite system, is it true that if all critical peaks can be completed into decreasing diagrams, when indexing steps by the rule applied and well-foundedly ordering these, then the term rewrite system itself is confluent?

Exercise

(Newman's error)*

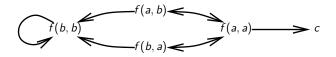
Newman's axioms for proving confluence as developed in Sections 8–12 of his paper, fail in their

13. Application to the conversion calculus

. Find what goes wrong!

Answers to exercises

(decreasing critical peaks) No, f(b, b) and c convertible but not joinable:



for left-linear (but not right-linear) TRS:

(three) critical pairs decreasing ordering rules as 1 > 2, 3, 4Remark 'half' of Lévy's TRS (see e.g. Section 2.8, Terese)