Abstract Rewriting

ISR 2008, Obergurgl, Austria

Vincent van Oostrom

Theoretical Philosophy
Utrecht University
Netherlands

16:00-17:30, Mon/Wednesday July 21, ISR 2008

A rewrite relation \rightarrow has the Z-property

A rewrite relation \rightarrow has the Z-property if there is a map - from objects to objects

A rewrite relation \rightarrow has the Z-property if there is a map - from objects to objects such that for any step $a \rightarrow b$ from a to b

A rewrite relation \rightarrow has the Z-property if there is a map - from objects to objects such that for any step $a \rightarrow b$ from a to b there exists a many-step reduction $b \rightarrow a^{\bullet}$ from b to a^{\bullet}

A rewrite relation \rightarrow has the Z-property
if there is a map - from objects to objects such that for any step $a \rightarrow b$ from a to b there exists a many-step reduction $b \rightarrow a^{\bullet}$ from b to a^{\bullet} and there exists a many-step reduction $a^{\bullet} \rightarrow b^{\bullet}$ from a^{\bullet} to b^{\bullet}

$\exists \bullet: A \rightarrow A, \forall a, b \in A: a \rightarrow b \Rightarrow b \rightarrow a^{\bullet}, a^{\bullet} \rightarrow b^{\bullet}$

Z intuitions

Z intuitions

Z intuitions

$Z \Rightarrow$ confluence

Theorem
If rewrite relation has the Z-property, then it is confluent
Proof.

$Z \Rightarrow$ confluence

Theorem
If rewrite relation has the Z-property, then it is confluent
Proof.

$$
a_{0} \longrightarrow a_{1} \longrightarrow a_{2} \longrightarrow a_{3} \longrightarrow a_{n+1}
$$

$Z \Rightarrow$ confluence

Theorem
If rewrite relation has the Z-property, then it is confluent
Proof.

$Z \Rightarrow$ confluence

Theorem
If rewrite relation has the Z-property, then it is confluent
Proof.

$$
a_{0} \longrightarrow a_{1} \longrightarrow a_{2} \longrightarrow a_{3} \longrightarrow a_{n+1}
$$

$Z \Rightarrow$ confluence

Theorem
If rewrite relation has the Z-property, then it is confluent
Proof.

$Z \Rightarrow$ confluence

Theorem
If rewrite relation has the Z-property, then it is confluent
Proof.

$Z \Rightarrow$ confluence

Theorem
If rewrite relation has the Z-property, then it is confluent
Proof.

$Z \Rightarrow$ confluence

Theorem
If rewrite relation has the Z-property, then it is confluent
Proof.

$Z \Rightarrow \longrightarrow$ strategy is hyper-cofinal

Definition (•-strategy)
$a \rightarrow b$ if a is not a normal form and $b=a^{\bullet}$

$Z \Rightarrow \longrightarrow$ strategy is hyper-cofinal

Hyper: eventually always

$Z \Rightarrow \longrightarrow$ strategy is hyper-cofinal

$Z \Rightarrow \longrightarrow$ strategy is hyper-cofinal

$Z \Rightarrow \longrightarrow$ strategy is hyper-cofinal

Definition
\rightarrow hyper-cofinal, if for any reduction which eventually always contains a \rightarrow-step, any co-initial reduction can be extended to reach the first

$Z \Rightarrow \longrightarrow$ strategy is hyper-cofinal

hyper-cofinal \Rightarrow

- confluent
- (hyper-)normalising
- bullet-fast...

$Z \Rightarrow \longrightarrow$ strategy is hyper-cofinal

Theorem
\rightarrow is hyper-cofinal
Proof.

$Z \Rightarrow \rightarrow$ strategy is hyper-cofinal

Theorem
\rightarrow is hyper-cofinal
Proof.

$Z \Rightarrow \longrightarrow$ strategy is hyper-cofinal

Theorem
\rightarrow is hyper-cofinal
Proof.

$Z \Rightarrow \longrightarrow$ strategy is hyper-cofinal

Theorem
\rightarrow is hyper-cofinal
Proof.

$Z \Rightarrow \longrightarrow$ strategy is hyper-cofinal

Theorem
\rightarrow is hyper-cofinal
Proof.

$Z \Rightarrow \longrightarrow$ strategy is hyper-cofinal

Theorem
\rightarrow is hyper-cofinal
Proof.

$Z \Rightarrow \longrightarrow$ strategy is hyper-cofinal

Theorem
\rightarrow is hyper-cofinal
Proof.

Examples

Example: braids

Definition
Braid rewriting: cross adjacent strands, right over left.

Example: braids

Definition
Braid rewriting: cross adjacent strands, right over left. Example:

Example: braids

Definition
Braid rewriting: cross adjacent strands, right over left.
Example:

Up to topological equivalence:

Example: braids

Theorem
Braid rewriting has the Z-property, for • full crossing

Example

Example: braids

Theorem
Braid rewriting has the Z-property, for • full crossing Proof.

Example: braids

Theorem
Braid rewriting has the Z-property, for • full crossing Proof.

Example: braids

Theorem
Braid rewriting has the Z-property, for • full crossing Proof.

Example: braids

Theorem
Braid rewriting has the Z-property, for • full crossing Proof.

Example: self-distributivity

Definition
Self-distributivity, rewrite relation generated by $x y z \rightarrow x z(y z)$

Example: self-distributivity

Definition
Self-distributivity, rewrite relation generated by $x y z \rightarrow x z(y z)$
Some models:

- ACl operations
- take middle of points in space
- substitution

Example: self-distributivity

Definition
Self-distributivity, rewrite relation generated by $x y z \rightarrow x z(y z)$
Some models:

- ACl operations
- take middle of points in space
- substitution

In depth: Braids and Self-distributivity (Dehornoy 2000)

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

$$
x^{\bullet}=x \quad(t s)^{\bullet}=t^{\bullet}\left[s^{\bullet}\right]
$$

with $t[s]$ uniform distribution of s over t :

$$
t\left[x_{1}:=x_{1} s, x_{2}:=x_{2} s, \ldots\right]
$$

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

$$
x^{\bullet}=x \quad(t s)^{\bullet}=t^{\bullet}\left[s^{\bullet}\right]
$$

with $t[s]$ uniform distribution of s over t :

$$
t\left[x_{1}:=x_{1} s, x_{2}:=x_{2} s, \ldots\right]
$$

Example

- $(x y)^{\bullet}=x[y]=x[x:=x y]=x y$;
- $(x y z)^{\bullet}=(x y)[x:=x z, y:=y z]=x z(y z)$.

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

$$
x^{\bullet}=x \quad(t s)^{\bullet}=t^{\bullet}\left[s^{\bullet}\right]
$$

with $t[s]$ uniform distribution of s over t :

$$
t\left[x_{1}:=x_{1} s, x_{2}:=x_{2} s, \ldots\right]
$$

Proof.
By induction on t :

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

$$
x^{\bullet}=x \quad(t s)^{\bullet}=t^{\bullet}\left[s^{\bullet}\right]
$$

with $t[s]$ uniform distribution of s over t :

$$
t\left[x_{1}:=x_{1} s, x_{2}:=x_{2} s, \ldots\right]
$$

Proof.
By induction on t :

- (Sequentialisation) $t s \rightarrow t[s]$;

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

$$
x^{\bullet}=x \quad(t s)^{\bullet}=t^{\bullet}\left[s^{\bullet}\right]
$$

with $t[s]$ uniform distribution of s over t :

$$
t\left[x_{1}:=x_{1} s, x_{2}:=x_{2} s, \ldots\right]
$$

Proof.
By induction on t :

- (Sequentialisation) $t s \rightarrow t[s]$;
- (Substitution) $t[s][r] \rightarrow t[r][s[r]]$

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

$$
x^{\bullet}=x \quad(t s)^{\bullet}=t^{\bullet}\left[s^{\bullet}\right]
$$

with $t[s]$ uniform distribution of s over t :

$$
t\left[x_{1}:=x_{1} s, x_{2}:=x_{2} s, \ldots\right]
$$

Proof.
By induction on t :

- (Sequentialisation) $t s \rightarrow t[s]$;
- (Substitution) $t[s][r] \rightarrow t[r][s[r]]$
- (Self) $t \rightarrow t^{\bullet}$;

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

$$
x^{\bullet}=x \quad(t s)^{\bullet}=t^{\bullet}\left[s^{\bullet}\right]
$$

with $t[s]$ uniform distribution of s over t :

$$
t\left[x_{1}:=x_{1} s, x_{2}:=x_{2} s, \ldots\right]
$$

Proof.
By induction on t :

- (Sequentialisation) $t s \rightarrow t[s]$;
- (Substitution) $t[s][r] \rightarrow t[r][s[r]]$
- (Self) $t \rightarrow t^{\bullet}$;
- (Z) $s \rightarrow t^{\bullet} \rightarrow s^{\bullet}$, if $t \rightarrow s$.

Example: normalising and confluent relations

Theorem
Normalising and confluent relations have the Z-property, for \bullet the full reduction map (map to normal form).

Example: normalising and confluent relations

Theorem

Normalising and confluent relations have the Z-property, for \bullet the full reduction map (map to normal form).

Proof.
If $a \rightarrow b$, then $b \rightarrow a^{\bullet} \rightarrow b^{\bullet}$ since b reduces to its normal form b^{\bullet} (normalisation) which is the same as the normal form a^{\bullet} of a (confluence).

Example: normalising and confluent relations

Theorem

Normalising and confluent relations have the Z-property, for • the full reduction map (map to normal form).

Proof.
If $a \rightarrow b$, then $b \rightarrow a^{\bullet} \rightarrow b^{\bullet}$ since b reduces to its normal form b^{\bullet} (normalisation) which is the same as the normal form a^{\bullet} of a (confluence).

Corollary
Z-property for typed λ-calculi (by confluence and termination)

Example: λ-calculus

Theorem
$(\lambda x . M) N \rightarrow M[x:=N]$ has the Z-property, for \bullet full development contracting all redexes present:

$$
\begin{aligned}
x^{\bullet} & =x & & \\
(\lambda x \cdot M)^{\bullet} & =\lambda x \cdot M^{\bullet} & & \\
(M N)^{\bullet} & =M^{\prime}\left[x:=N^{\bullet}\right] & & \text { if } M \text { is an abstraction, } M^{\bullet}=\lambda x . M^{\prime} \\
& =M^{\bullet} N^{\bullet} & & \text { otherwise }
\end{aligned}
$$

Example: λ-calculus

Theorem
$(\lambda x . M) N \rightarrow M[x:=N]$ has the Z-property, for \bullet full development contracting all redexes present:

$$
\begin{aligned}
x^{\bullet} & =x & & \\
(\lambda x \cdot M)^{\bullet} & =\lambda x \cdot M^{\bullet} & & \\
(M N)^{\bullet} & =M^{\prime}\left[x:=N^{\bullet}\right] & & \text { if } M \text { is an abstraction, } M^{\bullet}=\lambda x . M^{\prime} \\
& =M^{\bullet} N^{\bullet} & & \text { otherwise }
\end{aligned}
$$

Example
$-I^{\bullet}=I ;(I=\lambda x \cdot x)$

- $(I(I I))^{\bullet}=I,(I I I)^{\bullet}=I I$;
- $((\lambda x y . x) z w)^{\bullet}=(\lambda y . z) w$;
- $((\lambda x y . l y x) z I)^{\bullet}=(\lambda y . y z) I ;$

Example: λ-calculus

Theorem
$(\lambda x . M) N \rightarrow M[x:=N]$ has the Z-property, for \bullet full development contracting all redexes present:

$$
\begin{aligned}
x^{\bullet} & =x & & \\
(\lambda x \cdot M)^{\bullet} & =\lambda x \cdot M^{\bullet} & & \\
(M N)^{\bullet} & =M^{\prime}\left[x:=N^{\bullet}\right] & & \text { if } M \text { is an abstraction, } M^{\bullet}=\lambda x . M^{\prime} \\
& =M^{\bullet} N^{\bullet} & & \text { otherwise }
\end{aligned}
$$

Proof.
By induction on M :

- (Substitution) $M[y:=P][x:=N]=M[x:=N][y:=P[x:=N]] ;$

Example: λ-calculus

Theorem
$(\lambda x . M) N \rightarrow M[x:=N]$ has the Z-property, for \bullet full development contracting all redexes present:

$$
\begin{aligned}
x^{\bullet} & =x & & \\
(\lambda x \cdot M)^{\bullet} & =\lambda x \cdot M^{\bullet} & & \\
(M N)^{\bullet} & =M^{\prime}\left[x:=N^{\bullet}\right] & & \text { if } M \text { is an abstraction, } M^{\bullet}=\lambda x . M^{\prime} \\
& =M^{\bullet} N^{\bullet} & & \text { otherwise }
\end{aligned}
$$

Proof.
By induction on M :

- (Substitution) $M[y:=P][x:=N]=M[x:=N][y:=P[x:=N]] ;$
- (Self) $M \rightarrow M^{\bullet}$;

Example: λ-calculus

Theorem
$(\lambda x . M) N \rightarrow M[x:=N]$ has the Z-property, for \bullet full development contracting all redexes present:

$$
\begin{aligned}
x^{\bullet} & =x & & \\
(\lambda x \cdot M)^{\bullet} & =\lambda x \cdot M^{\bullet} & & \\
(M N)^{\bullet} & =M^{\prime}\left[x:=N^{\bullet}\right] & & \text { if } M \text { is an abstraction, } M^{\bullet}=\lambda x . M^{\prime} \\
& =M^{\bullet} N^{\bullet} & & \text { otherwise }
\end{aligned}
$$

Proof.
By induction on M :

- (Substitution) $M[y:=P][x:=N]=M[x:=N][y:=P[x:=N]] ;$
- (Self) $M \rightarrow M^{\bullet}$;
- (Rhs) $M^{\bullet}\left[x:=N^{\bullet}\right] \rightarrow M[x:=N]^{\bullet}$; and

Example: λ-calculus

Theorem
$(\lambda x . M) N \rightarrow M[x:=N]$ has the Z-property, for \bullet full development contracting all redexes present:

$$
\begin{aligned}
x^{\bullet} & =x & & \\
(\lambda x \cdot M)^{\bullet} & =\lambda x \cdot M^{\bullet} & & \\
(M N)^{\bullet} & =M^{\prime}\left[x:=N^{\bullet}\right] & & \text { if } M \text { is an abstraction, } M^{\bullet}=\lambda x . M^{\prime} \\
& =M^{\bullet} N^{\bullet} & & \text { otherwise }
\end{aligned}
$$

Proof.
By induction on M :

- (Substitution) $M[y:=P][x:=N]=M[x:=N][y:=P[x:=N]] ;$
- (Self) $M \rightarrow M^{\bullet}$;
- (Rhs) $M^{\bullet}\left[x:=N^{\bullet}\right] \rightarrow M[x:=N]^{\bullet}$; and
- (Z) $M \rightarrow N \Rightarrow N \rightarrow M^{\bullet} \rightarrow N^{\bullet}$.

Example: λ-calculus

Theorem
$(\lambda x . M) N \rightarrow M[x:=N]$ has the Z-property, for \bullet full development contracting all redexes present:

$$
x^{\bullet}=x
$$

$(\lambda x . M)^{\bullet}=\lambda x \cdot M^{\bullet}$
$(M N)^{\bullet}=M^{\prime}\left[x:=N^{\bullet}\right]$ if M is an abstraction, $M^{\bullet}=\lambda x \cdot M^{\prime}$ $=M^{\bullet} N^{\bullet} \quad$ otherwise

Proof.
By induction on M :

- (Substitution) $M[y:=P][x:=N]=M[x:=N][y:=P[x:=N]]$;
- (Self) $M \rightarrow M^{\bullet}$;
- (Rhs) $M^{\bullet}\left[x:=N^{\bullet}\right] \rightarrow M[x:=N]^{\bullet}$; and
- (Z) $M \rightarrow N \Rightarrow N \rightarrow M^{\bullet} \rightarrow N^{\bullet}$.

Same method works for all orthogonal first/higher-order TRSs

Example: weakly orthogonal term rewriting systems

Definition
Rewrite system is weakly orthogonal, if only trivial critical pairs.

Example: weakly orthogonal term rewriting systems

Definition
Rewrite system is weakly orthogonal, if only trivial critical pairs.
Example

- λ-calculus with β and $\eta: \lambda x . M x \rightarrow M$, if $x \notin M$;
- predecessor/successor $\quad S(P(x))) \rightarrow x \quad P(S(x)) \rightarrow x$;
- parallel-or.

Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development
Proof.

$$
\begin{aligned}
& c(x) \rightarrow x \\
& f(f(x)) \rightarrow f(x) \\
& g(f(f(f(x)))) \rightarrow g(f(f(x)))
\end{aligned}
$$

Then $g(f(f(c(f(f(x)))))) \rightarrow g(f(f(f(f(x)))))$ gives Z : $g(f(f(c(f(f(x))))))^{\bullet}=g(f(f(x)))=g(f(f(f(f(x)))))^{\bullet}$

Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the Z-property, for • full inside-out development

Proof.

$$
\begin{aligned}
& c(x) \rightarrow x \\
& f(f(x)) \rightarrow f(x) \\
& g(f(f(f(x)))) \rightarrow g(f(f(x)))
\end{aligned}
$$

Then $g(f(f(c(f(f(x)))))) \rightarrow g(f(f(f(f(x)))))$ gives Z : $g(f(f(c(f(f(x))))))^{\bullet}=g(f(f(x)))=g(f(f(f(f(x)))))^{\bullet}$
Outside-in not monotonic: not $g(f(f(x))) \rightarrow g(f(f(f(x))))$!

Non-examples

Some properties of es

- if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;

Some properties of es

- if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- $\bullet_{1} \circ \bullet_{2}$ has Z, if \bullet_{i} do.

Some properties of es

- if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- $\bullet_{1} \circ \bullet_{2}$ has Z, if \bullet_{i} do.
- slower order: $\bullet_{1} \leq \bullet_{2}$, if $\forall a, a^{\bullet^{1}} \rightarrow a^{\bullet^{2}}$;

Some properties of es

- if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
$-\bullet_{1} \circ \bullet_{2}$ has Z, if \bullet_{i} do.
- slower order: $\bullet_{1} \leq \bullet_{2}$, if $\forall a, a^{\bullet_{1}} \rightarrow a^{\bullet^{2}}$;
- $\bullet_{i} \leq \bullet_{1} \circ \bullet_{2}$;

Some properties of es

- if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
$-\bullet_{1} \circ \bullet_{2}$ has Z, if \bullet_{i} do.
- slower order: $\bullet_{1} \leq \bullet_{2}$, if $\forall a, a^{\bullet^{1}} \rightarrow a^{\bullet^{2}}$;
- $\bullet_{i} \leq \bullet_{1} \circ \bullet_{2}$;
- no slowest/minimally slow/fastest/maximally fast;

Some properties of es

- if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- $\bullet_{1} \circ \bullet_{2}$ has Z, if \bullet_{i} do.
- slower order: $\bullet_{1} \leq \bullet_{2}$, if $\forall a, a^{\bullet^{1}} \rightarrow a^{\bullet^{2}}$;
- $\bullet_{i} \leq \bullet_{1} \circ \bullet_{2}$;
- no slowest/minimally slow/fastest/maximally fast;
- for normalising/finite systems: go to 'normal' form fastest.

Some properties of es

- if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
$-\bullet_{1} \circ \bullet_{2}$ has Z, if \bullet_{i} do.
- slower order: $\bullet_{1} \leq \bullet_{2}$, if $\forall a, a^{\bullet_{1}} \rightarrow a^{\bullet^{2}}$;
$-\bullet_{i} \leq \bullet_{1} \circ \bullet_{2}$;
- no slowest/minimally slow/fastest/maximally fast;
- for normalising/finite systems: go to 'normal' form fastest.

Used to get ideas about (confluent) systems which do not have Z

\mathbb{Z} does not have \mathbb{Z}

\mathbb{Z} does not have \mathbb{Z}

for given integer, no upperbound on steps from it

\mathbb{Z} does not have \mathbb{Z}

not finitely branching, no finite TRS

for given integer, no upperbound on steps from it

$\hat{\mathbb{Z}}$ does not have Z

$\hat{\mathbb{Z}}$ does not have Z

finitely branching, finite TRS

$n(x) \rightarrow p(x) \quad n(1) \rightarrow 0 \quad 0 \rightarrow p(1)$
$n(s(x)) \rightarrow n(x)$
$p(x) \rightarrow p(s(x))$

$\hat{\mathbb{Z}}$ does not have Z

finitely branching, finite TRS

not monotonic (e.g. for -3)

$$
\begin{aligned}
& n(x) \rightarrow p(x) \quad n(1) \rightarrow 0 \quad 0 \rightarrow p(1) \\
& n(s(x)) \rightarrow n(x) \\
& p(x) \rightarrow p(s(x))
\end{aligned}
$$

\mathbb{Z}^{b} does have \mathbb{Z}

$\longrightarrow-2 \longrightarrow 0 \longrightarrow 1 \longrightarrow$

\mathbb{Z}^{b} does have \mathbb{Z}

finitely branching, finite TRS, no transitivity
$\longrightarrow-2 \longrightarrow 0 \longrightarrow 2 \longrightarrow$

\mathbb{Z}^{b} does have \mathbb{Z}

finitely branching, finite TRS, no transitivity
$\longrightarrow-2 \longrightarrow{ }^{-1} \longrightarrow 0 \longrightarrow 1 \longrightarrow 2 \longrightarrow$
Z trivial $\left(i^{\bullet}=i+1\right)$

\mathbb{Z}^{b} does have \mathbb{Z}

finitely branching, finite TRS, no transitivity
$\longrightarrow-2 \longrightarrow 0 \longrightarrow 1 \longrightarrow$
Z trivial $\left(i^{\bullet}=i+1\right)$

Examples show:

- confluent $\nRightarrow Z$
- transitivity might be harmful

Exercises on Z

Exercise

(favourite Z?)
Does your favourite confluent rewrite system have the Z-property?

Exercises on Z

Exercise

(orthogonal systems)

- Verify that for the λ-calculus the full-development bullet map indeed has the Z-property, by verifying (Substition), (Self), (Rhs), and (Z)
- Inductively define a full-development function on terms, for orthogonal TRSs, and verify that it does have the Z-property for these TRSs.

Exercises on Z

Exercise

(superdevelopments)

Adapt the proof of the first item of the previous exercise to show:
Theorem
$(\lambda x . M) N \rightarrow M[x:=N]$ has the Z-property, for \bullet full superdevelopment contracting all redexes present or upward created:

$$
\begin{aligned}
x^{\bullet} & =x & & \\
(\lambda x . M)^{\bullet} & =\lambda x \cdot M^{\bullet} & & \\
(M N)^{\bullet} & =M^{\prime}\left[x:=N^{\bullet}\right] & & \text { if } M \text { is a term, } M^{\bullet}=\lambda x . M^{\prime} \\
& =M^{\bullet} N^{\bullet} & & \text { otherwise }
\end{aligned}
$$

Example

- $I^{\bullet}=I ;(I=\lambda x \cdot x)$
- $(I(I I))^{\bullet}=I,(I I I)^{\bullet}=I$;
- $((\lambda x y \cdot x) z w)^{\bullet}=z$;
- $((\lambda x y . \mid y x) z I)^{\bullet}=I z$

Exercises on Z

Exercise

(Z vs. decreasing diagrams)*
Can you prove confuence of braids or λ-calculus or orthogonal TRSs using decreasing diagrams (other than via the completeness result)?

Exercises on Z

Exercise

$(\beta \bar{\eta})^{*}$
Does the λ-calculus with β-reduction and restricted η-expansion, i.e. the inverse of η-reduction restricted so that it never creates a β-redex (generates a new β-redex), have the Z-property?

Exercises on Z

Exercise

(properties of $\bullet s$)
Prove the properties of \bullet as given on page 75 of these slides.

Summary of first lecture

Summary of first lecture

- Decreasing diagrams (complete) for confluence

Summary of first lecture

- Decreasing diagrams (complete) for confluence
- Z-property for confluence and cofinality

