Multi-redexes and multi-treks induce residual systems
least upper bounds and left-cancellation up to homotopy
Vincent van Oostrom
http://cl-informatik.uibk.ac.at

1. Residual systems

2. Multi-redexes

3. Conclusions

Rewrite systems

Definition (Rewrite system [Newman 42])

rewrite system \rightarrow comprises:

- a set of objects
- a set of (rewrite) steps
- functions src, tgt mapping a step to its source, target object

Rewrite systems

Definition (Rewrite system)

rewrite system \rightarrow comprises:

- a set of objects
- a set of steps
- functions src, tgt mapping a step to its source, target object

Remark (Omnipresence of rewrite systems)

- steps as first-class citizens (theory of computation!)

Rewrite systems

Definition (Rewrite system)

rewrite system \rightarrow comprises:

- a set of objects
- a set of steps
- functions src, tgt mapping a step to its source, target object

Remark (Omnipresence of rewrite systems)

- steps as first-class citizens
- rewrite (binary endo)relation R is system: step $\frac{b}{a}$ from a to b if $a R b$

Rewrite systems

Definition (Rewrite system)

rewrite system \rightarrow comprises:

- a set of objects
- a set of steps
- functions src, tgt mapping a step to its source, target object

Remark (Omnipresence of rewrite systems)

- steps as first-class citizens
- rewrite relation R is system: step $\frac{b}{a}$ from a to b if a $R b$
- formally same as multidigraph and quiver
(here the name steps signals interest in transformational properties)

Rewrite systems

Definition (Rewrite system)

rewrite system \rightarrow comprises:

- a set of objects
- a set of steps
- functions src, tgt mapping a step to its source, target object

Remark (Omnipresence of rewrite systems)

- steps as first-class citizens
- rewrite relation R is system: step $\frac{b}{a}$ from a to b if a $R b$
- formally same as multidigraph and quiver
(here the name steps signals interest in transformational properties)

Rewrite systems

Definition (Rewrite system)

rewrite system \rightarrow comprises:

- a set of objects
- a set of steps
- functions src, tgt mapping a step to its source, target object

Remark (the rewrite method)

derive properties of (empty,finite,infinite) computations from those of steps
\rightarrow-steps used to generate first compositions \rightarrow^{*} (trees of composable steps), next paths/reductions \rightarrow (quotienting out composition monoid), and then quasi-orders (quotienting out parallel paths)

Example: Church's $\lambda \beta$-calculus as rewrite system

Definition (Multistep rewrite system $\rightarrow \rightarrow_{\beta}$)

Example: Church's $\lambda \beta$-calculus as rewrite system

Definition (Multistep rewrite system $\rightarrow \rightarrow_{\beta}$)

- objects are multisteps without β s

Example: Church's $\lambda \beta$-calculus as rewrite system

Definition (Multistep rewrite system $\rightarrow \rightarrow_{\beta}$)

- objects are multisteps without β s
- multisteps $\phi::=x|\lambda x \cdot \phi| \phi \phi \mid \beta(x \cdot \phi, \phi)$, for x in variables; modulo α (i use many- and multi- to signal series resp. parallel quantities)

Example: Church's $\lambda \beta$-calculus as rewrite system

Definition (Multistep rewrite system $\rightarrow \rightarrow_{\beta}$)

- objects are multisteps without β s
- multisteps $\phi::=x|\lambda x . \phi| \phi \phi \mid \beta(x . \phi, \phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x . \phi, \psi)$ to lhs $(\lambda x . \phi) \psi$ and rhs $\phi[x:=\psi]$ $(\operatorname{src}(\beta(x \cdot \phi, \psi)):=(\lambda x \cdot \operatorname{src}(\phi)) \operatorname{src}(\psi)$ and $\operatorname{tgt}(\beta(x \cdot \phi, \psi)):=\operatorname{tgt}(\phi)[x:=\operatorname{tgt}(\psi)])$

Example: Church's $\lambda \beta$-calculus as rewrite system

Definition (Multistep rewrite system $\rightarrow \rightarrow_{\beta}$)

- objects are multisteps without β s
- multisteps $\phi::=x|\lambda x \cdot \phi| \phi \phi \mid \beta(x . \phi, \phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x . \phi, \psi)$ to Ihs $(\lambda x . \phi) \psi$ and rhs $\phi[x:=\psi]$

Example

$\Rightarrow \beta(x \cdot x, \beta(y \cdot y, z))$ multistep $(\lambda x \cdot x)((\lambda y \cdot y) z) \mapsto z$

Example: Church's $\lambda \beta$-calculus as rewrite system

Definition (Multistep rewrite system $\rightarrow \rightarrow_{\beta}$)

- objects are multisteps without β s
- multisteps $\phi::=x|\lambda x \cdot \phi| \phi \phi \mid \beta(x . \phi, \phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x . \phi, \psi)$ to Ihs $(\lambda x . \phi) \psi$ and rhs $\phi[x:=\psi]$

Example

$\triangleright \beta(x \cdot x, \beta(y \cdot y, z))$ multistep $I(I z) \multimap z$ with $I:=\lambda x \cdot x$

Example: Church's $\lambda \beta$-calculus as rewrite system

Definition (Multistep rewrite system $\rightarrow \rightarrow_{\beta}$)

- objects are multisteps without β s
- multisteps $\phi::=x|\lambda x \cdot \phi| \phi \phi \mid \beta(x . \phi, \phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x . \phi, \psi)$ to Ihs $(\lambda x . \phi) \psi$ and rhs $\phi[x:=\psi]$

Example

$\triangleright \beta(x \cdot x, \beta(y \cdot y, z))$ multistep $I(I z) \rightarrow z$ with $I:=\lambda x \cdot x$
$\triangleright \beta(x \cdot x, I z)$ and $I \beta(y \cdot y, z)$ are distinct (single) steps $I(I z) \rightarrow_{\beta} I z$

Example: Church's $\lambda \beta$-calculus as rewrite system

Definition (Multistep rewrite system $\rightarrow \rightarrow_{\beta}$)

- objects are multisteps without β s
- multisteps $\phi::=x|\lambda x \cdot \phi| \phi \phi \mid \beta(x . \phi, \phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x . \phi, \psi)$ to Ihs $(\lambda x . \phi) \psi$ and rhs $\phi[x:=\psi]$

Example

$\triangleright \beta(x \cdot x, \beta(y \cdot y, z))$ multistep $I(I z) \rightarrow z$ with $I:=\lambda x \cdot x$
$\triangleright \beta(x \cdot x, I z)$ and $I \beta(y \cdot y, z)$ are outer and inner steps $I(I z) \rightarrow_{\beta} I z$

Example: Church's $\lambda \beta$-calculus as rewrite system

Definition (Multistep rewrite system $\rightarrow \rightarrow_{\beta}$)

- objects are multisteps without β s
- multisteps $\phi::=x|\lambda x . \phi| \phi \phi \mid \beta(x . \phi, \phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x . \phi, \psi)$ to $\operatorname{lhs}(\lambda x . \phi) \psi$ and rhs $\phi[x:=\psi]$

Example

$\Rightarrow \beta(x \cdot x, \beta(y \cdot y, z))$ multistep $I(I z) \longrightarrow z$ with $I:=\lambda x \cdot x$

- $\beta(x \cdot x, I z)$ and $I \beta(y \cdot y, z)$ are outer and inner steps $I(I z) \rightarrow_{\beta} I z$

Remark

\rightarrow_{β} is Tait-Martin-Löf step (aka parallel reduction [Takahashi 95])

Example: Church's $\lambda \beta$-calculus as rewrite system

Definition (Multistep rewrite system $\rightarrow \rightarrow_{\beta}$)

- objects are multisteps without β s
- multisteps $\phi::=x|\lambda x \cdot \phi| \phi \phi \mid \beta(x \cdot \phi, \phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x . \phi, \psi)$ to Ihs $(\lambda x . \phi) \psi$ and rhs $\phi[x:=\psi]$

Example

$\triangleright \beta(x \cdot x, \beta(y \cdot y, z))$ multistep $I(I z) \mapsto z$ with $I:=\lambda x \cdot x$
$\triangleright \beta(x \cdot x, I z)$ and $I \beta(y \cdot y, z)$ are outer and inner steps $I(I z) \rightarrow_{\beta} I z$

Remark

multisteps by adjoining β-rule as symbol to signature [vO 97]
(this reification of rules works for string/term/graph/. . . rewrite systems)

Example: Church's $\lambda \beta$-calculus as rewrite system

Definition (Multistep rewrite system $\rightarrow \rightarrow_{\beta}$)

- objects are multisteps without β s
- multisteps $\phi::=x|\lambda x \cdot \phi| \phi \phi \mid \beta(x . \phi, \phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x . \phi, \psi)$ to Ihs $(\lambda x . \phi) \psi$ and rhs $\phi[x:=\psi]$

Example

$\triangleright \beta(x \cdot x, \beta(y \cdot y, z))$ multistep $I(I z) \mapsto z$ with $I:=\lambda x \cdot x$

- $\beta(x \cdot x, I z)$ and $I \beta(y \cdot y, z)$ are outer and inner steps $I(I z) \rightarrow_{\beta} I z$

Remark

advantages: compact (multi)step representations; stay in term language (no disadvantages; no need for inference system; src, tgt instead)

Example: Church's $\lambda \beta$-calculus as rewrite system

Definition (Multistep rewrite system $\rightarrow \rightarrow_{\beta}$)

- objects are multisteps without β s
- multisteps $\phi::=x|\lambda x \cdot \phi| \phi \phi \mid \beta(x . \phi, \phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x . \phi, \psi)$ to Ihs $(\lambda x . \phi) \psi$ and rhs $\phi[x:=\psi]$

Example

$\triangleright \beta(x \cdot x, \beta(y \cdot y, z))$ multistep $I(I z) \rightarrow z$ with $I:=\lambda x \cdot x$

- $\beta(x \cdot x, I z)$ and $I \beta(y \cdot y, z)$ are outer and inner steps $I(I z) \rightarrow_{\beta} I z$

Remark

advantages: compact (multi)step representations; stay in term language (no disadvantages; all there is to know: no need for annotations of relations)

Residuation as Skolemisation of the diamond property

Definition (Diamond property)

\rightarrow has the diamond property if \forall peak $b \leftarrow a \rightarrow c$

Residuation as Skolemisation of the diamond property

Definition (Diamond property)

\rightarrow has the diamond property if \forall peak $b \leftarrow a \rightarrow c$, \exists valley $b \rightarrow d \leftarrow c$

Residuation as Skolemisation of the diamond property

Definition (Diamond property)

\rightarrow has the diamond property if \forall peak $b_{\phi} \leftarrow a \rightarrow_{\psi} c$

Residuation as Skolemisation of the diamond property

Definition (Diamond property)

\rightarrow has the diamond property if \forall peak $b_{\phi} \leftarrow a \rightarrow_{\psi} c, \exists$ valley $b \rightarrow_{\psi^{\prime}} d_{\phi^{\prime}} \leftarrow c$

Residuation as Skolemisation of the diamond property

Definition (Skolemised diamond property)

\rightarrow has the diamond property if \forall peak $b_{\phi} \leftarrow a \rightarrow_{\psi} c, b \rightarrow_{f(\phi, \psi)} d_{g(\phi, \psi)} \leftarrow c$

Residuation as Skolemisation of the diamond property

Definition (Skolemised diamond property)

\rightarrow has the diamond property if \forall peak $b_{\phi} \leftarrow a \rightarrow_{\psi} c, b \rightarrow_{\phi / \psi} d_{\psi / \phi} \leftarrow c$

Remark (Symmetrisation)
may totally order objects \Longrightarrow may assume f, g same residuation function /

Residuation as Skolemisation of the diamond property

Definition (Skolemised diamond property)

\rightarrow has the diamond property if \forall peak $b_{\phi} \leftarrow a \rightarrow_{\psi} c, b \rightarrow_{\phi / \psi} d_{\psi / \phi} \leftarrow c$

Remark (Diamond from steps \Longrightarrow reductions \Longrightarrow quasi-orders)
confluence of \rightarrow is diamond property of \rightarrow; upper bound (d of b, c) in quasi-order

Example: no residuation for \rightarrow_{β}

Example (Failure of diamond for \rightarrow_{β})

- for peak $z_{\beta(x, x, z)} \leftarrow I z \rightarrow_{\beta(x, x, z)} z$, only empty valley z; no diamond

Example: no residuation for \rightarrow_{β}

Example (Failure of diamond for \rightarrow_{β})

- for peak $z_{\beta(x, x, z)} \leftarrow I z \rightarrow_{\beta(x, x, z)} z$, only empty valley z
- for peak $\delta z_{\beta \beta(x, x, z)} \leftarrow \delta(I z) \rightarrow_{\beta(x, x x, I z)} I z(I z)$ with $\delta:=\lambda x \cdot x x$ only duplicating valley $\delta z \rightarrow z z \leftarrow(I z) z \leftarrow I z(I z)$; no diamond

Example: no residuation for \rightarrow_{β}

Example (Failure of diamond for \rightarrow_{β})

- for peak $z_{\beta(x, x, z)} \leftarrow I z \rightarrow_{\beta(x, x, z)} z$, only empty valley z
- for peak $\delta z_{\beta \beta(x, x, z)} \leftarrow \delta(I z) \rightarrow_{\beta(x, x x, I z)} I z(I z)$ with $\delta:=\lambda x \cdot x x$ only duplicating valley $\delta z \rightarrow z z \leftarrow(I z) z \leftarrow I z(I z)$

Faceting to the rescue

Idea: adjoin reduction (many-step) in valley as (single) step
(here: adjoin $z: z$ and $I z \beta(x . x, z) \cdot \beta(x . x, z) z: I z(I z) \rightarrow(I z) z \rightarrow z z$ as steps)

Example: no residuation for \rightarrow_{β}

Example (Failure of diamond for \rightarrow_{β})

- for peak $z_{\beta(x, x, z)} \leftarrow I z \rightarrow_{\beta(x, x, z)} z$, only empty valley z
- for peak $\delta z_{\delta \beta(x, x, z)} \leftarrow \delta(I z) \rightarrow_{\beta(x, x x, I z)} I z(I z)$ with $\delta:=\lambda x \cdot x x$ only duplicating valley $\delta z \rightarrow z z \leftarrow(I z) z \leftarrow I z(I z)$

Example: no residuation for \rightarrow_{β}

Example (Failure of diamond for \rightarrow_{β})

- for peak $z_{\beta(x, x, z)} \leftarrow I z \rightarrow_{\beta(x, x, z)} z$, only empty valley z
- for peak $\delta z_{\beta \beta(x, x, z)} \leftarrow \delta(I z) \rightarrow_{\beta(x, x x, I z)} I z(I z)$ with $\delta:=\lambda x \cdot x x$ only duplicating valley $\delta z \rightarrow z z \leftarrow(I z) z \leftarrow I z(I z)$

Example: residuation for $\rightarrow \rightarrow_{\beta}$

Remark

multisteps \rightarrow_{β} are (notation for) repeated faceting for \rightarrow_{β}
(like completion but goal now to get beautiful diamonds, not complete system)

Example: residuation for $\rightarrow \rightarrow_{\beta}$

Lemma

\rightarrow_{β} has the diamond property

Proof idea.

define residuation / and join \vee such that if ϕ, ψ co-initial \Longrightarrow $\phi \vee \psi$ and $\phi \cdot(\psi / \phi)$ have same source,target, join \vee commutative

Example: residuation for $\rightarrow \rightarrow_{\beta}$

Lemma

\rightarrow_{β} has the diamond property

Proof idea.

define residuation / and join \vee such that if ϕ, ψ co-initial \Longrightarrow
$\phi \vee \psi$ and $\phi \cdot(\psi / \phi)$ have same source,target, join \vee commutative

Example: residuation for $\rightarrow \rightarrow_{\beta}$

Lemma

\rightarrow_{β} has the diamond property

Proof idea.

define residuation / and join \vee such that if ϕ, ψ co-initial \Longrightarrow
$\phi \vee \psi$ and $\phi \cdot(\psi / \phi)$ have same source,target, join \vee commutative

Example: residuation for $\rightarrow \rightarrow_{\beta}$

Lemma

\rightarrow_{β} has the diamond property

Proof idea.

define residuation / and join \vee such that if ϕ, ψ co-initial \Longrightarrow
$\phi \vee \psi$ and $\phi \cdot(\psi / \phi)$ have same source,target, join \vee commutative

Example: residuation for $\rightarrow \rightarrow_{\beta}$

Proof.

defining join \vee and residuation / as follows works (induction on multisteps):

ϕ	ψ	$\phi \vee \psi$	ϕ / ψ
$\beta\left(x \cdot \phi^{\prime}, \phi^{\prime \prime}\right)$	$\left(\lambda x \cdot \psi^{\prime}\right) \psi^{\prime \prime}$	$\beta\left(x \cdot \phi^{\prime} \vee \psi^{\prime}, \phi^{\prime \prime} \vee \psi^{\prime \prime}\right)$	$\beta\left(x \cdot \phi^{\prime} / \psi^{\prime}, \phi^{\prime \prime} / \psi^{\prime \prime}\right)$
$\left(\lambda x \cdot \phi^{\prime}\right) \phi^{\prime \prime}$	$\beta\left(x \cdot \psi^{\prime}, \psi^{\prime \prime}\right)$,,	$\left(\phi^{\prime} / \psi^{\prime}\right)\left[x:=\phi^{\prime \prime} / \psi^{\prime \prime}\right]$
$\beta\left(x \cdot \phi^{\prime}, \phi^{\prime \prime}\right)$	$\beta\left(x \cdot \psi^{\prime}, \psi^{\prime \prime}\right)$,,	,,
x	x	x	x
$\lambda x \cdot \phi^{\prime}$	$\lambda x \cdot \psi^{\prime}$	$\lambda x \cdot \phi^{\prime} \vee \psi^{\prime}$	$\lambda x \cdot \phi^{\prime} / \psi^{\prime}$
$\phi^{\prime} \phi^{\prime \prime}$	$\psi^{\prime} \psi^{\prime \prime}$	$\left(\phi^{\prime} \vee \psi^{\prime}\right)\left(\phi^{\prime \prime} \vee \psi^{\prime \prime}\right)$	$\left(\phi^{\prime} / \psi^{\prime}\right)\left(\phi^{\prime \prime} / \psi^{\prime \prime}\right) \square$

Example: residuation for $\rightarrow \rightarrow_{\beta}$

Proof.

defining join \vee and residuation / as follows works (induction on multisteps):

ϕ	ψ	$\phi \vee \psi$	ϕ / ψ
$\beta\left(x \cdot \phi^{\prime}, \phi^{\prime \prime}\right)$	$\left(\lambda x \cdot \psi^{\prime}\right) \psi^{\prime \prime}$	$\beta\left(x \cdot \phi^{\prime} \vee \psi^{\prime}, \phi^{\prime \prime} \vee \psi^{\prime \prime}\right)$	$\beta\left(x \cdot \phi^{\prime} / \psi^{\prime}, \phi^{\prime \prime} / \psi^{\prime \prime}\right)$
$\left(\lambda x \cdot \phi^{\prime}\right) \phi^{\prime \prime}$	$\beta\left(x \cdot \psi^{\prime}, \psi^{\prime \prime}\right)$,,	$\left(\phi^{\prime} / \psi^{\prime}\right)\left[x:=\phi^{\prime \prime} / \psi^{\prime \prime}\right]$
$\beta\left(x \cdot \phi^{\prime}, \phi^{\prime \prime}\right)$	$\beta\left(x \cdot \psi^{\prime}, \psi^{\prime \prime}\right)$,,	,,
x	x	x	x
$\lambda x \cdot \phi^{\prime}$	$\lambda x \cdot \psi^{\prime}$	$\lambda x \cdot \phi^{\prime} \vee \psi^{\prime}$	$\lambda x \cdot \phi^{\prime} / \psi^{\prime}$
$\phi^{\prime} \phi^{\prime \prime}$	$\psi^{\prime} \psi^{\prime \prime}$	$\left(\phi^{\prime} \vee \psi^{\prime}\right)\left(\phi^{\prime \prime} \vee \psi^{\prime \prime}\right)$	$\left(\phi^{\prime} / \psi^{\prime}\right)\left(\phi^{\prime \prime} / \psi^{\prime \prime}\right) \square$

is Tait-Martin-Löf proof: short by multistep notation, commutation of join

Ubiquity of residuation

Example (Residuation in rewriting (replication))

- [Church-Rosser 36]: $\lambda \beta$-development

Ubiquity of residuation

Example (Residuation in rewriting (replication))

- [Church-Rosser 36]: $\lambda \beta$-development
- [Newman 42]: axiomatic residuation (should but did not apply to β (Schroer review); first α-error in literature?)

Ubiquity of residuation

Example (Residuation in rewriting (replication))

- [Church-Rosser 36]: $\lambda \beta$-development
- [Newman 42]: axiomatic residuation
- Hindley 60s and 70s: axiomatic residuation for β

Ubiquity of residuation

Example (Residuation in rewriting (replication))

- [Church-Rosser 36]: $\lambda \beta$-development
- [Newman 42]: axiomatic residuation
- Hindley 60s and 70s: axiomatic residuation for β
- [Lévy 78]: $\lambda \beta$-calculus permutation equivalence, optimality, cube, ...

Ubiquity of residuation

Example (Residuation in rewriting (replication))

- [Church-Rosser 36]: $\lambda \beta$-development
- [Newman 42]: axiomatic residuation
- Hindley 60s and 70s: axiomatic residuation for β
- [Lévy 78]: $\lambda \beta$-calculus permutation equivalence, optimality, cube, \ldots
- Huet \& Lévy 79: first-order TRS residuation, neededness

Ubiquity of residuation

Example (Residuation in rewriting (replication))

- [Church-Rosser 36]: $\lambda \beta$-development
- [Newman 42]: axiomatic residuation
- Hindley 60s and 70s: axiomatic residuation for β
- [Lévy 78]: $\lambda \beta$-calculus permutation equivalence, optimality, cube, \ldots
- Huet \& Lévy 79: first-order TRS residuation, neededness
- [Huet 86]: prism, FSCD

Ubiquity of residuation

Example (Residuation in rewriting (replication))

- [Church-Rosser 36]: $\lambda \beta$-development
- [Newman 42]: axiomatic residuation
- Hindley 60s and 70s: axiomatic residuation for β
- [Lévy 78]: $\lambda \beta$-calculus permutation equivalence, optimality, cube, ...
- Huet \& Lévy 79: first-order TRS residuation, neededness
- [Huet 86]: prism, FSCD
- Khasidashvili \& Glauert 90s: axiomatic neededness, optimality, ...

Ubiquity of residuation

Example (Residuation in rewriting (replication))

- [Church-Rosser 36]: $\lambda \beta$-development
- [Newman 42]: axiomatic residuation
- Hindley 60s and 70s: axiomatic residuation for β
- [Lévy 78]: $\lambda \beta$-calculus permutation equivalence, optimality, cube, ...
- Huet \& Lévy 79: first-order TRS residuation, neededness
- [Huet 86]: prism, FSCD
- Khasidashvili \& Glauert 90s: axiomatic neededness, optimality, ...
- Terese 03: residual systems (presented next), equivalence of equivalences

Ubiquity of residuation

Example (Residuation in rewriting (replication))

- [Church-Rosser 36]: $\lambda \beta$-development
- [Newman 42]: axiomatic residuation
- Hindley 60s and 70s: axiomatic residuation for β
- [Lévy 78]: $\lambda \beta$-calculus permutation equivalence, optimality, cube, ...
- Huet \& Lévy 79: first-order TRS residuation, neededness
- [Huet 86]: prism, FSCD
- Khasidashvili \& Glauert 90s: axiomatic neededness, optimality, ...
- Terese 03: residual systems (presented next), equivalence of equivalences
- [Melliès 02]: axiomatic multi-redexes/treks (presented after)

Ubiquity of residuation

Example (Residuation in rewriting (replication))

- [Church-Rosser 36]: $\lambda \beta$-development
- [Newman 42]: axiomatic residuation
- Hindley 60s and 70s: axiomatic residuation for β
- [Lévy 78]: $\lambda \beta$-calculus permutation equivalence, optimality, cube, ...
- Huet \& Lévy 79: first-order TRS residuation, neededness
- [Huet 86]: prism, FSCD
- Khasidashvili \& Glauert 90s: axiomatic neededness, optimality, ...
- Terese 03: residual systems (presented next), equivalence of equivalences
- [Melliès 02]: axiomatic multi-redexes/treks (presented after)
in concurrency (linear): [Mazurkiewicz 70s], [Stark 89], [Winskel 89], Wolfram,

Residual systems

Definition (Residual system, Terese 03)

residual system $\langle\rightarrow, 1, /\rangle$ has for co-initial ϕ, ψ, χ in rewrite system \rightarrow :

$$
\begin{align*}
\phi / 1 & =\phi \tag{1}\\
\phi / \phi & =1 \tag{2}\\
1 / \phi & =1 \tag{3}\\
(\phi / \psi) /(\chi / \psi) & =(\phi / \chi) /(\psi / \chi) \tag{4}
\end{align*}
$$

Residual systems

Definition (Residual system, Terese 03)

residual system $\langle\rightarrow, 1, /\rangle$ has for co-initial ϕ, ψ, χ in rewrite system \rightarrow :

$$
\begin{align*}
\phi / 1 & =\phi \tag{1}\\
\phi / \phi & =1 \tag{2}\\
1 / \phi & =1 \tag{3}\\
(\phi / \psi) /(\chi / \psi) & =(\phi / \chi) /(\psi / \chi) \tag{4}
\end{align*}
$$

1 is loop (one for each object)

Residual systems

Definition (Residual system, Terese 03)

residual system $\langle\rightarrow, 1, /\rangle$ has for co-initial ϕ, ψ, χ in rewrite system \rightarrow :

$$
\begin{align*}
\phi / 1 & =\phi \tag{1}\\
\phi / \phi & =1 \tag{2}\\
1 / \phi & =1 \tag{3}\\
(\phi / \psi) /(\chi / \psi) & =(\phi / \chi) /(\psi / \chi) \tag{4}
\end{align*}
$$

(4) is Lévy's cube:

Residual systems

Definition (Residual system, Terese 03)

residual system $\langle\rightarrow, 1, /\rangle$ has for co-initial ϕ, ψ, χ in rewrite system \rightarrow :

$$
\begin{align*}
\phi / 1 & =\phi \tag{1}\\
\phi / \phi & =1 \tag{2}\\
1 / \phi & =1 \tag{3}\\
(\phi / \psi) /(\chi / \psi) & =(\phi / \chi) /(\psi / \chi) \tag{4}
\end{align*}
$$

Residual systems

Definition (Residual system, Terese 03)

residual system $\langle\rightarrow, 1, /\rangle$ has for co-initial ϕ, ψ, χ in rewrite system \rightarrow :

$$
\begin{align*}
\phi / 1 & =\phi \tag{1}\\
\phi / \phi & =1 \tag{2}\\
1 / \phi & =1 \tag{3}\\
(\phi / \psi) /(\chi / \psi) & =(\phi / \chi) /(\psi / \chi) \tag{4}
\end{align*}
$$

Intuition: residuation makes join semi-lattice \Longrightarrow least upper bounds

- residuation diamond \Longrightarrow commutativity of join (seen above)
- unit law $(2) \Longrightarrow$ idempotence of join
- cube law $(4) \Longrightarrow$ associativity of join

Residual systems

Definition (Residual system, Terese 03)

residual system $\langle\rightarrow, 1, /\rangle$ has for co-initial ϕ, ψ, χ in rewrite system \rightarrow :

$$
\begin{align*}
\phi / 1 & =\phi \tag{1}\\
\phi / \phi & =1 \tag{2}\\
1 / \phi & =1 \tag{3}\\
(\phi / \psi) /(\chi / \psi) & =(\phi / \chi) /(\psi / \chi) \tag{4}
\end{align*}
$$

Remark (only intuition)

in general no order (steps need not compose), join need not exist (\rightarrow in OTRSs)

Residual systems

Definition (Residual system, Terese 03)

residual system $\langle\rightarrow, 1, /\rangle$ has for co-initial ϕ, ψ, χ in rewrite system \rightarrow :

$$
\begin{align*}
\phi / 1 & =\phi \tag{1}\\
\phi / \phi & =1 \tag{2}\\
1 / \phi & =1 \tag{3}\\
(\phi / \psi) /(\chi / \psi) & =(\phi / \chi) /(\psi / \chi) \tag{4}
\end{align*}
$$

Example

\rightarrow_{β} is residual system for / having joins with terms (trivial multisteps) as 1

Ubiquity of residual systems/algebras (single object)

Example

- residual systems: combinatory logic, $\lambda \beta$, orthogonal (first- and higher-order) term rewrite systems, positive braids, associativity, self-distributivity, ..., any confluent countable rewrite system (for contrived notion of lub)

Ubiquity of residual systems/algebras

Example

- residual systems: combinatory logic, $\lambda \beta$, orthogonal (first- and higher-order) term rewrite systems, positive braids, associativity, self-distributivity,, any confluent countable rewrite system
- commutative residual algebras: numbers with monus, (measurable) (multi)sets with difference, positive natural numbers with dovision, ...

Ubiquity of residual systems/algebras

Example

- residual systems: combinatory logic, $\lambda \beta$, orthogonal (first- and higher-order) term rewrite systems, positive braids, associativity, self-distributivity,, any confluent countable rewrite system
- commutative residual algebras: numbers with monus, (measurable) (multi)sets with difference, positive natural numbers with dovision, ...
- semi-lattices induce residual systems, categories having push-outs induce residual systems (for epis)

Ubiquity of residual systems/algebras

Example

- residual systems: combinatory logic, $\lambda \beta$, orthogonal (first- and higher-order) term rewrite systems, positive braids, associativity, self-distributivity, ..., any confluent countable rewrite system
- commutative residual algebras: numbers with monus, (measurable) (multi)sets with difference, positive natural numbers with dovision, ...
- semi-lattices induce residual systems, categories having push-outs induce residual systems (for epis)
- commutative residual algebras have multiset representation theorem, are equivalent to commutative BCK algebras with relative cancellation, induce lattice-ordered groups (groupoids for residual systems; with provisos), ...

Ubiquity of residual systems/algebras

Example

- residual systems: combinatory logic, $\lambda \beta$, orthogonal (first- and higher-order) term rewrite systems, positive braids, associativity, self-distributivity, ..., any confluent countable rewrite system
- commutative residual algebras: numbers with monus, (measurable) (multi)sets with difference, positive natural numbers with dovision, ...
- semi-lattices induce residual systems, categories having push-outs induce residual systems (for epis)
- commutative residual algebras have multiset representation theorem, are equivalent to commutative BCK algebras with relative cancellation, induce lattice-ordered groups (groupoids for residual systems; with provisos), ...
- inclusion-exclusion principle, [EWD 1313], Bayes' Theorem,...

Residual systems with composition

Definition (Residual system with composition, Terese 03)

residual system $\langle\rightarrow, 1, /, \cdot\rangle$ with composition \cdot and for coinitial ϕ, ψ, χ in ARS \rightarrow :

$$
\begin{align*}
\phi / 1 & =\phi \tag{1}\\
\phi / \phi & =1 \tag{2}\\
1 / \phi & =1 \tag{3}\\
(\phi / \psi) /(\chi / \psi) & =(\phi / \chi) /(\psi / \chi) \tag{4}\\
\chi /(\phi \cdot \psi) & =(\chi / \phi) / \psi \tag{7}\\
(\phi \cdot \psi) / \chi & =(\phi / \chi) \cdot(\psi /(\chi / \phi)) \tag{8}
\end{align*}
$$

Residual systems with composition

Definition (Residual system with composition, Terese 03)

residual system $\langle\rightarrow, 1, /, \cdot\rangle$ with composition \cdot and for coinitial ϕ, ψ, χ in ARS \rightarrow :

$$
\begin{align*}
\phi / 1 & =\phi \tag{1}\\
\phi / \phi & =1 \tag{2}\\
1 / \phi & =1 \tag{3}\\
(\phi / \psi) /(\chi / \psi) & =(\phi / \chi) /(\psi / \chi) \tag{4}\\
\chi /(\phi \cdot \psi) & =(\chi / \phi) / \psi \tag{7}\\
(\phi \cdot \psi) / \chi & =(\phi / \chi) \cdot(\psi /(\chi / \phi)) \tag{8}
\end{align*}
$$

composite identities (7) and (8):

Facts on residual systems (with composition)

Lemma (Terese 03)

- $\langle\rightarrow, 1, /\rangle$ generates reduction system $w /$ composition on \rightarrow^{*} up to $1 \cdot 1=1$ (by tiling with diamonds and cubes)

Facts on residual systems (with composition)

Lemma (Terese 03)

$\downarrow\langle\rightarrow, 1, /\rangle$ generates reduction system $w /$ composition on \rightarrow^{*} up to $1 \cdot 1=1$

- \preccurlyeq is quasi-order with $\phi \preccurlyeq \psi:=\phi / \psi=1$ (natural or projection order)

Facts on residual systems (with composition)

Lemma (Terese 03)

- $\langle\rightarrow, 1, /\rangle$ generates reduction system $w /$ composition on \rightarrow^{*} up to $1 \cdot 1=1$
- \preccurlyeq is quasi-order with $\phi \preccurlyeq \psi:=\phi / \psi=1$
- \simeq is congruence for operations with $\simeq:=\preccurlyeq \cap \succcurlyeq \Longrightarrow$ may be quotiented out

Facts on residual systems (with composition)

Lemma (Terese 03)

- $\langle\rightarrow, 1, /\rangle$ generates reduction system $w /$ composition on \rightarrow^{*} up to $1 \cdot 1=1$
- \preccurlyeq is quasi-order with $\phi \preccurlyeq \psi:=\phi / \psi=1$
- \simeq is congruence for operations with $\simeq:=\preccurlyeq \cap \succcurlyeq$
$\checkmark \simeq$-quotient of \rightarrow^{*} gives category for \rightarrow with push-outs, epis (identify multistep, development: $\beta(x . x, z) \beta(x . x, z) \simeq I z \beta(x . x, z) \cdot \beta(x . x, z) I)$

Facts on residual systems (with composition)

Facts on residual systems (with composition)

Lemma (recent)

- $\langle\rightarrow, 1, /\rangle$ generates reduction system $w /$ composition on \rightarrow^{*} up to $1 \cdot 1=1$
- \preccurlyeq is quasi-order with $\phi \preccurlyeq \psi:=\phi / \psi=1$
- \simeq is congruence for operations with $\simeq:=\preccurlyeq \cap \succcurlyeq$
$\checkmark \simeq$-quotient of \rightarrow^{*} gives category for \rightarrow with push-outs, epis
- natural order on reductions partial order with lubs and • left-cancellation ($\phi \vee \psi$ definable by $\phi \cdot(\psi / \phi)$; is Bayes' Theorem $P(A \cap B)=P(A) \cdot P(B \mid A)$)

Example: category with pushouts/epis from \rightarrow_{β}

Construction stages:

(1) facet \rightarrow_{β}-steps \Longrightarrow multisteps $\rightarrow_{\beta}\left(\rightarrow_{\beta} \subseteq \rightarrow_{\beta} \subseteq \rightarrow_{\beta}\right)$

Example: category with pushouts/epis from \rightarrow_{β}

Construction stages:

(1) facet \rightarrow_{β}-steps \Longrightarrow multisteps \rightarrow_{β}
(2) \rightarrow_{β} has diamond property \Longrightarrow residuation /

Example: category with pushouts/epis from \rightarrow_{β}

Construction stages:

(1) facet \rightarrow_{β}-steps \Longrightarrow multisteps \rightarrow_{β}
(2) \rightarrow_{β} has diamond property \Longrightarrow residuation /
(3) check residual laws (1)-(4) for $/ \Longrightarrow$ residual system $\left\langle\rightarrow \rightarrow_{\beta}, 1, /\right\rangle$

Example: category with pushouts/epis from \rightarrow_{β}

Construction stages:

(1) facet \rightarrow_{β}-steps \Longrightarrow multisteps \rightarrow_{β}
(2) \rightarrow_{β} has diamond property \Longrightarrow residuation /
(3) check residual laws (1)-(4) for $/ \Longrightarrow$ residual system $\left\langle\rightarrow \rightarrow_{\beta}, 1, /\right\rangle$
(4) generate rs with composition $\left\langle\rightarrow \rightarrow_{\beta}^{*}, 1^{*}, /^{*}, \cdot\right\rangle$ on multistep reductions

Example: category with pushouts/epis from \rightarrow_{β}

Construction stages:

(1) facet \rightarrow_{β}-steps \Longrightarrow multisteps \rightarrow_{β}
(2) \rightarrow_{β} has diamond property \Longrightarrow residuation /
(3) check residual laws (1)-(4) for $/ \Longrightarrow$ residual system $\left\langle\rightarrow \rightarrow_{\beta}, 1, /\right\rangle$
(4) generate rs with composition $\left.\langle\rightarrow\rangle_{\beta}^{*}, 1^{*}, /^{*}, \cdot\right\rangle$ on multistep reductions
(5) quotient out $\simeq \Longrightarrow$ category w/ pushouts,epis $\left\langle\rightarrow{ }_{\beta}, 1^{*}, /^{*}, \cdot\right\rangle$ on reductions

Example: category with pushouts/epis from \rightarrow_{β}

Construction stages:

(1) facet \rightarrow_{β}-steps \Longrightarrow multisteps \rightarrow_{β}
(2) \rightarrow_{β} has diamond property \Longrightarrow residuation /
(3) check residual laws (1)-(4) for $/ \Longrightarrow$ residual system $\left.\left\langle{ }^{-}\right\rangle_{\beta}, 1, /\right\rangle$
(4) generate rs with composition $\left\langle\rightarrow \rightarrow_{\beta}^{*}, 1^{*}, /^{*}, \cdot\right\rangle$ on multistep reductions
(5) quotient out $\simeq \Longrightarrow$ category w/ pushouts,epis $\left\langle\rightarrow{ }_{\beta}, 1^{*}, /^{*}, \cdot\right\rangle$ on reductions

Remark

faceting also works for positive/generalised braids, associativity, ortho TRSs or HRSs, ... but first step can also be done by magic (as long as the rest works)

Axioms on multi-redexes of [Melliès 02]

Axioms

(self-destruction, SD) no redex has a residual after itself (as step)
(finiteness, F) every redex has finitely many residuals after a step
(finite developments, FD) developments of multi-redexes are finite
(permutation, PERM) every peak ϕ, ψ of steps can be completed by a valley of complete developments of the residuals of ψ after ϕ, respectively the residuals of ϕ after ψ, such that both legs of the resulting local confluence diagram induce the same redex-trace relation

Visualisation and formalisation of multi-redex axioms

Remark

some rewrite system

Visualisation and formalisation of multi-redex axioms

Remark

redex is reified step from a given object; multi-redex is set of such

Visualisation and formalisation of multi-redex axioms

Remark

redex-tracing of step relating redexes in its source and target (residuals) pointwise extended to multi-redexes

Visualisation and formalisation of multi-redex axioms

Remark

development of multi-redex as reduction only contracting residuals complete if no residuals remaining

Visualisation and formalisation of multi-redex axioms

Axioms

(SD) $(\phi \llbracket \phi\rangle\rangle)=\emptyset$ where $\llbracket \phi\rangle$ is redex-trace relation of ϕ
(F) $(\psi \llbracket \phi\rangle\rangle)$ is finite for co-initial ϕ, ψ
(FD) $\phi_{1} \cdot \ldots \cdot \phi_{n}$ development of multi-redex Φ if $\left.\left.\phi_{i+1} \in\left(\Phi \llbracket \phi_{1} \cdot \ldots \cdot \phi_{i}\right\rangle\right\rangle\right)$ for all i complete if no residuals remaing
(PERM) each peak ϕ, ψ of steps is completed by valley γ, δ of complete developments of $(\psi \llbracket \phi\rangle),(\phi \llbracket \psi\rangle)$ with $\llbracket \phi \cdot \gamma\rangle\rangle=\llbracket \psi \cdot \delta\rangle\rangle$

Visualisation and formalisation of multi-redex axioms

Axioms

(SD) $(\phi \llbracket \phi\rangle\rangle)=\emptyset$ where $\llbracket \phi\rangle$ is redex-trace relation of ϕ
(F) $(\psi \llbracket \phi\rangle)$ is finite for co-initial ϕ, ψ
(FD) $\phi_{1} \cdot \ldots \cdot \phi_{n}$ development of multi-redex Φ if $\left.\left.\phi_{i+1} \in\left(\Phi \llbracket \phi_{1} \cdot \ldots \cdot \phi_{i}\right\rangle\right\rangle\right)$ for all i complete if no residuals remaing
(PERM) each peak ϕ, ψ of steps is completed by valley γ, δ of complete developments of $(\psi \llbracket \phi\rangle),(\phi \llbracket \psi\rangle)$ with $\llbracket \phi \cdot \gamma\rangle\rangle=\llbracket \psi \cdot \delta\rangle\rangle$

Example $\left(\rightarrow_{\beta}\right)$

developments and redex-tracing as in [Church-Rosser 36]; axioms hold

From multi-redexes to multisteps

Lemma

$\langle\mapsto, 1, /\rangle$ is a residual system having joins, for \rightarrow the rewrite system having as objects the objects of \rightarrow, and as steps a multi-redex $a^{\Phi}: a \rightarrow b$ if there is a complete development of Φ from a to $b ; 1_{a}$ defined as \emptyset; and residual Φ / Ψ defined as $(\Phi \llbracket \Psi\rangle\rangle)$ (for Ψ any complete development of Ψ).

From multi-redexes to multisteps

Lemma

$\langle\rightarrow\rangle, 1, /\rangle$ is a residual system having joins, for \rightarrow the rewrite system having as objects the objects of \rightarrow, and as steps a multi-redex $a^{\Phi}: a \rightarrow b$ if there is a complete development of Φ from a to $b ; 1_{a}$ defined as \emptyset; and residual Φ / Ψ defined as ($\Phi \llbracket \Psi\rangle\rangle$) (for Ψ any complete development of Ψ).

Proof intuition.

all complete developments of Φ same redex-tracing by (PERM), by induction (FD) guarantees no ∞ interaction of redexes in $\Phi \Longrightarrow$ induction measure

From multi-redexes to multisteps

Lemma

$\langle\rightarrow, 1, /\rangle$ is a residual system having joins, for \rightarrow the rewrite system having as objects the objects of \rightarrow, and as steps a multi-redex $a^{\phi}: a \rightarrow b$ if there is a complete development of Φ from a to $b ; 1_{a}$ defined as \emptyset; and residual Φ / Ψ defined as ($\Phi \llbracket \Psi\rangle)$) (for Ψ any complete development of Ψ).

Definition

local homotopy \equiv, on reductions with the same sources/targets obtained by identifying legs of (PERM) diagrams
formally: equivalence generated by closing $\phi \cdot \gamma \equiv, \psi \cdot \delta$ for peaks ϕ, ψ and valleys γ, δ given by (PERM) under composition: if $\gamma \equiv \gamma^{\prime}$ then $\delta^{\prime} \cdot \gamma \cdot \epsilon^{\prime} \equiv \delta^{\prime} \cdot \gamma^{\prime} \cdot \epsilon^{\prime}$.

From multi-redexes to multisteps

Lemma

$\langle\rightarrow\rangle, 1, /\rangle$ is a residual system having joins, for \rightarrow the rewrite system having as objects the objects of \rightarrow, and as steps a multi-redex $a^{\Phi}: a \rightarrow b$ if there is a complete development of Φ from a to $b ; 1_{a}$ defined as \emptyset; and residual Φ / Ψ defined as $(\Phi \llbracket \Psi\rangle\rangle)$ (for Ψ any complete development of Ψ).

Lemma

$\simeq=$ ミ।

Proof.

by showing $\simeq=\equiv=\equiv$, where \equiv is square homotopy obtained by identifying legs of diamonds of multisteps embeddings needed to mediate between \rightarrow-reductions and \rightarrow-reductions

From multi-redexes to multisteps

Lemma

$\langle\mapsto, 1, /\rangle$ is a residual system having joins, for \rightarrow the rewrite system having as objects the objects of \rightarrow, and as steps a multi-redex $a^{\Phi}: a \rightarrow b$ if there is a complete development of Φ from a to $b ; 1_{a}$ defined as \emptyset; and residual Φ / Ψ defined as $(\Phi \llbracket \Psi\rangle\rangle)$ (for Ψ any complete development of Ψ).

Lemma

\simeq =

Corollary

reductions up to local homotopy have push-outs and are epis.

Conclusions

- residuation \Longrightarrow upper bounds (of pairs of co-initial steps)
- residual system \Longrightarrow least upper bounds (of finite co-initial steps)
- multi-redexes \Longrightarrow sufficient to construct residual system

Reflections

- no light between residuation and confluence (papers stating to prove confluence not using residuals: empty statement)
- residuation breaks primacy of composition (residuation total but composition only partial)
- residuation a perspective on causality (cf. Winskel 89, Terese 03, Wolfram) (does causality involve FD? philosophical/ysics question; cf. proceedings)
- FFD (finite family developments) corresponds to FD of 2-rewriting. important but subtle (see proceedings): suggest to formalise FFD (for HRSs)
- residuation in founding papers of: λ-calculus (Church \& Rosser, TLCA), rewriting (Newman, RTA), and in FSCD book (Huet) (FSCD PC/SC does not respect this: suggest to remove RTA/TLCA/FSCD book from FSCD page and from CfP)

