

Multi-redexes and multi-treks induce residual systems

least upper bounds and left-cancellation up to homotopy

Vincent van Oostrom

http://cl-informatik.uibk.ac.at

1. Residual systems

2. Multi-redexes

3. Conclusions

Definition (Rewrite system [Newman 42])

rewrite system \rightarrow comprises:

- a set of objects
- a set of (rewrite) steps
- functions src, tgt mapping a step to its source, target object

Definition (Rewrite system)

rewrite system \rightarrow comprises:

- a set of objects
- a set of steps
- functions src, tgt mapping a step to its source, target object

Remark (Omnipresence of rewrite systems)

steps as first-class citizens (theory of computation!)

Definition (Rewrite system)

rewrite system \rightarrow comprises:

- a set of objects
- a set of steps
- functions src, tgt mapping a step to its source, target object

Remark (Omnipresence of rewrite systems)

- steps as first-class citizens
- ▶ rewrite (binary endo)relation R is system: step $\frac{b}{a}$ from a to b if a R b

Definition (Rewrite system)

rewrite system \rightarrow comprises:

- a set of objects
- a set of steps
- functions src, tgt mapping a step to its source, target object

Remark (Omnipresence of rewrite systems)

- steps as first-class citizens
- rewrite relation R is system: step $\frac{b}{a}$ from a to b if a R b
- formally same as multidigraph and quiver (here the name steps signals interest in transformational properties)

Definition (Rewrite system)

rewrite system \rightarrow comprises:

- a set of objects
- a set of steps
- functions src, tgt mapping a step to its source, target object

Remark (Omnipresence of rewrite systems)

- steps as first-class citizens
- rewrite relation R is system: step $\frac{b}{a}$ from a to b if a R b
- formally same as multidigraph and quiver (here the name steps signals interest in transformational properties)

Definition (Rewrite system)

rewrite system \rightarrow comprises:

- a set of objects
- a set of steps
- functions src, tgt mapping a step to its source, target object

Remark (the rewrite method)

derive properties of (empty,finite,infinite) computations from those of steps

 \rightarrow -steps used to generate first compositions \rightarrow^* (trees of composable steps), next paths/reductions \rightarrow (quotienting out composition monoid), and then quasi-orders (quotienting out parallel paths)

Definition (Multistep rewrite system \rightarrow_{β} **)**

Definition (Multistep rewrite system \rightarrow_{β} **)**

b objects are multisteps without β s

Definition (Multistep rewrite system \rightarrow_{β})

- objects are multisteps without β s
- ▶ multisteps $\phi ::= x | \lambda x.\phi | \phi \phi | \beta(x.\phi, \phi)$, for x in variables; modulo α (i use many- and multi- to signal series resp. parallel quantities)

Definition (Multistep rewrite system \rightarrow_{β})

- objects are multisteps without β s
- ▶ multisteps $\phi ::= x \mid \lambda x.\phi \mid \phi \phi \mid \beta(x.\phi, \phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x.\phi,\psi)$ to lhs $(\lambda x.\phi)\psi$ and rhs $\phi[x:=\psi]$ $(\operatorname{src}(\beta(x.\phi,\psi)):=(\lambda x.\operatorname{src}(\phi))\operatorname{src}(\psi)$ and $\operatorname{tgt}(\beta(x.\phi,\psi)):=\operatorname{tgt}(\phi)[x:=\operatorname{tgt}(\psi)])$

Definition (Multistep rewrite system \rightarrow_{β})

- objects are multisteps without β s
- ▶ multisteps $\phi ::= x \mid \lambda x.\phi \mid \phi \phi \mid \beta(x.\phi, \phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x.\phi,\psi)$ to lhs $(\lambda x.\phi)\psi$ and rhs $\phi[x:=\psi]$

$$\blacktriangleright \ \beta(x.x,\beta(y.y,z)) \text{ multistep } (\lambda x.x) ((\lambda y.y)z) \longrightarrow z$$

Definition (Multistep rewrite system \rightarrow_{β})

- objects are multisteps without β s
- ▶ multisteps $\phi ::= x \mid \lambda x.\phi \mid \phi \phi \mid \beta(x.\phi, \phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x.\phi,\psi)$ to lhs $(\lambda x.\phi)\psi$ and rhs $\phi[x:=\psi]$

Definition (Multistep rewrite system \rightarrow_{β})

- objects are multisteps without β s
- ▶ multisteps $\phi ::= x \mid \lambda x.\phi \mid \phi \phi \mid \beta(x.\phi, \phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x.\phi,\psi)$ to lhs $(\lambda x.\phi)\psi$ and rhs $\phi[x:=\psi]$

- ▶ $\beta(x.x, \beta(y.y, z))$ multistep $I(Iz) \rightarrow z$ with $I := \lambda x.x$
- ▶ $\beta(x.x, Iz)$ and $I\beta(y.y, z)$ are distinct (single) steps $I(Iz) \rightarrow_{\beta} Iz$

Definition (Multistep rewrite system \rightarrow_{β})

- objects are multisteps without β s
- ▶ multisteps $\phi ::= x \mid \lambda x.\phi \mid \phi \phi \mid \beta(x.\phi, \phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x.\phi,\psi)$ to lhs $(\lambda x.\phi)\psi$ and rhs $\phi[x:=\psi]$

- ▶ $\beta(x.x, Iz)$ and $I\beta(y.y, z)$ are outer and inner steps $I(Iz) \rightarrow_{\beta} Iz$

Definition (Multistep rewrite system \rightarrow_{β})

- objects are multisteps without β s
- multisteps $\phi ::= x \mid \lambda x.\phi \mid \phi \phi \mid \beta(x.\phi,\phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x.\phi,\psi)$ to lhs $(\lambda x.\phi)\psi$ and rhs $\phi[x:=\psi]$

Example

▶
$$\beta(x.x,\beta(y.y,z))$$
 multistep $I(Iz) \rightarrow z$ with $I := \lambda x.x$

▶ $\beta(x.x, Iz)$ and $I\beta(y.y, z)$ are outer and inner steps $I(Iz) \rightarrow_{\beta} Iz$

Remark

nsbruck

 \rightarrow_{β} is Tait–Martin-Löf step (aka parallel reduction [Takahashi 95])

Definition (Multistep rewrite system \rightarrow_{β})

- objects are multisteps without β s
- multisteps $\phi ::= x \mid \lambda x.\phi \mid \phi \phi \mid \beta(x.\phi,\phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x.\phi,\psi)$ to lhs $(\lambda x.\phi)\psi$ and rhs $\phi[x:=\psi]$

Example

- ▶ $\beta(x.x,\beta(y.y,z))$ multistep $I(Iz) \rightarrow z$ with $I := \lambda x.x$
- ▶ $\beta(x.x, Iz)$ and $I\beta(y.y, z)$ are outer and inner steps $I(Iz) \rightarrow_{\beta} Iz$

Remark

niversitāt

nsbruck

multisteps by adjoining β -rule as symbol to signature [vO 97] (this reification of rules works for string/term/graph/... rewrite systems)

Definition (Multistep rewrite system \rightarrow_{β})

- objects are multisteps without β s
- multisteps $\phi ::= x \mid \lambda x.\phi \mid \phi \phi \mid \beta(x.\phi,\phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x.\phi,\psi)$ to lhs $(\lambda x.\phi)\psi$ and rhs $\phi[x:=\psi]$

Example

- ▶ $\beta(x.x,\beta(y.y,z))$ multistep $I(Iz) \longrightarrow z$ with $I := \lambda x.x$
- ▶ $\beta(x.x, Iz)$ and $I\beta(y.y, z)$ are outer and inner steps $I(Iz) \rightarrow_{\beta} Iz$

Remark

niversitāt

nsbruck

advantages: compact (multi)step representations; stay in term language (no disadvantages; no need for inference system; src, tgt instead)

Definition (Multistep rewrite system \rightarrow_{β})

- objects are multisteps without β s
- multisteps $\phi ::= x \mid \lambda x.\phi \mid \phi \phi \mid \beta(x.\phi,\phi)$, for x in variables; step \rightarrow_{β} if one β
- homomorphic extension mapping $\beta(x.\phi,\psi)$ to lhs $(\lambda x.\phi)\psi$ and rhs $\phi[x:=\psi]$

Example

- ▶ $\beta(x.x,\beta(y.y,z))$ multistep $I(Iz) \rightarrow z$ with $I := \lambda x.x$
- ▶ $\beta(x.x, Iz)$ and $I\beta(y.y, z)$ are outer and inner steps $I(Iz) \rightarrow_{\beta} Iz$

Remark

hsbruck

advantages: compact (multi)step representations; stay in term language (no disadvantages; all there is to know: no need for annotations of relations)

Definition (Diamond property)

ightarrow has the diamond property if orall peak $b \leftarrow a
ightarrow c$

Definition (Diamond property)

ightarrow has the diamond property if orall peak $b \leftarrow a
ightarrow c$, \exists valley $b
ightarrow d \leftarrow c$

Definition (Diamond property)

ightarrow has the diamond property if orall peak $b \ _{\phi} \leftarrow a
ightarrow _{\psi} c$

Definition (Diamond property)

ightarrow has the diamond property if orall peak $b_{\phi} \leftarrow a
ightarrow_{\psi} c$, \exists valley $b
ightarrow_{\psi'} d_{\phi'} \leftarrow c$

Definition (Skolemised diamond property)

ightarrow has the diamond property if \forall peak $b \ _{\phi} \leftarrow a
ightarrow_{\psi} c$, $b
ightarrow_{\mathbf{f}(\phi,\psi)} d \ _{\mathbf{g}(\phi,\psi)} \leftarrow c$

Definition (Skolemised diamond property)

ightarrow has the diamond property if orall peak $b_{\phi} \leftarrow a
ightarrow_{\psi} c$, $b
ightarrow_{\phi/\psi} d_{\psi/\phi} \leftarrow c$

Remark (Symmetrisation)

nsbruck

may totally order objects \implies may assume f, g same residuation function /

Definition (Skolemised diamond property)

ightarrow has the diamond property if orall peak $b_{\phi} \leftarrow a
ightarrow_{\psi} c$, $b
ightarrow_{\phi/\psi} d_{\psi/\phi} \leftarrow c$

Remark (Diamond from steps \implies reductions \implies quasi-orders)

confluence of \rightarrow is diamond property of \rightarrow ; upper bound (d of b, c) in quasi-order

sbruck

Example (Failure of diamond for $ightarrow_{eta}$)

▶ for peak $z_{\beta(x,x,z)} \leftarrow Iz \rightarrow_{\beta(x,x,z)} z$, only empty valley z; no diamond

Example (Failure of diamond for $ightarrow_{eta}$)

- ▶ for peak $z_{\beta(x,x,z)} \leftarrow Iz \rightarrow_{\beta(x,x,z)} z$, only empty valley z
- ▶ for peak $\delta z \ _{\delta \beta(x,x,z)} \leftarrow \delta(Iz) \rightarrow_{\beta(x,x,x,Iz)} Iz(Iz)$ with $\delta := \lambda x.x x$ only duplicating valley $\delta z \rightarrow zz \leftarrow (Iz) z \leftarrow Iz(Iz)$; no diamond

Example (Failure of diamond for $ightarrow_{eta}$)

- ► for peak $z_{\beta(x,x,z)} \leftarrow Iz \rightarrow_{\beta(x,x,z)} z$, only empty valley z
- ► for peak $\delta z_{\delta \beta(x,x,z)} \leftarrow \delta(Iz) \rightarrow_{\beta(x,xx,Iz)} Iz(Iz)$ with $\delta := \lambda x.xx$ only duplicating valley $\delta z \rightarrow zz \leftarrow (Iz)z \leftarrow Iz(Iz)$

Faceting to the rescue

Idea: adjoin reduction (many-step) in valley as (single) step (here: adjoin z : z and $Iz \beta(x.x, z) \cdot \beta(x.x, z) z$: $Iz(Iz) \rightarrow (Iz) z \rightarrow zz$ as steps)

Example (Failure of diamond for $ightarrow_{eta}$)

- ▶ for peak $z_{\beta(x,x,z)} \leftarrow Iz \rightarrow_{\beta(x,x,z)} z$, only empty valley z
- ► for peak $\delta z \,_{\delta \beta(x,x,z)} \leftarrow \delta(Iz) \rightarrow_{\beta(x,xx,Iz)} Iz(Iz)$ with $\delta := \lambda x.xx$ only duplicating valley $\delta z \rightarrow zz \leftarrow (Iz)z \leftarrow Iz(Iz)$

Example (Failure of diamond for $ightarrow_{eta}$)

- ► for peak $z_{\beta(x,x,z)} \leftarrow Iz \rightarrow_{\beta(x,x,z)} z$, only empty valley z
- ► for peak $\delta z \ _{\delta \beta(x,x,z)} \leftarrow \delta(Iz) \rightarrow_{\beta(x,xx,Iz)} Iz(Iz)$ with $\delta := \lambda x.xx$ only duplicating valley $\delta z \rightarrow zz \leftarrow (Iz)z \leftarrow Iz(Iz)$

Remark

multisteps \rightarrow_{β} are (notation for) repeated faceting for \rightarrow_{β} (like completion but goal now to get beautiful diamonds, not complete system)

Lemma

 \longrightarrow_{eta} has the diamond property

Proof idea.

define residuation / and join \lor such that if ϕ, ψ co-initial $\Longrightarrow \phi \lor \psi$ and $\phi \cdot (\psi/\phi)$ have same source, target, join \lor commutative

Lemma

 \longrightarrow_{eta} has the diamond property

Proof idea.

define residuation / and join \lor such that if ϕ, ψ co-initial $\Longrightarrow \phi \lor \psi$ and $\phi \cdot (\psi/\phi)$ have same source, target, join \lor commutative

Lemma

 \longrightarrow_{eta} has the diamond property

Proof idea.

define residuation / and join \lor such that if ϕ, ψ co-initial $\Longrightarrow \phi \lor \psi$ and $\phi \cdot (\psi/\phi)$ have same source, target, join \lor commutative

Example: residuation for \longrightarrow_{β}

Lemma

 $woheadrightarrow _{eta}$ has the diamond property

Proof idea.

define residuation / and join \lor such that if ϕ, ψ co-initial $\Longrightarrow \phi \lor \psi$ and $\phi \cdot (\psi/\phi)$ have same source, target, join \lor commutative

Proof.

defining join \lor and residuation / as follows works (induction on multisteps):

ϕ	ψ	$\phi \lor \psi$	ϕ/ψ
$\beta(\mathbf{x}.\phi',\phi'')$	$(\lambda x.\psi')\psi''$	$eta(\mathbf{x}.\phi' \lor \psi', \phi'' \lor \psi'')$	$eta({f x}.\phi'/\psi',\phi''/\psi'')$
$(\lambda x.\phi')\phi''$	$eta(\mathbf{x}.\psi',\psi'')$, ,	$(\phi'/\psi')[x{:=}\phi''/\psi'']$
$\beta(\mathbf{x}.\phi',\phi'')$	$eta(\mathbf{x}.\psi',\psi'')$, ,	, ,
X	X	X	X
$\lambda x. \phi'$	$\lambda x.\psi'$	$\lambda \mathbf{x}. \phi' \lor \psi'$	$\lambda x. \phi'/\psi'$
$\phi'\phi''$	$\psi'\psi''$	$(\phi' \lor \psi')(\phi'' \lor \psi'')$	$(\phi'/\psi')(\phi''/\psi'')$ \Box

Proof.

universität

innsbruck

defining join \lor and residuation / as follows works (induction on multisteps):

ϕ	ψ	$\phi \lor \psi$	ϕ/ψ
$\beta(\mathbf{x}.\phi',\phi'')$	$(\lambda x.\psi')\psi''$	$eta(\mathbf{x}.\phi' \lor \psi', \phi'' \lor \psi'')$	$eta({m x}.\phi'/\psi',\phi''/\psi'')$
$(\lambda x.\phi')\phi''$	$eta(\mathbf{x}.\psi',\psi'')$, ,	$(\phi'/\psi')[x:=\phi''/\psi'']$
$\beta(\mathbf{x}.\phi',\phi'')$	$eta(\mathbf{x}.\psi',\psi'')$, ,	, ,
X	X	X	X
$\lambda x. \phi'$	$\lambda x.\psi'$	$\lambda \mathbf{x}. \phi' \lor \psi'$	$\lambda x. \phi'/\psi'$
$\phi'\phi''$	$\psi'\psi''$	$(\phi' \lor \psi')(\phi'' \lor \psi'')$	$(\phi'/\psi')(\phi''/\psi'')$ \Box

is Tait-Martin-Löf proof: short by multistep notation, commutation of join

Example (Residuation in rewriting (replication))

Figure (Church–Rosser 36]: $\lambda\beta$ -development

- ▶ [Church–Rosser 36]: $\lambda\beta$ -development
- [Newman 42]: axiomatic residuation (should but did not apply to β (Schroer review); first α-error in literature?)

- **•** [Church–Rosser 36]: $\lambda\beta$ -development
- [Newman 42]: axiomatic residuation
- \blacktriangleright Hindley 60s and 70s: axiomatic residuation for β

- **•** [Church–Rosser 36]: $\lambda\beta$ -development
- [Newman 42]: axiomatic residuation
- \blacktriangleright Hindley 60s and 70s: axiomatic residuation for β
- ▶ [Lévy 78]: $\lambda\beta$ -calculus permutation equivalence, optimality, cube, ...

- **•** [Church–Rosser 36]: $\lambda\beta$ -development
- [Newman 42]: axiomatic residuation
- \blacktriangleright Hindley 60s and 70s: axiomatic residuation for β
- Figure [Lévy 78]: $\lambda\beta$ -calculus permutation equivalence, optimality, cube, . . .
- Huet & Lévy 79: first-order TRS residuation, neededness

- **•** [Church–Rosser 36]: $\lambda\beta$ -development
- [Newman 42]: axiomatic residuation
- \blacktriangleright Hindley 60s and 70s: axiomatic residuation for β
- Figure [Lévy 78]: $\lambda\beta$ -calculus permutation equivalence, optimality, cube, . . .
- Huet & Lévy 79: first-order TRS residuation, neededness
- ▶ [Huet 86]: prism, FSCD

- **•** [Church–Rosser 36]: $\lambda\beta$ -development
- [Newman 42]: axiomatic residuation
- \blacktriangleright Hindley 60s and 70s: axiomatic residuation for β
- Figure [Lévy 78]: $\lambda\beta$ -calculus permutation equivalence, optimality, cube, . . .
- Huet & Lévy 79: first-order TRS residuation, neededness
- ▶ [Huet 86]: prism, FSCD
- Khasidashvili & Glauert 90s: axiomatic neededness, optimality, ...

- **•** [Church–Rosser 36]: $\lambda\beta$ -development
- [Newman 42]: axiomatic residuation
- $\blacktriangleright\,$ Hindley 60s and 70s: axiomatic residuation for $\beta\,$
- Figure [Lévy 78]: $\lambda\beta$ -calculus permutation equivalence, optimality, cube, . . .
- Huet & Lévy 79: first-order TRS residuation, neededness
- ▶ [Huet 86]: prism, FSCD
- Khasidashvili & Glauert 90s: axiomatic neededness, optimality, ...
- ► Terese 03: residual systems (presented next), equivalence of equivalences

- **•** [Church–Rosser 36]: $\lambda\beta$ -development
- [Newman 42]: axiomatic residuation
- $\blacktriangleright\,$ Hindley 60s and 70s: axiomatic residuation for $\beta\,$
- Figure [Lévy 78]: $\lambda\beta$ -calculus permutation equivalence, optimality, cube, . . .
- Huet & Lévy 79: first-order TRS residuation, neededness
- ▶ [Huet 86]: prism, FSCD
- Khasidashvili & Glauert 90s: axiomatic neededness, optimality, ...
- ► Terese 03: residual systems (presented next), equivalence of equivalences
- [Melliès 02]: axiomatic multi-redexes/treks (presented after)

Example (Residuation in rewriting (replication))

- **IChurch–Rosser 36]**: $\lambda\beta$ -development
- [Newman 42]: axiomatic residuation
- $\blacktriangleright\,$ Hindley 60s and 70s: axiomatic residuation for $\beta\,$
- ▶ [Lévy 78]: $\lambda\beta$ -calculus permutation equivalence, optimality, cube, ...
- Huet & Lévy 79: first-order TRS residuation, neededness
- ▶ [Huet 86]: prism, FSCD
- Khasidashvili & Glauert 90s: axiomatic neededness, optimality, ...
- ▶ Terese 03: residual systems (presented next), equivalence of equivalences
- [Melliès 02]: axiomatic multi-redexes/treks (presented after)

in concurrency (linear): [Mazurkiewicz 70s], [Stark 89], [Winskel 89], Wolfram,

Definition (Residual system, Terese 03)

residual system $\langle \rightarrow, \mathbf{1}, / \rangle$ has for co-initial ϕ, ψ, χ in rewrite system \rightarrow :

$$\phi/\mathbf{1} = \phi \tag{1}$$

$$\phi/\phi = 1$$
 (2)

$$1/\phi = 1$$
 (3)

$$(\phi/\psi)/(\chi/\psi) = (\phi/\chi)/(\psi/\chi)$$
(4)

Definition (Residual system, Terese 03)

residual system $\langle \rightarrow, \mathbf{1}, / \rangle$ has for co-initial ϕ, ψ, χ in rewrite system \rightarrow :

$$\phi/\mathbf{1} = \phi$$
 (1)

$$\phi/\phi = 1$$
 (2)

$$1/\phi = 1$$
 (3)

$$(\phi/\psi)/(\chi/\psi) = (\phi/\chi)/(\psi/\chi)$$
 (4)

1 is loop (one for each object)

Definition (Residual system, Terese 03)

residual system $\langle \rightarrow, \mathbf{1}, / \rangle$ has for co-initial ϕ, ψ, χ in rewrite system \rightarrow :

Definition (Residual system, Terese 03)

residual system $\langle \rightarrow, \mathbf{1}, / \rangle$ has for co-initial ϕ, ψ, χ in rewrite system \rightarrow :

$$\phi/\mathbf{1} = \phi \tag{1}$$

$$\phi/\phi = 1$$
 (2)

$$1/\phi = 1$$
 (3)

$$(\phi/\psi)/(\chi/\psi) = (\phi/\chi)/(\psi/\chi)$$
(4)

Definition (Residual system, Terese 03)

residual system $\langle \rightarrow, \mathbf{1}, / \rangle$ has for co-initial ϕ, ψ, χ in rewrite system \rightarrow :

$$\phi/\mathbf{1} = \phi \tag{1}$$

$$\phi/\phi = 1$$
 (2)

$$L/\phi = 1$$
 (3)

$$(\phi/\psi)/(\chi/\psi) = (\phi/\chi)/(\psi/\chi)$$
(4)

Intuition: residuation makes join semi-lattice \implies least upper bounds

- residuation diamond ⇒ commutativity of join (seen above)
- unit law (2) \implies idempotence of join
- cube law (4) \implies associativity of join

Definition (Residual system, Terese 03)

residual system $\langle \rightarrow, \mathbf{1}, / \rangle$ has for co-initial ϕ, ψ, χ in rewrite system \rightarrow :

$$\phi/\mathbf{1} = \phi$$
 (1)

$$\phi/\phi = 1$$
 (2)

$$L/\phi = 1$$
 (3)

$$(\phi/\psi)/(\chi/\psi) = (\phi/\chi)/(\psi/\chi)$$
(4)

Remark (only intuition)

in general no order (steps need not compose), join need not exist ($\rightarrow \rightarrow$ in OTRSs)

Definition (Residual system, Terese 03)

residual system $\langle \rightarrow, \mathbf{1}, / \rangle$ has for co-initial ϕ, ψ, χ in rewrite system \rightarrow :

$$\phi/\mathbf{1} = \phi \tag{1}$$

$$\phi/\phi = 1$$
 (2)

$$1/\phi = 1$$
 (3)

$$(\phi/\psi)/(\chi/\psi) = (\phi/\chi)/(\psi/\chi)$$
(4)

Example

 \rightarrow_{β} is residual system for / having joins with terms (trivial multisteps) as 1

Ubiquity of residual systems/algebras (single object)

Example

▶ residual systems: combinatory logic, $\lambda\beta$, orthogonal (first- and higher-order) term rewrite systems, positive braids, associativity, self-distributivity, ..., any confluent countable rewrite system (for contrived notion of lub)

- ▶ residual systems: combinatory logic, $\lambda\beta$, orthogonal (first- and higher-order) term rewrite systems, positive braids, associativity, self-distributivity, ..., any confluent countable rewrite system
- commutative residual algebras: numbers with monus, (measurable) (multi)sets with difference, positive natural numbers with dovision, ...

- ▶ residual systems: combinatory logic, $\lambda\beta$, orthogonal (first- and higher-order) term rewrite systems, positive braids, associativity, self-distributivity, ..., any confluent countable rewrite system
- commutative residual algebras: numbers with monus, (measurable) (multi)sets with difference, positive natural numbers with dovision, ...
- semi-lattices induce residual systems, categories having push-outs induce residual systems (for epis)

- ▶ residual systems: combinatory logic, $\lambda\beta$, orthogonal (first- and higher-order) term rewrite systems, positive braids, associativity, self-distributivity, ..., any confluent countable rewrite system
- commutative residual algebras: numbers with monus, (measurable) (multi)sets with difference, positive natural numbers with dovision, ...
- semi-lattices induce residual systems, categories having push-outs induce residual systems (for epis)
- commutative residual algebras have multiset representation theorem, are equivalent to commutative BCK algebras with relative cancellation, induce lattice-ordered groups (groupoids for residual systems; with provisos), ...

- ▶ residual systems: combinatory logic, $\lambda\beta$, orthogonal (first- and higher-order) term rewrite systems, positive braids, associativity, self-distributivity, ..., any confluent countable rewrite system
- commutative residual algebras: numbers with monus, (measurable) (multi)sets with difference, positive natural numbers with dovision, ...
- semi-lattices induce residual systems, categories having push-outs induce residual systems (for epis)
- commutative residual algebras have multiset representation theorem, are equivalent to commutative BCK algebras with relative cancellation, induce lattice-ordered groups (groupoids for residual systems; with provisos), ...
- inclusion–exclusion principle, [EWD 1313], Bayes' Theorem,...

Residual systems with composition

Definition (Residual system with composition, Terese 03)

residual system $\langle \rightarrow, \mathbf{1}, /, \cdot \rangle$ with composition \cdot and for coinitial ϕ, ψ, χ in ARS \rightarrow :

$$\phi/\mathbf{1} = \phi \tag{1}$$

$$\phi/\phi = 1$$
 (2)

$$1/\phi = 1$$
 (3)

$$(\phi/\psi)/(\chi/\psi) = (\phi/\chi)/(\psi/\chi)$$
(4)

$$\chi/(\phi \cdot \psi) = (\chi/\phi)/\psi \tag{7}$$

$$(\phi \cdot \psi)/\chi = (\phi/\chi) \cdot (\psi/(\chi/\phi))$$
(8)

Residual systems with composition

Definition (Residual system with composition, Terese 03)

residual system $\langle \rightarrow, \mathbf{1}, /, \cdot \rangle$ with composition \cdot and for coinitial ϕ, ψ, χ in ARS \rightarrow :

$$\phi/\mathbf{1} = \phi \tag{1}$$

$$\phi/\phi = 1$$
 (2)

$$1/\phi = 1 \tag{3}$$

$$(\phi/\psi)/(\chi/\psi) = (\phi/\chi)/(\psi/\chi)$$
(4)

$$\chi/(\phi \cdot \psi) = (\chi/\phi)/\psi \tag{7}$$

$$(\phi \cdot \psi)/\chi = (\phi/\chi) \cdot (\psi/(\chi/\phi))$$

)
$$(x/\phi)/\psi$$
 $(x/\phi)/\psi$ $(x/\phi)/\psi$ $(x/\phi)/\psi$ $(x/\phi)/\psi$ $(x/\phi)/\psi$

composite identities (7) and (8):

Lemma (Terese 03)

 ⟨→, 1, /⟩ generates reduction system w/ composition on →* up to 1 · 1 = 1 (by tiling with diamonds and cubes)

Lemma (Terese 03)

- $\blacktriangleright \ \langle \rightarrow, 1, / \rangle \text{ generates reduction system w/ composition on } \rightarrow^* up \text{ to } 1 \cdot 1 = 1$
- $\blacktriangleright \preccurlyeq$ is quasi-order with $\phi \preccurlyeq \psi := \phi/\psi = 1$ (natural or projection order)

Lemma (Terese 03)

- $\blacktriangleright \ \langle \rightarrow, 1, / \rangle \text{ generates reduction system w/ composition on } \rightarrow^* up \text{ to } 1 \cdot 1 = 1$
- $\blacktriangleright \ \preccurlyeq$ is quasi-order with $\phi \preccurlyeq \psi := \phi/\psi = \mathbf{1}$
- \blacktriangleright \simeq is congruence for operations with $\simeq := \preccurlyeq \cap \succ \implies$ may be quotiented out

Lemma (Terese 03)

- $\blacktriangleright \ \langle \rightarrow, 1, / \rangle \text{ generates reduction system w/ composition on } \rightarrow^* up \text{ to } 1 \cdot 1 = 1$
- $\blacktriangleright \ \ \, \preccurlyeq \textit{is quasi-order with} \ \ \phi \preccurlyeq \psi := \phi/\psi = \mathbf{1}$
- $\blacktriangleright\ \simeq$ is congruence for operations with $\simeq:= \preccurlyeq \cap \succcurlyeq$
- ► \simeq -quotient of \rightarrow^* gives category for \rightarrow with push-outs, epis (identify multistep, development: $\beta(x.x,z) \beta(x.x,z) \simeq I z \beta(x.x,z) \cdot \beta(x.x,z) I$)

Lemma (recent)

- $\blacktriangleright \ \langle \rightarrow, 1, / \rangle \text{ generates reduction system w/ composition on } \rightarrow^* up \text{ to } 1 \cdot 1 = 1$
- $\blacktriangleright \ \ \, \preccurlyeq \textit{is quasi-order with} \ \ \phi \preccurlyeq \psi := \phi/\psi = \mathbf{1}$
- $\blacktriangleright\ \simeq$ is congruence for operations with $\simeq:=\preccurlyeq\cap\succcurlyeq$
- $\blacktriangleright\$ \simeq -quotient of \rightarrow^* gives category for \twoheadrightarrow with push-outs, epis
- ▶ natural order on reductions partial order with lubs and \cdot left-cancellation ($\phi \lor \psi$ definable by $\phi \cdot (\psi/\phi)$; is Bayes' Theorem $P(A \cap B) = P(A) \cdot P(B \mid A)$)

Example: category with pushouts/epis from $ightarrow_{eta}$

Construction stages:

$$1 facet \rightarrow_{\beta} -steps \implies multisteps \rightsquigarrow_{\beta} (\rightarrow_{\beta} \subseteq \multimap_{\beta} \subseteq \twoheadrightarrow_{\beta})$$

Example: category with pushouts/epis from $ightarrow_{eta}$

Construction stages:

1 facet \rightarrow_{β} -steps \implies multisteps \implies_{β}

 $\mathbf{2} \longrightarrow_{\beta}$ has diamond property \implies residuation /

Example: category with pushouts/epis from $ightarrow_{eta}$

Construction stages:

- 1 facet \rightarrow_{β} -steps \implies multisteps \implies_{β}
- **2** \rightarrow_{β} has diamond property \implies residuation /
- f S check residual laws (1)–(4) for / \Longrightarrow residual system $\langle o _eta , 1, /
 angle$
Example: category with pushouts/epis from $ightarrow_{eta}$

Construction stages:

- **1** facet \rightarrow_{β} -steps \implies multisteps \implies_{β}
- **2** \longrightarrow_{β} has diamond property \implies residuation /
- f S check residual laws (1)–(4) for $/\implies$ residual system $\langle \multimap_{eta}, 1, /
 angle$
- **4** generate rs with composition $\langle \rightarrow \beta_{\beta}^{*}, 1^{*}, /^{*}, \cdot \rangle$ on multistep reductions

Example: category with pushouts/epis from $ightarrow_{eta}$

Construction stages:

- **1** facet \rightarrow_{β} -steps \implies multisteps \implies_{β}
- **2** \longrightarrow_{β} has diamond property \implies residuation /
- f S check residual laws (1)–(4) for $/\Longrightarrow$ residual system $\langle o _eta , 1, /
 angle$
- **4** generate rs with composition $\langle \longrightarrow_{\beta}^{*}, 1^{*}, /^{*}, \cdot \rangle$ on multistep reductions
- **5** quotient out $\simeq \implies$ category w/ pushouts,epis $\langle \twoheadrightarrow_{\beta}, 1^*, /^*, \cdot \rangle$ on reductions

Example: category with pushouts/epis from $ightarrow_{eta}$

Construction stages:

- **1** facet \rightarrow_{β} -steps \implies multisteps \implies_{β}
- **2** \longrightarrow_{β} has diamond property \implies residuation /
- f S check residual laws (1)–(4) for $/\Longrightarrow$ residual system $\langle o
 angle_eta, 1, /
 angle$
- **4** generate rs with composition $\langle \longrightarrow_{\beta}^{*}, 1^{*}, /^{*}, \cdot \rangle$ on multistep reductions
- **5** quotient out $\simeq \implies$ category w/ pushouts,epis $\langle \twoheadrightarrow_{\beta}, 1^*, /^*, \cdot \rangle$ on reductions

Remark

faceting also works for positive/generalised braids, associativity, ortho TRSs or HRSs, . . . but first step can also be done by magic (as long as the rest works)

Axioms on multi-redexes of [Melliès 02]

Axioms

(self-destruction, SD) no redex has a residual after itself (as step) (finiteness, F) every redex has finitely many residuals after a step (finite developments, FD) developments of multi-redexes are finite (permutation, PERM) every peak ϕ, ψ of steps can be completed by a valley of complete developments of the residuals of ψ after ϕ , respectively the residuals of ϕ after ψ , such that both legs of the resulting local confluence diagram induce the same redex-trace relation

Remark

some rewrite system

Remark

redex is reified step from a given object; multi-redex is set of such

Remark

niversitä

nshruck

redex-tracing of step relating redexes in its source and target (*residuals*) pointwise extended to multi-redexes

Remark

nsbruck

development of multi-redex as reduction only contracting residuals complete if no residuals remaining

Axioms

(SD) $(\phi [\![\phi]\!]) = \emptyset$ where $[\![\phi]\!]$ is redex-trace relation of ϕ

(F) $(\psi \ [\![\phi]\!])$ is finite for co-initial ϕ, ψ

(FD) $\phi_1 \cdot \ldots \cdot \phi_n$ development of multi-redex Φ if $\phi_{i+1} \in (\Phi \llbracket \phi_1 \cdot \ldots \cdot \phi_i \rangle)$ for all *i* complete if no residuals remaing

(PERM) each peak ϕ, ψ of steps is completed by valley γ, δ of complete developments of $(\psi \ [\![\phi]\!] \rangle), (\phi \ [\![\psi]\!] \rangle)$ with $[\![\phi \cdot \gamma]\!] = [\![\psi \cdot \delta]\!]$

Axioms

(SD) $(\phi [\phi]) = \emptyset$ where $[\phi]$ is redex-trace relation of ϕ

(F) $(\psi \ [\![\phi]\!])$ is finite for co-initial ϕ, ψ

(FD) $\phi_1 \cdot \ldots \cdot \phi_n$ development of multi-redex Φ if $\phi_{i+1} \in (\Phi [\phi_1 \cdot \ldots \cdot \phi_i])$ for all *i* complete if no residuals remaing

(PERM) each peak ϕ, ψ of steps is completed by valley γ, δ of complete developments of $(\psi \ [\![\phi]\!] \rangle), (\phi \ [\![\psi]\!] \rangle)$ with $[\![\phi \cdot \gamma]\!] = [\![\psi \cdot \delta]\!]$

Example (\rightarrow_{β})

developments and redex-tracing as in [Church-Rosser 36]; axioms hold

Lemma

 $\langle \rightarrow \rangle, 1, / \rangle$ is a residual system having joins, for \rightarrow the rewrite system having as objects the objects of \rightarrow , and as steps a multi-redex $a^{\Phi} : a \rightarrow b$ if there is a complete development of Φ from a to b; 1_a defined as \emptyset ; and residual Φ/Ψ defined as $(\Phi [\![\Psi]\!])$ (for Ψ any complete development of Ψ).

Lemma

 $\langle \rightarrow \rangle, 1, / \rangle$ is a residual system having joins, for \rightarrow the rewrite system having as objects the objects of \rightarrow , and as steps a multi-redex $a^{\Phi} : a \rightarrow b$ if there is a complete development of Φ from a to b; 1_a defined as \emptyset ; and residual Φ/Ψ defined as $(\Phi [\![\Psi]\!])$ (for Ψ any complete development of Ψ).

Proof intuition.

all complete developments of Φ same redex-tracing by (PERM), by induction (FD) guarantees no ∞ interaction of redexes in $\Phi \implies$ induction measure

Lemma

 $\langle \rightarrow \rangle, 1, / \rangle$ is a residual system having joins, for \rightarrow the rewrite system having as objects the objects of \rightarrow , and as steps a multi-redex $a^{\Phi} : a \rightarrow b$ if there is a complete development of Φ from a to b; 1_a defined as \emptyset ; and residual Φ/Ψ defined as $(\Phi [\![\Psi]\!])$ (for Ψ any complete development of Ψ).

Definition

local homotopy \equiv_l on reductions with the same sources/targets obtained by identifying legs of (PERM) diagrams formally: equivalence generated by closing $\phi \cdot \gamma \equiv_l \psi \cdot \delta$ for peaks ϕ, ψ and valleys γ, δ given by (PERM) under composition: if $\gamma \equiv_l \gamma'$ then $\delta' \cdot \gamma \cdot \epsilon' \equiv_l \delta' \cdot \gamma' \cdot \epsilon'$.

Lemma

schruck

 $\langle \rightarrow \rangle, 1, / \rangle$ is a residual system having joins, for \rightarrow the rewrite system having as objects the objects of \rightarrow , and as steps a multi-redex $a^{\Phi} : a \rightarrow b$ if there is a complete development of Φ from a to b; 1_a defined as \emptyset ; and residual Φ/Ψ defined as $(\Phi [\![\Psi]\!])$ (for Ψ any complete development of Ψ).

Lemma
$\simeq = \equiv_l$
Proof.
by showing $\simeq = \equiv = \equiv_l$ where \equiv is square homotopy obtained by identifying
legs of diamonds of multisteps

embeddings needed to mediate between \rightarrow -reductions and \rightarrow -reductions

Lemma

 $\langle \rightarrow \rangle, 1, / \rangle$ is a residual system having joins, for \rightarrow the rewrite system having as objects the objects of \rightarrow , and as steps a multi-redex $a^{\Phi} : a \rightarrow b$ if there is a complete development of Φ from a to b; 1_a defined as \emptyset ; and residual Φ/Ψ defined as $(\Phi \|\Psi\rangle)$ (for Ψ any complete development of Ψ).

Lemma			
$\simeq = \equiv_l$			
Corollary			

reductions up to local homotopy have push-outs and are epis.

Conclusions

- residuation => upper bounds (of pairs of co-initial steps)
- \blacktriangleright residual system \implies least upper bounds (of finite co-initial steps)
- ▶ multi-redexes ⇒ sufficient to construct residual system

Reflections

- no light between residuation and confluence (papers stating to prove confluence not using residuals: empty statement)
- residuation breaks primacy of composition (residuation total but composition only partial)
- residuation a perspective on causality (cf. Winskel 89, Terese 03, Wolfram) (does causality involve FD? philosophical/ysics question; cf. proceedings)
- FFD (finite family developments) corresponds to FD of 2-rewriting. important but subtle (see proceedings): suggest to formalise FFD (for HRSs)
- residuation in founding papers of: λ-calculus (Church & Rosser, TLCA), rewriting (Newman, RTA), and in FSCD book (Huet) (FSCD PC/SC does not respect this: suggest to remove RTA/TLCA/FSCD book from FSCD page and from CfP)