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Z for A-calculi

Z or not
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A rewrite relation — has the Z-property
if there is a map e from objects to objects
such that for any step from a to b

there is a reduction from b to a°

and there is a reduction from a® to b*®
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This talk: (short) history, interest, and (non-)examples
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self-distributivity: xyz — xz(yz)

Theorem
self-distributivity has the Z-property
Map
x* = x
(ts)* = t'ba=xs®, xi=xs®,.. ]
Example
(xy)* = xy

(xyz)* = xz(yz)

Proof.
This works: Braids and Self-distributivity (Dehornoy 2000)
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Z property for semi-complete rewrite relations

Theorem
Every normalising and confluent rewrite relation has the Z-property

Let e map every object to its normal form
(exists by normalisation, unique by confluence)

Proof.

If a— b, then b — a®* — b*® since b reduces to its normal form b*®
which is the same as the normal form a® of a. O
Corollary

Z-property for B3-reduction in typed A-calculi by using meta-theory

Here reverse: Z-property to establish meta-theory
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/Z = confluence

Theorem
If a rewrite relation has the Z-property then it is confluent

Proof.

dao ai an as

an+1

bo ag ay as ay

induction




/ = hyper-cofinal

Definition (e-strategy)

a —e— b if ais not a normal form and b = a°®
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Hyper-cofinality of —e—:
for any reduction which eventually always contains —e—-step
any co-initial reduction can be extended to reach the first
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Proof.
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/ = hyper-cofinal

Theorem
—e— s hyper-cofinal
Proof.
a > an+T— @ a1
z oz JZ g
3 yZ
b .% .% L]
------ >=>aj---->> 3,---->>a,,

Summary: —e— confluent, (hyper-)normalising, bullet-fast,



[ has Z

Theorem
(Ax.M)N — M[x:=N] has the Z-property for \-calculus



[ has Z

Theorem
(Ax.M)N — M[x:=N] has the Z-property for A\-calculus
Proof.

Full-development map (contract all redexes present)
L]

x* = x
Ox.M)* = Ax.M®
(MN)* = M'[x:=N°*] if M is an abstraction, M®* = Ax.M’
= M°*N*® otherwise

Example
> [*=1; (I = Ax.x)
> 1N =1, 111* = II;
> (Axy.x)zw® = (\y.z)w;
> ((Axy.lyx)zl)® = (\y.yz)l;



[ has Z

Theorem
(Ax.M)N — M[x:=N] has the Z-property for \-calculus
Proof.
Full-development map (contract all redexes present)
x* = X

(Ax.M)* = Ax.M*
(MN)* = M’'[x:=N°®] if M is an abstraction, M®* = Ax.M’
= M°N*® otherwise
(Self) M — M®;
(Rhs) M®[x:=N*] - M[x:=N]*; and
(Z) M— N = N —» M*— N°.

each by induction and cases on M.



[ has Z

Theorem
(Ax.M)N — M[x:=N] has the Z-property for A\-calculus

Proof.

Full-superdevelopment map (redexes present or upward-created)
{ ]

x* = x
Ox.M)* = Ax.M®
(MN)* = M'[x:=N°*] if Misa term, M®* = Ax.M’
= M°*N® otherwise

Example
> [*=1; (I = Ax.x)
> 1N =1, 11I* = I
> (Axy.x)zw® = z;
> ((Axy.lyx)zl)® = Iz
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x* = x
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= M°*°N*® otherwise
Replace ‘is an abstraction’ by ‘is a term’ in development proof. [



[ has Z

Theorem

(Ax.M)N — M[x:=N] has the Z-property for \-calculus

Proof.

Full-superdevelopment map (redexes present or upward-created)
x* = x

(Ax.M)* = Ix.M*®
(MN)* = M'[x:=N°*] if Misaterm, M®* = Ax.M’
= M°*°N*® otherwise
Replace ‘is an abstraction’ by ‘is a term’ in development proof. [

Moral: possibly more than one witnessing map for Z-property



Comparison

» Dehornoy:
Z-property of — for e;
» Tait—Martin Lof:
— C —e—» C —» and diamond () property of —e—;

» Takahashi:
— C —e» C — and angle (() property of —— for e.



Comparison

» Dehornoy:

Z-property of — for e;
» Tait—Martin Lof:

— C —» C — and diamond ({) property of —e—;
» Takahashi:

— C -~ C — and angle (() property of —e— for e.

Mnemonics: —e— is full —=—



Comparison

» Dehornoy:

Z-property of — for e;
» Tait—Martin Lof:

— C —e—» C —» and diamond () property of —e—;
» Takahashi:

— C —e» C — and angle (() property of —— for e.

How do Z, ¢, ( relate?
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Theorem
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Proof.
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Theorem
for any map e, Z < both — C —e» C — and (

Proof.

(only if) Def. a —e— b if b between a and a°, i.e. a - b — a*:
»a—b=b—»a*= —C -
»a-o>b=a—»b= —o>C
» Suppose a —e— b.

» a— b — a® by definition of —e—.

» a— b = a* — b* (monotonicity of e) by Z
» b—» a® —» b® so b —e— a® by definition of —e—.
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Theorem
Ao has Z property

Proof.
Map: first o-normalise (>) then Beta-full development (—e—)
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» A : angle property of —e—
» E: Beta commutes with o-normalisation

» [: o is terminating and confluent



ABn has Z property

Theorem
Weakly orthogonal rewrite system = Z property

Proof.
Map:
Contract maximal set of non-overlapping redexes inside-out

Example
c(x) — x
F(f(x)) — f(x)

g(f(f(f(x)))) — &(f(f(x)))
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Theorem
Weakly orthogonal rewrite system = Z property

Proof.
Map:
Contract maximal set of non-overlapping redexes inside-out

Example
c(x) — x
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Proof.
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ABn has Z property

Theorem
Weakly orthogonal rewrite system = Z property

Proof.
Map:
Contract maximal set of non-overlapping redexes inside-out

Example
c(x) — x
f(f(x)) — f(x)

g(f(f(f(x)))) — &(f(f(x)))

Outside-in (Takahashi) does not give Z (in general)!
-..not g(f(f(x))) — g(f(f(f(x))))!



Some more consequences of Z

» if a — b then a® — b* (monotonicity)
» — has Z-property iff == has (IZ-property)
> If o1, @5 have the Z-property for —, so does their composition

o1 0 . Moreover, a% —» (a%)*

May be used to get ideas about systems which do not have Z



Confluence & Z

—1—1

\O/

Easy to turn into a finite term rewriting system
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Conclusions

» Surprising outsider (Dehornoy) input: simple yet not known
» Conjecture: (8 with restricted n-expansion does not have Z

» Problem: characterize systems having Z-property
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