Z

Vincent van Oostrom

Theoretical Philosophy
Universiteit Utrecht
The Netherlands
this month at LIX

February 1, 2008

Z

Z for λ-calculi

Z or not

Z

A rewrite relation \rightarrow has the Z-property

A rewrite relation \rightarrow has the Z-property if there is a map - from objects to objects

A rewrite relation \rightarrow has the Z-property if there is a map - from objects to objects such that for any step from a to b

A rewrite relation \rightarrow has the Z-property if there is a map - from objects to objects such that for any step from a to b there is a reduction from b to a^{\bullet}

A rewrite relation \rightarrow has the Z-property if there is a map - from objects to objects such that for any step from a to b there is a reduction from b to a^{\bullet} and there is a reduction from a^{\bullet} to b^{\bullet}

Z

$\exists \bullet: A \rightarrow A, \forall a, b \in A: a \rightarrow b \Rightarrow b \rightarrow a^{\bullet}, a^{\bullet} \rightarrow b^{\bullet}$

This talk: (short) history, interest, and (non-)examples

self-distributivity: $x y z \rightarrow x z(y z)$

Theorem
self-distributivity has the Z-property

self-distributivity: $x y z \rightarrow x z(y z)$

Theorem
self-distributivity has the Z-property
Map

$$
\begin{aligned}
x^{\bullet} & =x \\
(t s)^{\bullet} & =t^{\bullet}\left[x_{1}:=x_{1} s^{\bullet}, x_{2}:=x_{2} s^{\bullet}, \ldots\right]
\end{aligned}
$$

self-distributivity: $x y z \rightarrow x z(y z)$

Theorem
self-distributivity has the Z-property
Map

$$
\begin{aligned}
x^{\bullet} & =x \\
(t s)^{\bullet} & =t^{\bullet}\left[x_{1}:=x_{1} s^{\bullet}, x_{2}:=x_{2} s^{\bullet}, \ldots\right]
\end{aligned}
$$

Example

$$
(x y)^{\bullet}=x y
$$

self-distributivity: $x y z \rightarrow x z(y z)$

Theorem
self-distributivity has the Z-property
Map

$$
\begin{aligned}
x^{\bullet} & =x \\
(t s)^{\bullet} & =t^{\bullet}\left[x_{1}:=x_{1} s^{\bullet}, x_{2}:=x_{2} s^{\bullet}, \ldots\right]
\end{aligned}
$$

Example

$$
\begin{aligned}
& (x y)^{\bullet}=x y \\
& (x y z)^{\bullet}=x z(y z)
\end{aligned}
$$

self-distributivity: $x y z \rightarrow x z(y z)$

Theorem
self-distributivity has the Z-property
Map

$$
\begin{aligned}
x^{\bullet} & =x \\
(t s)^{\bullet} & =t^{\bullet}\left[x_{1}:=x_{1} s^{\bullet}, x_{2}:=x_{2} s^{\bullet}, \ldots\right]
\end{aligned}
$$

Example

$$
\begin{aligned}
& (x y)^{\bullet}=x y \\
& (x y z)^{\bullet}=x z(y z)
\end{aligned}
$$

Proof.
This works: Braids and Self-distributivity (Dehornoy 2000)

Z property for semi-complete rewrite relations

Theorem
Every normalising and confluent rewrite relation has the Z-property

Z property for semi-complete rewrite relations

Theorem
Every normalising and confluent rewrite relation has the Z-property
Let - map every object to its normal form (exists by normalisation, unique by confluence)

Z property for semi-complete rewrite relations

Theorem

Every normalising and confluent rewrite relation has the Z-property
Let - map every object to its normal form (exists by normalisation, unique by confluence)

Proof.
If $a \rightarrow b$, then $b \rightarrow a^{\bullet} \rightarrow b^{\bullet}$ since b reduces to its normal form b^{\bullet} which is the same as the normal form a^{\bullet} of a.

Z property for semi-complete rewrite relations

Theorem

Every normalising and confluent rewrite relation has the Z-property
Let - map every object to its normal form (exists by normalisation, unique by confluence)
Proof.
If $a \rightarrow b$, then $b \rightarrow a^{\bullet} \rightarrow b^{\bullet}$ since b reduces to its normal form b^{\bullet} which is the same as the normal form a^{\bullet} of a.

Corollary

Z-property for β-reduction in typed λ-calculi by using meta-theory

Z property for semi-complete rewrite relations

Theorem

Every normalising and confluent rewrite relation has the Z-property
Let - map every object to its normal form (exists by normalisation, unique by confluence)
Proof.
If $a \rightarrow b$, then $b \rightarrow a^{\bullet} \rightarrow b^{\bullet}$ since b reduces to its normal form b^{\bullet} which is the same as the normal form a^{\bullet} of a.

Corollary

Z-property for β-reduction in typed λ-calculi by using meta-theory Here reverse: Z-property to establish meta-theory

$Z \Rightarrow$ confluence

Theorem
If a rewrite relation has the Z-property then it is confluent

$Z \Rightarrow$ confluence

Theorem
If a rewrite relation has the Z-property then it is confluent
Proof.

$Z \Rightarrow$ confluence

Theorem
If a rewrite relation has the Z-property then it is confluent
Proof.

$Z \Rightarrow$ confluence

Theorem
If a rewrite relation has the Z-property then it is confluent
Proof.

$Z \Rightarrow$ confluence

Theorem
If a rewrite relation has the Z-property then it is confluent
Proof.

$Z \Rightarrow$ confluence

Theorem
If a rewrite relation has the Z-property then it is confluent
Proof.

$Z \Rightarrow$ confluence

Theorem
If a rewrite relation has the Z-property then it is confluent
Proof.

$Z \Rightarrow$ hyper-cofinal

Definition (•-strategy)
$a \bullet b$ if a is not a normal form and $b=a^{\bullet}$

$Z \Rightarrow$ hyper-cofinal

Hyper-cofinality of \longrightarrow :
for any reduction which eventually always contains \rightarrow-step any co-initial reduction can be extended to reach the first

$Z \Rightarrow$ hyper-cofinal

Theorem
\rightarrow is hyper-cofinal
Proof.

$Z \Rightarrow$ hyper-cofinal

Theorem
\rightarrow is hyper-cofinal
Proof.

Summary: \bullet confluent, (hyper-)normalising, bullet-fast,

β has Z

Theorem
$(\lambda x . M) N \rightarrow M[x:=N]$ has the Z-property for λ-calculus

β has Z

Theorem
$(\lambda x . M) N \rightarrow M[x:=N]$ has the Z-property for λ-calculus
Proof.
Full-development map (contract all redexes present)

$$
\begin{array}{rlrl}
x^{\bullet} & =x & \\
(\lambda x \cdot M)^{\bullet} & =\lambda x \cdot M^{\bullet} & & \\
(M N)^{\bullet} & =M^{\prime}\left[x:=N^{\bullet}\right] & & \text { if } M \text { is an abstraction, } M^{\bullet}=\lambda x \cdot M^{\prime} \\
& =M^{\bullet} N^{\bullet} & \text { otherwise }
\end{array}
$$

Example

- $I^{\bullet}=I ;(I=\lambda x \cdot x)$
- $I(I I)^{\bullet}=I, I I^{\bullet}=I I$;
- $(\lambda x y . x) z w^{\bullet}=(\lambda y . z) w ;$
- $((\lambda x y . l y x) z I)^{\bullet}=(\lambda y \cdot y z) I$;

β has Z

Theorem
$(\lambda x . M) N \rightarrow M[x:=N]$ has the Z-property for λ-calculus

Proof.

Full-development map (contract all redexes present)

$$
x^{\bullet}=x
$$

$$
(\lambda x \cdot M)^{\bullet}=\lambda x \cdot M^{\bullet}
$$

$$
(M N)^{\bullet}=M^{\prime}\left[x:=N^{\bullet}\right] \text { if } M \text { is an abstraction, } M^{\bullet}=\lambda x \cdot M^{\prime}
$$

$$
=M^{\bullet} N^{\bullet} \quad \text { otherwise }
$$

(Self) $M \rightarrow M^{\bullet}$;
(Rhs) $M^{\bullet}\left[x:=N^{\bullet}\right] \rightarrow M[x:=N]^{\bullet}$; and
(Z) $M \rightarrow N \Rightarrow N \rightarrow M^{\bullet} \rightarrow N^{\bullet}$.
each by induction and cases on M.

β has Z

Theorem
$(\lambda x . M) N \rightarrow M[x:=N]$ has the Z-property for λ-calculus
Proof.
Full-superdevelopment map (redexes present or upward-created)

$$
\begin{array}{rlrl}
x^{\bullet} & =x \\
(\lambda x . M)^{\bullet} & =\lambda x \cdot M^{\bullet} & & \\
(M N)^{\bullet} & =M^{\prime}\left[x:=N^{\bullet}\right] & \text { if } M \text { is a term, } M^{\bullet}=\lambda x \cdot M^{\prime} \\
& =M^{\bullet} N^{\bullet} & \text { otherwise }
\end{array}
$$

Example

- $I^{\bullet}=I ;(I=\lambda x \cdot x)$
- $I(I I)^{\bullet}=I, I I \bullet^{\bullet}=I$;
- $(\lambda x y . x) z w^{\bullet}=z$;
- $((\lambda x y . \mid y x) z \mid)^{\bullet}=I z$

β has Z

Theorem
$(\lambda x . M) N \rightarrow M[x:=N]$ has the Z-property for λ-calculus
Proof.
Full-superdevelopment map (redexes present or upward-created)

$$
\begin{aligned}
x^{\bullet} & =x & & \\
(\lambda x \cdot M)^{\bullet} & =\lambda x \cdot M^{\bullet} & & \\
(M N)^{\bullet} & =M^{\prime}\left[x:=N^{\bullet}\right] & & \text { if } M \text { is a term, } M^{\bullet}=\lambda x \cdot M^{\prime} \\
& =M^{\bullet} N^{\bullet} & & \text { otherwise }
\end{aligned}
$$

Replace 'is an abstraction' by 'is a term' in development proof. \square

β has Z

Theorem
$(\lambda x . M) N \rightarrow M[x:=N]$ has the Z-property for λ-calculus
Proof.
Full-superdevelopment map (redexes present or upward-created)

$$
\begin{aligned}
x^{\bullet} & =x & & \\
(\lambda x \cdot M)^{\bullet} & =\lambda x \cdot M^{\bullet} & & \\
(M N)^{\bullet} & =M^{\prime}\left[x:=N^{\bullet}\right] & & \text { if } M \text { is a term, } M^{\bullet}=\lambda x \cdot M^{\prime} \\
& =M^{\bullet} N^{\bullet} & & \text { otherwise }
\end{aligned}
$$

Replace 'is an abstraction' by 'is a term' in development proof. \square
Moral: possibly more than one witnessing map for Z-property

Comparison

- Dehornoy:

Z-property of \rightarrow for •;

- Tait-Martin Löf:
$\rightarrow \subseteq \multimap \subseteq \rightarrow$ and diamond (\diamond) property of \rightarrow;
- Takahashi:
$\rightarrow \subseteq \rightarrow \subseteq \rightarrow$ and angle (\langle) property of \rightarrow for \bullet.

Comparison

- Dehornoy:

Z-property of \rightarrow for \bullet;

- Tait-Martin Löf:
$\rightarrow \subseteq \multimap \subseteq \rightarrow$ and diamond (\diamond) property of \rightarrow;
- Takahashi:
$\rightarrow \subseteq \rightarrow \subseteq \rightarrow$ and angle (\langle) property of \longrightarrow for \bullet.
Mnemonics: \bullet is full \longrightarrow

Comparison

- Dehornoy:

Z-property of \rightarrow for •;

- Tait-Martin Löf: $\rightarrow \subseteq \multimap \subseteq \rightarrow$ and diamond (\diamond) property of \rightarrow;
- Takahashi:

$$
\rightarrow \subseteq \rightarrow \subseteq \rightarrow \text { and angle }() \text { property of } \rightarrow \text { for } \bullet .
$$

How do Z, \diamond,\langle relate?

$\langle\Leftrightarrow Z$

Angle property

Theorem
for any map $\bullet, Z \Leftrightarrow$ both $\rightarrow \subseteq \rightarrow \subseteq \rightarrow$ and \langle
Proof.

Theorem
for any map $\bullet, Z \Leftrightarrow$ both $\rightarrow \subseteq \rightarrow \subseteq \rightarrow$ and \langle
Proof.
(If)

$$
a \longrightarrow b
$$

Theorem
for any map $\bullet, Z \Leftrightarrow$ both $\rightarrow \subseteq \rightarrow \subseteq \rightarrow$ and \langle
Proof.
(If)

Theorem
for any map $\bullet, Z \Leftrightarrow$ both $\rightarrow \subseteq \rightarrow \subseteq \rightarrow$ and 〈
Proof.
(If)

Theorem
for any map $\bullet, Z \Leftrightarrow$ both $\rightarrow \subseteq \rightarrow \subseteq \rightarrow$ and 〈
Proof.
(If)

\Leftrightarrow Z

Theorem
for any map $\bullet, Z \Leftrightarrow$ both $\rightarrow \subseteq \rightarrow \subseteq \rightarrow$ and \langle
Proof.
(only if) Def. $a \rightarrow b$ if b between a and a^{\bullet}, i.e. $a \rightarrow b \rightarrow a^{\bullet}$:
$-a \rightarrow b \Rightarrow b \rightarrow a^{\bullet} \Rightarrow \rightarrow \subseteq \rightarrow$.

- $a \rightarrow b \Rightarrow a \rightarrow b \Rightarrow \rightarrow \subseteq \rightarrow$.
- Suppose $a \rightarrow b$.
- $a \rightarrow b \rightarrow a^{\bullet}$ by definition of \rightarrow.
- $a \rightarrow b \Rightarrow a^{\bullet} \rightarrow b^{\bullet}$ (monotonicity of \bullet) by Z
- $b \rightarrow a^{\bullet \bullet} \rightarrow b^{\bullet}$ so $b \rightarrow a^{\bullet}$ by definition of \rightarrow.
$\lambda \sigma$
Theorem
$\lambda \sigma$ has Z property
$\lambda \sigma$
Theorem
$\lambda \sigma$ has Z property
Proof.
Map: first σ-normalise (\triangleright) then Beta-full development (\bullet)
$\lambda \sigma$
Theorem
$\lambda \sigma$ has Z property
Proof.
Map: first σ-normalise (\triangleright) then Beta-full development (\bullet)

$-\Delta$: angle property of \rightarrow
- E: Beta commutes with σ-normalisation
- $\Gamma: \sigma$ is terminating and confluent

$\lambda \beta \eta$ has Z property

Theorem
Weakly orthogonal rewrite system $\Rightarrow Z$ property
Proof.
Map:
Contract maximal set of non-overlapping redexes inside-out
Example

$$
\begin{aligned}
& c(x) \rightarrow x \\
& f(f(x)) \rightarrow f(x) \\
& g(f(f(f(x)))) \rightarrow g(f(f(x)))
\end{aligned}
$$

$\lambda \beta \eta$ has Z property

Theorem
Weakly orthogonal rewrite system $\Rightarrow Z$ property
Proof.
Map:
Contract maximal set of non-overlapping redexes inside-out
Example

$$
\begin{aligned}
& c(x) \rightarrow x \\
& f(f(x)) \rightarrow f(x) \\
& g(f(f(f(x)))) \rightarrow g(f(f(x))) \\
& g(f(f(c(f(f(x))))))^{\bullet}=g(f(f(x)))=g(f(f(f(f(x)))))^{\bullet}
\end{aligned}
$$

$\lambda \beta \eta$ has Z property

Theorem
Weakly orthogonal rewrite system $\Rightarrow Z$ property
Proof.
Map:
Contract maximal set of non-overlapping redexes inside-out
Example

$$
\begin{aligned}
& c(x) \rightarrow x \\
& f(f(x)) \rightarrow f(x) \\
& g(f(f(f(x)))) \rightarrow g(f(f(x)))
\end{aligned}
$$

Outside-in (Takahashi) does not give Z (in general)! $g(f(f(c(f(f(x)))))) \rightarrow g(f(f(f(f(x)))))$ holds. . .

$\lambda \beta \eta$ has Z property

Theorem
Weakly orthogonal rewrite system $\Rightarrow Z$ property
Proof.
Map:
Contract maximal set of non-overlapping redexes inside-out
Example

$$
\begin{aligned}
& c(x) \rightarrow x \\
& f(f(x)) \rightarrow f(x) \\
& g(f(f(f(x)))) \rightarrow g(f(f(x)))
\end{aligned}
$$

Outside-in (Takahashi) does not give Z (in general)!
$\ldots \operatorname{not} g(f(f(x))) \rightarrow g(f(f(f(x))))!$

Some more consequences of Z

- if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$ (monotonicity)
- \rightarrow has Z-property iff $\rightarrow=$ has (IZ-property)
- If \bullet_{1}, \bullet_{2} have the Z-property for \rightarrow, so does their composition $\bullet_{1} \circ \bullet_{2}$. Moreover, $a^{\bullet}{ }^{\boldsymbol{\bullet}} \rightarrow\left(a^{\bullet_{2}}\right)^{\bullet_{1}}$

May be used to get ideas about systems which do not have Z

Confluence $\nRightarrow \mathrm{Z}$

Easy to turn into a finite term rewriting system

Conclusions

- Surprising outsider (Dehornoy) input: simple yet not known

Conclusions

- Surprising outsider (Dehornoy) input: simple yet not known
- Conjecture: β with restricted η-expansion does not have \mathbf{Z}

Conclusions

- Surprising outsider (Dehornoy) input: simple yet not known
- Conjecture: β with restricted η-expansion does not have \mathbf{Z}
- Problem: characterize systems having Z-property

