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This talk: (short) history, interest, and (non-)examples



self-distributivity: xyz → xz(yz)

Theorem
self-distributivity has the Z-property

Map

x• = x

(ts)• = t•[x1:=x1s
•, x2:=x2s

•, . . .]

Example

(xy)• = xy

(xyz)• = xz(yz)

Proof.
This works: Braids and Self-distributivity (Dehornoy 2000)
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Z property for semi-complete rewrite relations

Theorem
Every normalising and confluent rewrite relation has the Z-property

Let • map every object to its normal form
(exists by normalisation, unique by confluence)

Proof.
If a → b, then b � a• � b• since b reduces to its normal form b•

which is the same as the normal form a• of a.

Corollary

Z-property for β-reduction in typed λ-calculi by using meta-theory

Here reverse: Z-property to establish meta-theory
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If a rewrite relation has the Z-property then it is confluent
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Z ⇒ confluence

Theorem
If a rewrite relation has the Z-property then it is confluent

Proof.

induction
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Z ⇒ hyper-cofinal

Definition (•-strategy)
a •−→ b if a is not a normal form and b = a•
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Hyper-cofinality of •−→:
for any reduction which eventually always contains •−→-step
any co-initial reduction can be extended to reach the first



Z ⇒ hyper-cofinal

Theorem
•−→ is hyper-cofinal

Proof.

a1

b a•
1

an+1

a•
n+1

a•
n+1

=ZZZ Z

a•
n



Z ⇒ hyper-cofinal

Theorem
•−→ is hyper-cofinal
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Summary: •−→ confluent, (hyper-)normalising, bullet-fast,



β has Z

Theorem
(λx .M)N →M[x :=N] has the Z-property for λ-calculus

Proof.
Full-development map (contract all redexes present)

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

(Self) M � M•;

(Rhs) M•[x :=N•] � M[x :=N]•; and

(Z) M → N ⇒ N � M• � N•.

each by induction and cases on M.
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Comparison

I Dehornoy:
Z-property of → for •;

I Tait–Martin Löf:
→ ⊆ ◦−→ ⊆ � and diamond (♦) property of ◦−→;

I Takahashi:
→ ⊆ ◦−→ ⊆ � and angle (〈) property of ◦−→ for •.

How do Z, ♦, 〈 relate?
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〈 ⇔ Z

Theorem
for any map •, Z ⇔ both → ⊆ ◦−→ ⊆ � and 〈

Proof.
(only if) Def. a ◦−→ b if b between a and a•, i.e. a � b � a•:

I a → b ⇒ b � a• ⇒ → ⊆ ◦−→.

I a ◦−→ b ⇒ a � b ⇒ ◦−→ ⊆ �.

I Suppose a ◦−→ b.

I a � b � a• by definition of ◦−→.
I a � b ⇒ a• � b• (monotonicity of •) by Z
I b � a• � b• so b ◦−→ a• by definition of ◦−→.



λσ

Theorem
λσ has Z property

Proof.
Map: first σ-normalise (.) then Beta-full development ( •−→)

Γ

t• = s•

t st s

t = s

Γ

t t ′
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I ∆ : angle property of •−→
I E: Beta commutes with σ-normalisation

I Γ: σ is terminating and confluent
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λβη has Z property

Theorem
Weakly orthogonal rewrite system ⇒ Z property

Proof.
Map:
Contract maximal set of non-overlapping redexes inside-out

Example

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))
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λβη has Z property

Theorem
Weakly orthogonal rewrite system ⇒ Z property

Proof.
Map:
Contract maximal set of non-overlapping redexes inside-out

Example

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Outside-in (Takahashi) does not give Z (in general)!
. . . not g(f (f (x))) � g(f (f (f (x))))!



Some more consequences of Z

I if a � b then a• � b• (monotonicity)

I → has Z-property iff →= has (IZ-property)

I If •1, •2 have the Z-property for →, so does their composition
•1 ◦ •2. Moreover, a•i � (a•2)•1

May be used to get ideas about systems which do not have Z



Confluence 6 ⇒ Z

1

0

−1

Easy to turn into a finite term rewriting system



Conclusions

I Surprising outsider (Dehornoy) input: simple yet not known

I Conjecture: β with restricted η-expansion does not have Z

I Problem: characterize systems having Z-property
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