VA

Patrick Dehornoy
Vincent van Oostrom

Theoretische Filosofie
Universiteit Utrecht
Nederland

May 6, 2008

Intuitions

Consequences
Confluence
Hyper-cofinality

Examples
Braids
Self-distributivity
Normalising and confluent relations

A-calculus
A-calculus with explicit substitutions
Weakly orthogonal term rewriting systems

Z vs.angle
Non-examples

Conclusions

————— >=b°®

A rewrite relation — has the Z-property

————— >=b°®

A rewrite relation — has the Z-property
if there is a map e from objects to objects

————— >=b°®

A rewrite relation — has the Z-property
if there is a map e from objects to objects
such that for any step a — b from a to b

————— >=b°®

A rewrite relation — has the Z-property

if there is a map e from objects to objects

such that for any step a — b from a to b

there exists a many-step reduction b — a* from b to a*

————— >=b°®

A rewrite relation — has the Z-property

if there is a map e from objects to objects

such that for any step a — b from a to b

there exists a many-step reduction b — a* from b to a*

and there exists a many-step reduction a®* — b* from a® to b°®

at----- =>=b°*

Je:A— AVabeA:a— b = b—»a* a®— b*

Z intuitions

Z intuitions

Z intuitions

.~ upperbound on steps

4

Ve
¥
a%-----=>=b*

monotonic

/ = confluence

Definition
— confluent, if «—+— C — - «

/ = confluence

confluence =
» uniqueness of normal forms
> consistent, if some objects not joinable (distinct normal forms)

» decidable, if — is terminating

/ = confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

/ = confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

do ai ap as ant1

/ = confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

do ai ap as ant1

by ——== aj

e

/ = confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

do ai aj as ant1

by ——== aj

/ = confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

do 7 ai aj as ant1

/ = confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

do ai 7 aj as ant1

/ = confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

do ai ap as dn+1
Z z "
induction
by ag aj a3 ay

/ = confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

do ai ap as ant1

induction

/ = —e— strategy is hyper-cofinal

Definition (e-strategy)

a —e— b if ais not a normal form and b = a°

/ = —e— strategy is hyper-cofinal

ds —@—=ady; —==>

Hyper: eventually always

ﬁag o> a3
ap @—= a;

/ = —e— strategy is hyper-cofinal

ds —@—=ady; ——==>

32 ——= as
ao Hal

/ = —e— strategy is hyper-cofinal

ds @—=as X%

/ Cofinal

\/SSQQ o> a3
ap @—= a; 7

T

/ = —e— strategy is hyper-cofinal

Definition

—e— hyper-cofinal, if for any reduction which eventually always
contains a —e—-step, any co-initial reduction can be extended to
reach the first

/ = —e— strategy is hyper-cofinal

hyper-cofinal =
» confluent
» (hyper-)normalising
» bullet-fast ...

/ = —e— strategy is hyper-cofinal

Theorem
—e— is hyper-cofinal

Proof.

/ = —e— strategy is hyper-cofinal

Theorem
—e— is hyper-cofinal

Proof.

a0 AT @—=a, ==

/
/

/ = —e— strategy is hyper-cofinal

Theorem
—e— is hyper-cofinal

Proof.

ao aniT—@—=ay, T

/ = —e— strategy is hyper-cofinal

Theorem
—e— is hyper-cofinal

Proof.
ao > aniT—@—=ay, T
/ z 7
s
bg------ >=30----= >

/ = —e— strategy is hyper-c

Theorem
—e— is hyper-cofinal

Proof.

ofinal

z ,~“induction .

/ = —e— strategy is hyper-cofinal

Theorem
—e— is hyper-cofinal

Proof.

z ,~“induction .

/ = —e— strategy is hyper-cofinal

Theorem
—e— is hyper-cofinal

Proof.
ar AT @—=ap T——=>>
V4 , //induction/,’ 4 Y
s y
b------ >3- ---= >=> ah----- >=an.
induction

Examples

Example: braids

Definition
Braid rewriting: cross adjacent strands, right over left.

Example: braids

Definition
Braid rewriting: cross adjacent strands, right over left.

7
1]

Example:

O

Example: braids

Definition
Braid rewriting: cross adjacent strands, right over left.

i
[

Up to topological equivalence:

Example:

I
I
/

Example: braids

Theorem
Braid rewriting has the Z-property, for e full crossing

Example

Example: braids

Theorem
Braid rewriting has the Z-property, for e full crossing

Proof.

Example: braids

Theorem
Braid rewriting has the Z-property, for e full crossing

Proof.

L1 A
ey = |
| 1Y
AN

Example: braids

Theorem
Braid rewriting has the Z-property, for e full crossing

Proof.

111X
Ll

&0

<\
N

\{\\/

]

Y

&

Example: braids

Theorem
Braid rewriting has the Z-property, for e full crossing

Proof.

LT oA
LTl

%
y// | X1 U

S\

]

Example: self-distributivity

Definition
Self-distributivity, rewrite relation generated by xyz — xz(yz)

Example: self-distributivity

Definition
Self-distributivity, rewrite relation generated by xyz — xz(yz)
Some models:

» ACI operations

» take middle of points in space

» substitution

Example: self-distributivity

Definition
Self-distributivity, rewrite relation generated by xyz — xz(yz)
Some models:
» ACI operations
» take middle of points in space
» substitution
In depth: Braids and Self-distributivity (Dehornoy 2000)

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for e full distribution:
x® = x (ts)® = t°[s°]

with t[s| uniform distribution of s over t:
t[x1:=x15, x2:=xas, ..]

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for e full distribution:
x® =x (ts)® = t°[s°]

with t[s] uniform distribution of s over t:
t[x1:=x15, x2:=x2s, ..]

Example

> (xy)* = x[y] = x[x:=xy] = xy;
> (xy2)* = (xy)[xi=xz, y:=yz] = xz(yz).

Example: self-distributivity

Theorem

Self-distributivity has the Z-property, for e full distribution:
x® = x (ts)® = t°[s°]

with t[s] uniform distribution of s over t:
t[xi:=x15, x2:=x05, ..]

Proof.

By induction on t:

Example: self-distributivity

Theorem

Self-distributivity has the Z-property, for e full distribution:
x® = x (ts)® = t°[s°]

with t[s] uniform distribution of s over t:
t[xi:=x15, x2:=x05, ..]

Proof.
By induction on t:

» (Sequentialisation) ts — t[s];

Example: self-distributivity

Theorem

Self-distributivity has the Z-property, for e full distribution:
x® = x (ts)® = t°[s°]

with t[s] uniform distribution of s over t:
t[xi:=x15, x2:=x05, ..]

Proof.
By induction on t:
» (Sequentialisation) ts — t[s];
» (Substitution) t[s][r] — t[r][s][r]]

Example: self-distributivity

Theorem

Self-distributivity has the Z-property, for e full distribution:
x® = x (ts)® = t°[s°]

with t[s] uniform distribution of s over t:
t[xi:=x15, x2:=x05, ..]

Proof.

By induction on t:
» (Sequentialisation) ts — t[s];
» (Substitution) t[s][r] — t[r][s][r]]
> (Self) t—t*

Example: self-distributivity

Theorem

Self-distributivity has the Z-property, for e full distribution:
x® = x (ts)® = t°[s°]

with t[s] uniform distribution of s over t:
t[xi:=x15, x2:=x05, ..]

Proof.

By induction on t:

(Sequentialisation) ts — t[s];
(Substitution) t[s][r] — t[r][s[r]]
(Self) t—t*
(

>
>
>
> (Z) s—>t*—>s*ift—s.

Example: normalising and confluent relations

Theorem
Normalising and confluent relations have the Z-property,
for e the full reduction map (map to normal form).

Example: normalising and confluent relations

Theorem
Normalising and confluent relations have the Z-property,
for e the full reduction map (map to normal form).

Proof.

If a— b, then b — a® — b® since b reduces to its normal form b®
(normalisation) which is the same as the normal form a® of a
(confluence). O

Example: normalising and confluent relations

Theorem
Normalising and confluent relations have the Z-property,
for e the full reduction map (map to normal form).

Proof.

If a— b, then b — a® — b® since b reduces to its normal form b®
(normalisation) which is the same as the normal form a® of a
(confluence). O

Corollary
Z-property for typed \-calculi (by confluence and termination)

Example: normalising and confluent relations

Theorem
Normalising and confluent relations have the Z-property,
for e the full reduction map (map to normal form).

Proof.

If a— b, then b — a® — b® since b reduces to its normal form b®
(normalisation) which is the same as the normal form a® of a
(confluence). O

Corollary
Z-property for typed \-calculi (by confluence and termination)

Here reverse: use Z-property to establish meta-theory

Example: A-calculus

Theorem

(Ax.M)N — M[x:=N] has the Z-property, for e full development

contracting all redexes present:
L]

x®* = x
Ax.M)® = Ix.M*®
(
(MN)* = M'[x:=N°*] if M is an abstraction, M®* = Ax.M’

MeN*® otherwise

Example: A-calculus

Theorem
(Ax.M)N — M[x:=N] has the Z-property, for e full development
contracting all redexes present:

x* = x
Ox.M)* = Ax.M®
(MN)* = M'[x:=N°*] if M is an abstraction, M®* = Ax.M’
= M°N® otherwise
Example
*=1; (I = Xxx)
11)* = 1, (1) = 1I;

Example: A-calculus

Theorem

(Ax.M)N — M[x:=N] has the Z-property, for e full development

contracting all redexes present:
L]

x* = x
(Ax.M)* = Ix.M*®
(MN)* = M'[x:=N°] if M is an abstraction, M®* = Ax.M’
= M°N*® otherwise
Proof.

By induction on M:
> (Substitution) M[y:=P]|[x:=N] = M[x:=N][y:=P[x:=N]];

O

Example: A-calculus

Theorem

(Ax.M)N — M[x:=N] has the Z-property, for e full development

contracting all redexes present:
L]

x* = x
(Ax.M)* = Ix.M*®
(MN)* = M'[x:=N°] if M is an abstraction, M®* = Ax.M’
= M°N*® otherwise
Proof.

By induction on M:

> (Substitution) M[y:=P]|[x:=N] = M[x:=N][y:=P[x:=N]];
> (Self) M — M®;

O

Example: A-calculus

Theorem

(Ax.M)N — M[x:=N] has the Z-property, for e full development

contracting all redexes present:
L]

x* = x
(Ax.M)* = Ix.M*®
(MN)* = M'[x:=N°] if M is an abstraction, M®* = Ax.M’
= M°N*® otherwise
Proof.

By induction on M:
> (Substitution) M[y:=P]|[x:=N] = M[x:=N][y:=P[x:=N]];
> (Self) M — M®;
» (Rhs) M°[x:=N°*] - M[x:=N]°*; and

O

Example: A-calculus

Theorem

(Ax.M)N — M[x:=N] has the Z-property, for e full development

contracting all redexes present:
L]

x* = x
(Ax.M)* = Ix.M*®
(MN)* = M'[x:=N°] if M is an abstraction, M®* = Ax.M’
= M°N*® otherwise
Proof.

By induction on M:
> (Substitution) M[y:=P]|[x:=N] = M[x:=N][y:=P[x:=N]];
> (Self) M — M®;
» (Rhs) M°[x:=N°*] - M[x:=N]°*; and
» (Z) M—N= N-—»M* — N°

O

Example: A-calculus

Theorem

(Ax.M)N — M[x:=N] has the Z-property, for e full development
contracting all redexes present:

x* = x
Ox.M)* = Ax.M®
(MN)* = M'[x:=N*] if M is an abstraction, M®* = Ax.M’
Me®N® otherwise

Proof.
By induction on M:

> (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];
> (Self) M — M*;

» (Rhs) M°[x:=N°*] - M[x:=N]*; and

> (Z) M—N= N> M — N

Same method works for all orthogonal first/higher-order TRSs

Example: A-calculus

Theorem
(Ax.M)N — M[x:=N] has the Z-property, for e full super-

development contracting all redexes present or upward created:
L]

x* = x
(Ax.M)* = Ix.M*®
(MN)* = M'[x:=N°*] if M is aterm, M®* = Ax.M’

MeN*® otherwise

Example: A-calculus

Theorem
(Ax.M)N — M[x:=N] has the Z-property, for e full super-
development contracting all redexes present or upward created:

x* = x
(Ax.M)* = Ix.M*®
(MN)* = M'[x:=N°*] if M is a term, M®* = Ax.M’
= M°N® otherwise
Example
*=1; (I = Ax.x)
(s =1, s =1,

Example: A-calculus

Theorem
(Ax.M)N — M[x:=N] has the Z-property, for e full super-

development contracting all redexes present or upward created:
L]

x®* = x
(Ax.M)* = Ix.M*®
(MN)* = M'[x:=N°*] if M is aterm, M®* = Ax.M’
MeN® otherwise

Proof.
Same (‘an abstraction’— ‘a term’) proof by induction on M :

> (Substitution) M[y:=P|[x:=N] = M[x:=N][y:=P[x:=N]];

Example: A-calculus

Theorem
(Ax.M)N — M[x:=N] has the Z-property, for e full super-

development contracting all redexes present or upward created:
L]

x®* = x
(Ax.M)* = Ix.M*®
(MN)* = M'[x:=N°*] if M is aterm, M®* = Ax.M’
MeN® otherwise

Proof.

Same (‘an abstraction’— ‘a term’) proof by induction on M :
> (Substitution) M[y:=P|[x:=N] = M[x:=N][y:=P[x:=N]];
> (Self) M — M®;

Example: A-calculus

Theorem
(Ax.M)N — M[x:=N] has the Z-property, for e full super-

development contracting all redexes present or upward created:
L]

x®* = x
(Ax.M)* = Ix.M*®
(MN)* = M'[x:=N°*] if M is aterm, M®* = Ax.M’
MeN® otherwise

Proof.

Same (‘an abstraction’— ‘a term’) proof by induction on M :
> (Substitution) M[y:=P|[x:=N] = M[x:=N][y:=P[x:=N]];
> (Self) M — M®;
» (Rhs) M°[x:=N°*] - M[x:=N]°*; and

Example: A-calculus

Theorem
(Ax.M)N — M[x:=N] has the Z-property, for e full super-

development contracting all redexes present or upward created:
L]

x®* = x
(Ax.M)* = Ix.M*®
(MN)* = M'[x:=N°*] if M is aterm, M®* = Ax.M’
MeN® otherwise

Proof.
Same (‘an abstraction’— ‘a term’) proof by induction on M :
> (Substitution) M[y:=P|[x:=N] = M[x:=N][y:=P[x:=N]];
> (Self) M — M®;
» (Rhs) M°[x:=N°*] - M[x:=N]°*; and
» (Z) M—N= N-—»M* — N°

O

Example: A-calculus

Theorem
(Ax.M)N — M[x:=N] has the Z-property, for e full super-
development contracting all redexes present or upward created:

x* = x
(Ax.M)* = x.M*
(MN)* = M'[x:=N°*] if M is a term, M®* = Ax.M’
= M°*N® otherwise

Proof.

Same (‘an abstraction'— ‘a term’) proof by induction on M :

> (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];

> (Self) M — M*;
» (Rhs) M°®[x:=N°*] - M[x:=N]*; and
> (Z) M—N= N M — N

Moral: possibly more than one witnessing map for Z-property

Example: A-calculus with explicit substitutions

Theorem
Ao has the Z-property, for e the map composed of first
o-normalisation (>), then a Beta-full development (—e—)

Example: A-calculus with explicit substitutions

Theorem
Ao has the Z-property, for e the map composed of first

o-normalisation (>), then a Beta-full development (—e—)

Proof.

f———t=s f—=5.
S L

! L | E | AN
1y v LN
tss S v =e
. e P E o e
! ’ oA
V y: ¥V v

t*

Example: A-calculus with explicit substitutions

Theorem
Ao has the Z-property, for e the map composed of first

o-normalisation (>), then a Beta-full development (—e—)

Proof.
f———s [—— R
o RS
b COE
1y ¥ { Q,
tss t-o- Ot =i e
. e "0 E o e
| A
y V3 Va Y
t* =s* PR 5o (- ->5°

0

Works for other explicit substitution/proof calculi as well.

Example: weakly orthogonal term rewriting systems

Definition
Rewrite system is weakly orthogonal, if only trivial critical pairs.

Example: weakly orthogonal term rewriting systems

Definition
Rewrite system is weakly orthogonal, if only trivial critical pairs.

Example
» A-calculus with 8 and 1 : Ax.Mx — M, if x & M,

» predecessor/successor S(P(x))) — x P(S5(x)) — x;

» parallel-or.

Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for e full inside-out development

Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for e full inside-out development

Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for e full inside-out development

Proof.
c(x) — x
F(f(x)) — f(x)
g(f(f(f(x)))) — &(f(f(x)))

Then g(f(f(c(f (7;(X)) — &(f (;‘(f(f

(x)
g(f(F(c(F(F(x)))))* = &(f(f(x))) = &(

x))))) gives Z:
FIE(F(FOI))® O

Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for e full inside-out development

Proof.
c(x) — x
F(F(x)) — f(x)
g(f(f(f(x)))) — g(f(f(x)))
Then g(f(f(c(f(f(x)))))) — g(f(f(f(f(x))))) gives Z:

g(f(F(c(F(FOM)* = g(F(F(x))) = g(F(F(F(F(x)))))* N
Outside-in not monotonic: not g(f(f(x))) — g(f(f(f(x))))!

Z vs. angle

» Dehornoy:
Z-property of — for e;
» Takahashi:
angle (() property of — for : 3——», — C —o» C —
a

Z vs. angle

» Dehornoy:
Z-property of — for e;
» Takahashi:
angle (() property of — for : 3——», — C —o» C —
/
\@\
A

—e— steps are divisors of —e—

/ & angle

Theorem
for any map e, Z < (

Proof.

/ & angle

Theorem
for any map e, Z &

Proof.
(If)

/ & angle

Theorem
for any map e, Z &

Proof.
(If)

— C —— and (
a——= b

Ve

a.

/ & angle

Theorem
for any map e, Z &

Proof.
(If)

yd

a®* —o—= b*

/ & angle

Theorem
for any map e, Z &

Proof.
(If)

/ & angle

Theorem
for any map e, Z <

Proof.

(only if) Def. a —e— b if b between a and a°, i.e. a —» b — a*:
»a—>b=b—»a® = — C -
»3-<o>b=a—»b= —oC
» Suppose a —e— b.

» a—» b — a°* by definition of —e—.

» a— b = a* — b* (monotonicity of e) by Z
> b— a® — b® so b —e— a*® by definition of ——.

Non-examples

Some properties of es

» if a — b then a®* — b°®;

Some properties of es

» if a — b then a®* — b°®;

» — has Z-property iff —= has |Z-property;

Some properties of es

» if a — b then a® — b*;
» — has Z-property iff —= has |Z-property;

> e; 085 has Z, if e; do.

Some properties of es

if a — b then a®* — b*;
— has Z-property iff —= has |Z-property;

e; 0e5 has Z, if o; do.

vV v v Y

slower order: o1 < @5, if Va, a°t — a*2;

Some properties of es

vV v.v. v Y

if a — b then a®* — b*;

— has Z-property iff —= has |Z-property;
e; 0 has Z, if e; do.

slower order: o1 < ey, if Va, a® —» a*?;

o, < o100

Some properties of es

» if a — b then a* — b®;

» — has Z-property iff == has |Z-property;

> e; 08 has Z, if e; do.

> slower order: o1 < o5, if Va, a®t — a%2;

> o < o] 00y

» no slowest/minimally slow/fastest/maximally fast;

Some properties of es

» if a — b then a* — b®;

» — has Z-property iff == has |Z-property;

> e; 08 has Z, if e; do.

> slower order: o1 < o5, if Va, a®t — a%2;

> o < o] 00y

» no slowest/minimally slow/fastest/maximally fast;

» for normalising/finite systems: go to ‘normal’ form fastest.

Some properties of es

» if a — b then a* — b®;

» — has Z-property iff == has |Z-property;

> e; 08 has Z, if e; do.

> slower order: o1 < o5, if Va, a®t — a%2;

> o < o] 00y

» no slowest/minimally slow/fastest/maximally fast;

» for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z

7, does not have Z

7, does not have Z

for given integer, no upperbound on steps from it

7, does not have Z

not finitely branching, no finite TRS

for given integer, no upperbound on steps from it

7 does not imply Z

7 does not imply Z

finitely branching, finite TRS

7 does not imply Z

finitely branching, finite TRS

not monotonic (e.g. for —3)
nx)—p(x) A1) =0 0 p(1)
n(s(x)) — n(x)

p(x) = p(s(x))

7” does have Z

7” does have Z

finitely branching, finite TRS, no transitivity

7” does have Z

finitely branching, finite TRS, no transitivity

-2 -1 0 1 2

Z trivial (i* =i+1)

7’ does have Z

finitely branching, finite TRS, no transitivity

-2 -1 0 1 2

Z trivial (i* =i+1)

Examples show:
» confluent A& Z
> transitivity might be harmful

Conclusions

» Surprise: Z < angle;

Conclusions

» Surprise: Z < angle;
» Claim: gives simplest confluence proofs;

Conclusions

» Surprise: Z < angle;
» Claim: gives simplest confluence proofs;

» Conjecture: (§ with restricted n-expansion does not have Z;

Conclusions

» Surprise: Z < angle;
» Claim: gives simplest confluence proofs;
» Conjecture: (§ with restricted n-expansion does not have Z;

» Problem: characterise systems having Z-property;

Conclusions

Surprise: Z < angle;

Claim: gives simplest confluence proofs;

>
>
» Conjecture: (§ with restricted n-expansion does not have Z;
» Problem: characterise systems having Z-property;

>

Puzzle: is Z a modular property of TRSs?;

Conclusions

Surprise: Z < angle;

Claim: gives simplest confluence proofs;

Problem: characterise systems having Z-property;

>
>
» Conjecture: (§ with restricted n-expansion does not have Z;
>
» Puzzle: is Z a modular property of TRSs?;

>

Further work: Garside categories <> residual systems.

	Z
	Intuitions

	Consequences
	Confluence
	Hyper-cofinality

	Examples
	Braids
	Self-distributivity
	Normalising and confluent relations
	-calculus
	-calculus with explicit substitutions
	Weakly orthogonal term rewriting systems

	Z vs.angle
	Non-examples
	Conclusions

