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A rewrite relation — has the Z-property

if there is a map e from objects to objects

such that for any step a — b from a to b

there exists a many-step reduction b — a* from b to a*

and there exists a many-step reduction a®* — b* from a® to b°®



at----- =>=b°*

Je:A— AVabeA:a— b = b—»a* a®— b*



Z intuitions



Z intuitions



Z intuitions

.~ upperbound on steps

4

Ve
¥
a%-----=>=b*

monotonic



/ = confluence

Definition
— confluent, if «—+— C — - «



/ = confluence

confluence =
» uniqueness of normal forms
> consistent, if some objects not joinable (distinct normal forms)

» decidable, if — is terminating
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/ = confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

do ai ap as ant1

induction




/ = —e— strategy is hyper-cofinal

Definition (e-strategy)

a —e— b if ais not a normal form and b = a°
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/ = —e— strategy is hyper-cofinal

Definition

—e— hyper-cofinal, if for any reduction which eventually always
contains a —e—-step, any co-initial reduction can be extended to
reach the first



/ = —e— strategy is hyper-cofinal

hyper-cofinal =
» confluent
» (hyper-)normalising
» bullet-fast ...
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Theorem
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Proof.
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Theorem
—e— is hyper-cofinal

Proof.
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Example: braids

Theorem
Braid rewriting has the Z-property, for e full crossing

Proof.
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Example: self-distributivity

Definition
Self-distributivity, rewrite relation generated by xyz — xz(yz)
Some models:
» ACI operations
» take middle of points in space
» substitution
In depth: Braids and Self-distributivity (Dehornoy 2000)
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Example: self-distributivity

Theorem

Self-distributivity has the Z-property, for e full distribution:
x® = x (ts)® = t°[s°]

with t[s] uniform distribution of s over t:
t[xi:=x15, x2:=x05, .. ]

Proof.

By induction on t:

(Sequentialisation)  ts — t[s];
(Substitution)  t[s][r] — t[r][s[r]]
(Self) t—t*
(

>
>
>
> (Z) s—>t*—>s*ift—s.
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Example: normalising and confluent relations

Theorem
Normalising and confluent relations have the Z-property,
for e the full reduction map (map to normal form).

Proof.

If a— b, then b — a® — b® since b reduces to its normal form b®
(normalisation) which is the same as the normal form a® of a
(confluence). O

Corollary
Z-property for typed \-calculi (by confluence and termination)

Here reverse: use Z-property to establish meta-theory
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Example: A-calculus

Theorem

(Ax.M)N — M[x:=N] has the Z-property, for e full development
contracting all redexes present:

x* = x
Ox.M)* = Ax.M®
(MN)* = M'[x:=N*] if M is an abstraction, M®* = Ax.M’
Me®N® otherwise

Proof.
By induction on M:

> (Substitution)  M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];
> (Self) M — M*;

» (Rhs) M°[x:=N°*] - M[x:=N]*; and

> (Z) M—N= N> M — N

Same method works for all orthogonal first/higher-order TRSs
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Example: A-calculus

Theorem
(Ax.M)N — M[x:=N] has the Z-property, for e full super-
development contracting all redexes present or upward created:

x* = x
(Ax.M)* = x.M*
(MN)* = M'[x:=N°*] if M is a term, M®* = Ax.M’
= M°*N® otherwise

Proof.

Same (‘an abstraction'— ‘a term’) proof by induction on M :

> (Substitution)  M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];

> (Self) M — M*;
» (Rhs) M°®[x:=N°*] - M[x:=N]*; and
> (Z) M—N= N M — N

Moral: possibly more than one witnessing map for Z-property
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Example: A-calculus with explicit substitutions

Theorem
Ao has the Z-property, for e the map composed of first

o-normalisation (>), then a Beta-full development (—e—)

Proof.

f———t=s f—=5.
S L

! L | E | AN
1y v LN
tss S v =e
. e P E o e
! ’ oA
V y: ¥V v

t*



Example: A-calculus with explicit substitutions

Theorem
Ao has the Z-property, for e the map composed of first

o-normalisation (>), then a Beta-full development (—e—)

Proof.
f———s [—— R
o RS
b COE
1y ¥ { Q,
tss t-o- Ot =i e
. e "0 E o e
| A
y V3 Va Y
t* =s* PR 5o (- ->5°

0

Works for other explicit substitution/proof calculi as well.
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Example: weakly orthogonal term rewriting systems

Definition
Rewrite system is weakly orthogonal, if only trivial critical pairs.

Example
» A-calculus with 8 and 1 : Ax.Mx — M, if x & M,

» predecessor/successor  S(P(x))) — x P(S5(x)) — x;

» parallel-or.
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Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for e full inside-out development

Proof.
c(x) — x
F(f(x)) — f(x)
g(f(f(f(x)))) — &(f(f(x)))

Then g(f(f(c(f (7;( X)) — &(f (;‘(f(f

(x)
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Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for e full inside-out development

Proof.
c(x) — x
F(F(x)) — f(x)
g(f(f(f(x)))) — g(f(f(x)))
Then g(f(f(c(f(f(x)))))) — g(f(f(f(f(x))))) gives Z:

g(f(F(c(F(FOM)* = g(F(F(x))) = g(F(F(F(F(x)))))* N
Outside-in not monotonic: not g(f(f(x))) — g(f(f(f(x))))!
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» Dehornoy:
Z-property of — for e;
» Takahashi:
angle (() property of — for : 3——», — C —o» C —
/
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—e— steps are divisors of —e—
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Theorem
for any map e, Z &

Proof.
(If)

— C —— and (
a——= b
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/ & angle

Theorem
for any map e, Z <

Proof.

(only if) Def. a —e— b if b between a and a°, i.e. a —» b — a*:
»a—>b=b—»a® = — C -
»3-<o>b=a—»b= —oC
» Suppose a —e— b.

» a—» b — a°* by definition of —e—.

» a— b = a* — b* (monotonicity of e) by Z
> b— a® — b® so b —e— a*® by definition of ——.
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vV v.v. v Y

if a — b then a®* — b*;

— has Z-property iff —= has |Z-property;
e; 0 has Z, if e; do.

slower order: o1 < ey, if Va, a® —» a*?;

o, < o100
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Some properties of es

» if a — b then a* — b®;

» — has Z-property iff == has |Z-property;

> e; 08 has Z, if e; do.

> slower order: o1 < o5, if Va, a®t — a%2;

> o < o] 00y

» no slowest/minimally slow/fastest/maximally fast;

» for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z
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7 does not imply Z

finitely branching, finite TRS

not monotonic (e.g. for —3)
nx)—p(x) A1) =0 0 p(1)
n(s(x)) — n(x)

p(x) = p(s(x))
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7’ does have Z

finitely branching, finite TRS, no transitivity

-2 -1 0 1 2

Z trivial (i* =i+1)

Examples show:
» confluent A& Z
> transitivity might be harmful
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Conclusions

Surprise: Z < angle;

Claim: gives simplest confluence proofs;

Problem: characterise systems having Z-property;

>
>
» Conjecture: (§ with restricted n-expansion does not have Z;
>
» Puzzle: is Z a modular property of TRSs?;

>

Further work: Garside categories <> residual systems.
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