
Constructing Confluence

Vincent van Oostrom

Theoretical Philosophy

Utrecht University

The Netherlands

September 8, 2006



Confluence

Constructive confluence

Confluence by Local Confluence

Confluence by Orthogonality

Residual Systems
Natural numbers
Multisets
Braids
Self-distributivity



Confluence of rewrite relation →



Confluence of rewrite relation →

a

b c

◮ ∀a, b, c such that a reduces to b,c



Confluence of rewrite relation →

a

b c

d

◮ ∀a, b, c such that a reduces to b,c

◮ ∃d such that b, c reduce to d



Relations vs. systems

Rewrite relation?



Relations vs. systems

No, want to construct valley on basis of steps in peak



Relations vs. systems

Rewrite system!



Relations vs. systems

◮ Definition
Abstract Rewriting System is 〈A,Φ, src, tgt〉

◮ A set of objects
◮ Φ set of steps
◮ src, tgt : Φ → A

source, target functions



Relations vs. systems

◮ Definition
Abstract Rewriting System is 〈A,Φ, src, tgt〉

◮ A set of objects
◮ Φ set of steps
◮ src, tgt : Φ → A

source, target functions

◮ Steps φ, ψ, χ, ω, . . .



Relations vs. systems

◮ Definition
Abstract Rewriting System is 〈A,Φ, src, tgt〉

◮ A set of objects
◮ Φ set of steps
◮ src, tgt : Φ → A

source, target functions

◮ Steps φ, ψ, χ, ω, . . .

◮ φ : a → b
φ is step with source a and target b



Confluence of rewrite system →



Confluence of rewrite system →

ψφ

◮ ∀φ,ψ co-initial reductions (peak)



Confluence of rewrite system →

ψφ

χ ω

◮ ∀φ,ψ co-initial reductions (peak)
◮ ∃χ, ω co-final reductions (valley)



Confluence of rewrite system →

ψφ

χ ω

◮ ∀φ,ψ co-initial reductions (peak)
◮ ∃χ, ω co-final reductions (valley)
◮ tgt(φ) = src(χ), tgt(ψ) = src(ω) (diagram)



Constructive confluence



Constructive confluence

ψφ

◮ ∀φ,ψ peak



Constructive confluence

ψφ

ψ/φ φ/ψ

◮ ∀φ,ψ peak

◮ ψ/φ, φ/ψ construct valley



Constructive confluence

ψφ

ψ/φ φ/ψ

◮ ∀φ,ψ peak

◮ ψ/φ, φ/ψ construct valley

◮ tgt(φ) = src(ψ/φ), tgt(ψ) = src(φ/ψ) (diagram)



Residual function

◮ / residual function



Residual function

◮ / residual function

◮ witnessing constructive confluence proof



Residual function

◮ / residual function

◮ witnessing constructive confluence proof

◮ from peaks to valleys constructing diagrams



Confluence by Local Confluence?



Confluence by Local Confluence?

ψφ

◮ ∀φ,ψ co-initial steps (local peak)



Confluence by Local Confluence?

ψφ

χ ω

◮ ∀φ,ψ co-initial steps (local peak)
◮ ∃χ, ω co-final reductions (valley)



Confluence by Local Confluence?

◮ No confluence (Counterexample Kleene)



Confluence by Local Confluence?

ψφ

◮ ∀φ,ψ co-initial steps (local peak)



Confluence by Local Confluence?

ψφ

χ ω

◮ ∀φ,ψ co-initial steps (local peak)
◮ ∃χ, ω co-final steps (local valley)



Confluence by Local Confluence?

ψφ

χ ω

◮ ∀φ,ψ co-initial steps (local peak)
◮ ∃χ, ω co-final steps (local valley)
◮ Diamond property ⇒ confluence (Newman)



Confluence by Local Confluence?

ψφ

◮ ∀φ,ψ co-initial steps (local peak)



Confluence by Local Confluence?

ψφ

χ ω

◮ ∀φ,ψ co-initial steps (local peak)
◮ ∃χ, ω co-final reductions (valley) & → is terminating



Confluence by Local Confluence?

ψφ

χ ω

◮ ∀φ,ψ co-initial steps (local peak)
◮ ∃χ, ω co-final reductions (valley) & → is terminating
◮ Local confluence & termination ⇒ confluence (Newman)



Confluence by Local Confluence?

φ ψ

◮ ∀_,−◮ ∈ A, _-step φ, −◮-step ψ, co-initial



Confluence by Local Confluence?

g_ g−◮

g
_,−◮ g

_,−◮

φ ψ

◮ ∀_,−◮ ∈ A, _-step φ, −◮-step ψ, co-initial
◮ ∃ decreasing co-final reductions for well-founded order (A,≺)



Confluence by Local Confluence?

g_ g−◮

g
_,−◮ g

_,−◮

φ ψ

◮ ∀_,−◮ ∈ A, _-step φ, −◮-step ψ, co-initial
◮ ∃ decreasing co-final reductions for well-founded order (A,≺)
◮ Decreasing diagrams ⇒ confluence of

⋃
A (vO)



Decreasing diagrams method

◮ given rewrite system →



Decreasing diagrams method

◮ given rewrite system →

◮ decompose → into set A of rewrite systems (→ =
⋃

A)



Decreasing diagrams method

◮ given rewrite system →

◮ decompose → into set A of rewrite systems (→ =
⋃

A)

◮ well-foundedly ordered (≺)



Decreasing diagrams method

◮ given rewrite system →

◮ decompose → into set A of rewrite systems (→ =
⋃

A)

◮ well-foundedly ordered (≺)

◮ ∀ co-initial _ and −◮ steps



Decreasing diagrams method

◮ given rewrite system →

◮ decompose → into set A of rewrite systems (→ =
⋃

A)

◮ well-foundedly ordered (≺)

◮ ∀ co-initial _ and −◮ steps

◮ ∃ co-final _,−◮-decreasing and −◮,_-decreasing reductions



Decreasing diagrams method

◮ given rewrite system →

◮ decompose → into set A of rewrite systems (→ =
⋃

A)

◮ well-foundedly ordered (≺)

◮ ∀ co-initial _ and −◮ steps

◮ ∃ co-final _,−◮-decreasing and −◮,_-decreasing reductions

◮ _,−◮-decreasing: steps below _; _-step; steps below _, −◮



Decreasing diagrams method

◮ given rewrite system →

◮ decompose → into set A of rewrite systems (→ =
⋃

A)

◮ well-foundedly ordered (≺)

◮ ∀ co-initial _ and −◮ steps

◮ ∃ co-final _,−◮-decreasing and −◮,_-decreasing reductions

◮ _,−◮-decreasing: steps below _; _-step; steps below _, −◮

◮ constructive (tiling)



Decreasing diagrams method

◮ given rewrite system →

◮ decompose → into set A of rewrite systems (→ =
⋃

A)

◮ well-foundedly ordered (≺)

◮ ∀ co-initial _ and −◮ steps

◮ ∃ co-final _,−◮-decreasing and −◮,_-decreasing reductions

◮ _,−◮-decreasing: steps below _; _-step; steps below _, −◮

◮ constructive (tiling)

◮ graph rewriting (Blom), explicit substitutions (vO)



Decreasing diagrams method

◮ given rewrite system →

◮ decompose → into set A of rewrite systems (→ =
⋃

A)

◮ well-foundedly ordered (≺)

◮ ∀ co-initial _ and −◮ steps

◮ ∃ co-final _,−◮-decreasing and −◮,_-decreasing reductions

◮ _,−◮-decreasing: steps below _; _-step; steps below _, −◮

◮ constructive (tiling)

◮ graph rewriting (Blom), explicit substitutions (vO)

◮ ambients (Lévy), bisimilarity (Pous), modularity (vO), . . .



Decreasing diagrams method

◮ given rewrite system →

◮ decompose → into set A of rewrite systems (→ =
⋃

A)

◮ well-foundedly ordered (≺)

◮ ∀ co-initial _ and −◮ steps

◮ ∃ co-final _,−◮-decreasing and −◮,_-decreasing reductions

◮ _,−◮-decreasing: steps below _; _-step; steps below _, −◮

◮ constructive (tiling)

◮ graph rewriting (Blom), explicit substitutions (vO)

◮ ambients (Lévy), bisimilarity (Pous), modularity (vO), . . .

◮ complete for countable rewrite systems (open otherwise)



Confluence of Combinatory Logic?

A(I , x) = x

A(A(K , x), y) = x

A(A(A(S , x), y), z) = A(A(x , z),A(y , z))

◮ Combinatory equational logic (Schönfinkel, Curry)



Confluence of Combinatory Logic?

A(I , x) = x

A(A(K , x), y) = x

A(A(A(S , x), y), z) = A(A(x , z),A(y , z))

◮ Combinatory equational logic (Schönfinkel, Curry)

◮ A application, I identity, K constant, S substitution



Confluence of Combinatory Logic?

(I · x) = x

((K · x) · y) = x

(((S · x) · y) · z) = ((x · z) · (y · z))

◮ · infix application



Confluence of Combinatory Logic?

I · x = x

K · x · y = x

S · x · y · z = x · z · (y · z)

◮ · left-associative



Confluence of Combinatory Logic?

Ix = x

Kxy = x

Sxyz = xz(yz)

◮ · denoted by juxtaposition



Confluence of Combinatory Logic?

Ix → x

Kxy → x

Sxyz → xz(yz)

◮ Combinatory rewriting logic (CL)



Confluence of Combinatory Logic?

Ix → x

Kxy → x

Sxyz → xz(yz)

◮ Combinatory rewriting logic (CL)

◮ CL constructively confluent?



Combinatory equational logic

(l = r)
l = r

s = t
(substitutive)

sτ = tτ
(c)

c = c

s1 = t1 s2 = t2
()

s1s2 = t1t2

(reflexive)
s = s

s = t
(symmetric)

t = s

s = t t = u
(transitive)

s = u



Combinatory equational logic

(l = r)
l = r

s = t
(substitutive)

sτ = tτ
(c)

c = c

s1 = t1 s2 = t2
()

s1s2 = t1t2

(reflexive)
s = s

s = t
(symmetric)

t = s

s = t t = u
(transitive)

s = u

Theorem
t ≈ s ⇐⇒ t ↔∗ s ⇐⇒ t = s (Birkhoff)



Combinatory equational logic

(l = r)
l = r

s = t
(substitutive)

sτ = tτ
(c)

c = c

s1 = t1 s2 = t2
()

s1s2 = t1t2

(reflexive)
s = s

s = t
(symmetric)

t = s

s = t t = u
(transitive)

s = u

Rewriting logic = Equational logic − symmetry (Meseguer)



Combinatory rewriting logic

(l → r)
l ≥ r

s ≥ t
(substitutive)

sτ ≥ tτ
(c)

c ≥ c

s1 ≥ t1 s2 ≥ t2
()

s1s2 ≥ t1t2

(reflexive)
s ≥ s

s ≥ t t ≥ u
(transitive)

s ≥ u



Combinatory rewriting logic

(l → r)
l ≥ r

s ≥ t
(substitutive)

sτ ≥ tτ
(c)

c ≥ c

s1 ≥ t1 s2 ≥ t2
()

s1s2 ≥ t1t2

(reflexive)
s ≥ s

s ≥ t t ≥ u
(transitive)

s ≥ u

Theorem
t � s ⇐⇒ t ։ s ⇐⇒ t ≥ s (vO)



Combinatory rewriting logic

(l → r)
l ≥ r

s ≥ t
(substitutive)

sτ ≥ tτ
(c)

c ≥ c

s1 ≥ t1 s2 ≥ t2
()

s1s2 ≥ t1t2

(reflexive)
s ≥ s

s ≥ t t ≥ u
(transitive)

s ≥ u

On closed terms reflexivity superfluous (use congruence)



Combinatory rewriting logic

(l → r)
l ≥ r

s ≥ t
(substitutive)

sτ ≥ tτ
(c)

c ≥ c

s1 ≥ t1 s2 ≥ t2
()

s1s2 ≥ t1t2

s ≥ t t ≥ u
(transitive)

s ≥ u

On closed terms reflexivity superfluous (use congruence)



Combinatory rewriting logic

(l → r)
l ≥ r

s ≥ t
(substitutive)

sτ ≥ tτ
(c)

c ≥ c

s1 ≥ t1 s2 ≥ t2
()

s1s2 ≥ t1t2

s ≥ t t ≥ u
(transitive)

s ≥ u

Allow rewriting inside substitutions



Combinatory rewriting logic

(l → r)
l ≥ r

s ≥ t τ ≥ θ
(subst.)

sτ ≥ tθ
(c)

c ≥ c

s1 ≥ t1 s2 ≥ t2
()

s1s2 ≥ t1t2

s ≥ t t ≥ u
(transitive)

s ≥ u

Allow rewriting inside substitutions



Combinatory rewriting logic

(l → r)
l ≥ r

s ≥ t τ ≥ θ
(subst.)

sτ ≥ tθ
(c)

c ≥ c

s1 ≥ t1 s2 ≥ t2
()

s1s2 ≥ t1t2

s ≥ t t ≥ u
(transitive)

s ≥ u

Substitutivity superfluous (instantiate rules immediately)



Combinatory rewriting logic

τ ≥ θ
(l → r)

lτ ≥ r θ
(c)

c ≥ c

s1 ≥ t1 s2 ≥ t2
()

s1s2 ≥ t1t2

s ≥ t t ≥ u
(transitive)

s ≥ u



Combinatory rewriting logic

τ ≥ θ
(l → r)

lτ ≥ r θ
(c)

c ≥ c

s1 ≥ t1 s2 ≥ t2
()

s1s2 ≥ t1t2

s ≥ t t ≥ u
(transitive)

s ≥ u

Residual function on combinatory rewriting logic proofs?



Combinatory rewriting logic

τ ≥ θ
(l → r)

lτ ≥ r θ
(c)

c ≥ c

s1 ≥ t1 s2 ≥ t2
()

s1s2 ≥ t1t2

s ≥ t t ≥ u
(transitive)

s ≥ u

Residual function on combinatory rewriting logic proof terms!



Combinatory rewriting logic proof terms

ι(x) : Ix → x

κ(x , y) : Kxy → x

σ(x , y , z) : Sxyz → xz(yz)

Φ : τ ≥ θ
(̺ : l → r)

̺Φ : lτ ≥ r θ



Combinatory rewriting logic proof terms

ι(x) : Ix → x

κ(x , y) : Kxy → x

σ(x , y , z) : Sxyz → xz(yz)

Φ : τ ≥ θ
(̺ : l → r)

̺Φ : lτ ≥ r θ

(c)
c : c = c

φ : s1 ≥ t1 ψ : s2 ≥ t2
()

φψ : s1s2 ≥ t1t2



Combinatory rewriting logic proof terms

ι(x) : Ix → x

κ(x , y) : Kxy → x

σ(x , y , z) : Sxyz → xz(yz)

Φ : τ ≥ θ
(̺ : l → r)

̺Φ : lτ ≥ r θ

(c)
c : c = c

φ : s1 ≥ t1 ψ : s2 ≥ t2
()

φψ : s1s2 ≥ t1t2

φ : s ≥ t ψ : t ≥ u
(◦)

φ ◦ ψ : s ≥ u



Combinatory rewriting logic proof term examples

I (It) ≥ It?



Combinatory rewriting logic proof term examples

I (It) ≥ It?

(Ix → x)
Ix ≥ x

(substitutive)
I (It) ≥ It



Combinatory rewriting logic proof term examples

I (It) ≥ It?

(Ix → x)
Ix ≥ x

(substitutive)
I (It) ≥ It

◮ ι(It) : I (It) ≥ It



Combinatory rewriting logic proof term examples

I (It) ≥ It?

(reflexive)
I ≥ I

(Ix → x)
Ix ≥ x

(substitutive)
It ≥ t

()
I (It) ≥ It



Combinatory rewriting logic proof term examples

I (It) ≥ It?

(reflexive)
I ≥ I

(Ix → x)
Ix ≥ x

(substitutive)
It ≥ t

()
I (It) ≥ It

◮ I (ι(t)) : I (It) ≥ It



Confluence of combinatory rewriting logic example



Confluence of combinatory rewriting logic example

I (It)

It It

I (ι(t))ι(It)



Confluence of combinatory rewriting logic example

I (It)

It It

t

I (ι(t))ι(It)

ι(t) ι(t)

◮ I (ι(t))/ι(It) = ι(t) = ι(It)/I (ι(t))



Residual function for combinatory rewriting logic

c/c = c

(φ1φ2)/(ψ1ψ2) = (φ1/ψ1)(φ2/ψ2)

̺(φ1, . . . , φn)/l(ψ1, . . . , ψn) = ̺(φ1/ψ1, . . . , φn/ψn)

l(φ1, . . . , φn)/̺(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

̺(φ1, . . . , φn)/̺(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

χ/(φ ◦ ψ) = (χ/φ)/ψ

(φ ◦ ψ)/χ = φ/χ ◦ ψ/(χ/φ)



Residual function for combinatory rewriting logic

c/c = c

(φ1φ2)/(ψ1ψ2) = (φ1/ψ1)(φ2/ψ2)

̺(φ1, . . . , φn)/l(ψ1, . . . , ψn) = ̺(φ1/ψ1, . . . , φn/ψn)

l(φ1, . . . , φn)/̺(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

̺(φ1, . . . , φn)/̺(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

χ/(φ ◦ ψ) = (χ/φ)/ψ

(φ ◦ ψ)/χ = φ/χ ◦ ψ/(χ/φ)

◮ Reified inductive confluence proof for orthogonal systems



Residual function for combinatory rewriting logic

c/c = c

(φ1φ2)/(ψ1ψ2) = (φ1/ψ1)(φ2/ψ2)

̺(φ1, . . . , φn)/l(ψ1, . . . , ψn) = ̺(φ1/ψ1, . . . , φn/ψn)

l(φ1, . . . , φn)/̺(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

̺(φ1, . . . , φn)/̺(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

χ/(φ ◦ ψ) = (χ/φ)/ψ

(φ ◦ ψ)/χ = φ/χ ◦ ψ/(χ/φ)

◮ Reified inductive confluence proof for orthogonal systems

◮ OTRSs (Rosen), λβ (Tait & Martin-Löf), HOTRS (vO)



Residual function for combinatory rewriting logic

c/c = c

(φ1φ2)/(ψ1ψ2) = (φ1/ψ1)(φ2/ψ2)

̺(φ1, . . . , φn)/l(ψ1, . . . , ψn) = ̺(φ1/ψ1, . . . , φn/ψn)

l(φ1, . . . , φn)/̺(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

̺(φ1, . . . , φn)/̺(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

χ/(φ ◦ ψ) = (χ/φ)/ψ

(φ ◦ ψ)/χ = φ/χ ◦ ψ/(χ/φ)

◮ Reified inductive confluence proof for orthogonal systems

◮ OTRSs (Rosen), λβ (Tait & Martin-Löf), HOTRS (vO)

◮ Characterize orthogonality abstractly via / ?



Residual systems

Definition
Residual system is 〈→, 1, /, ◦〉

◮ → an abstract rewriting system

◮ / residual function

◮ 1 unit function tgt(1a) = a = src(1a)

◮ ◦ composition function on φ, ψ s.t. tgt(φ) = src(ψ)

φ/φ = 1
φ/1 = φ
1/φ = 1

(φ/ψ)/(χ/ψ) = (φ/χ)/(ψ/χ)
1 ◦ 1 = 1

χ/(φ ◦ ψ) = (χ/φ)/ψ
(φ ◦ ψ)/χ = (φ/χ) ◦ (ψ/(χ/φ))



Natural numbers as residual algebra

◮ Objects: {∗} (single object)

◮ Steps: N (natural numbers)

◮ Residual: .− (cut-off subtraction)

◮ Unit: 0 (zero)

◮ Composition: + (addition)

n .− n = 0

n .− 0 = n

0 .− n = 0

(n .− m) .− (k .− m) = (n .− k) .− (m .− k)

0 + 0 = 0

k .− (n + m) = (k .− n) .− m

(n + m) .− k = (n .− k) + (m .− (k .− n))



Multisets as residual algebra

◮ Objects: {∗} (single object)

◮ Steps: Mst(A) (multisets over A)

◮ Residual: − (multiset difference)

◮ Unit: ∅ (empty multiset)

◮ Composition: ⊎ (multiset sum)

M − M = ∅

M − ∅ = M

∅ − M = ∅

(M − N) − (K − N) = (M − K ) − (N − K )

∅ ⊎ ∅ = ∅

K − (M ⊎ N) = (K − M) − N

(M ⊎ N) − K = (M − K ) ⊎ (N − (K − M))



Commutative residual algebras

Definition
commutative residual algebra also satisfies

(φ/ψ)/φ = 1
φ/(φ/ψ) = ψ/(ψ/φ)



Commutative residual algebras

Definition
commutative residual algebra also satisfies

(φ/ψ)/φ = 1
φ/(φ/ψ) = ψ/(ψ/φ)

residual and composition are total (algebra)



Commutative residual algebras

Definition
commutative residual algebra also satisfies

(φ/ψ)/φ = 1
φ/(φ/ψ) = ψ/(ψ/φ)

example: natural numbers with cut-off division



Commutative residual algebras

Definition
commutative residual algebra also satisfies

(φ/ψ)/φ = 1
φ/(φ/ψ) = ψ/(ψ/φ)

� well-founded (a � b if a/b = 1) ⇒ multisets (Visser,vO)



Commutative residual algebras

Definition
commutative residual algebra also satisfies

(φ/ψ)/φ = 1
φ/(φ/ψ) = ψ/(ψ/φ)

� well-founded (a � b if a/b = 1) ⇒ multisets (Visser,vO)
iso to commutative BCK algebras with relative cancellation



Commutative residual algebras

Definition
commutative residual algebra also satisfies

(φ/ψ)/φ = 1
φ/(φ/ψ) = ψ/(ψ/φ)

� well-founded (a � b if a/b = 1) ⇒ multisets (Visser,vO)
Uniquely decomposes into atoms (Luttik,vO)

◮ � well-founded partial-order

◮ 1 least

◮ strictly compatible: φ ≺ ψ ⇒ φ ◦ χ ≺ ψ ◦ χ

◮ precompositional: φ � ψ ◦ χ ⇒ φ = ψ′ ◦ χ′, ψ′ � ψ, χ′ � χ

◮ Archimedean: ∀n φn � ψ ⇒ φ = 1.



Braid problem



Braid identities

==



Braids as residual system

4

2 3 4 5 6 1 2 3 4 5 6

1 5 2 3 4 6 3 1 5 2 6

1



Braids as residual system

4

2 3 4 5 6 1 2 3 4 5 6

1 5 2 3 4 6 3 1 5 2 6

1

◮ Objects: relations on strands
total (i R j or j R i), irreflexive (¬(iRi)), transitive (R+ = R)



Braids as residual system

4

2 3 4 5 6 1 2 3 4 5 6

1 5 2 3 4 6 3 1 5 2 6

1

◮ Objects: relations on strands

◮ Steps: sequences of multi-steps
R − S : R → S (fastest way from one state to another)
〈2, 5〉, 〈3, 5〉, 〈4, 5〉 and 〈1, 3〉, 〈2, 3〉, 〈2, 5〉, 〈4, 5〉, 〈4, 6〉



Braids as residual system

6

=

1 2 3 4 5 6 1 2 3 4 5 6

1 5 2 3 4 6 3 1 5 2 6 4

13 5 2 6 4

5 3 1 42

/

◮ Objects: relations on strands

◮ Steps: sequences of multi-steps
R − S : R → S (fastest way from one state to another)

◮ Residual: ψ/φ = (φ ∪ ψ)+ − φ



Braids as residual system

6

=

1 2 3 4 5 6 1 2 3 4 5 6

1 5 2 3 4 6 3 1 5 2 6 4

13 5 2 6 4

5 3 1 42

/

◮ Objects: relations on strands

◮ Steps: sequences of multi-steps
R − S : R → S (fastest way from one state to another)

◮ Residual: ψ/φ = (φ ∪ ψ)+ − φ

◮ Unit: ∅



Braids as residual system

6

=

1 2 3 4 5 6 1 2 3 4 5 6

1 5 2 3 4 6 3 1 5 2 6 4

13 5 2 6 4

5 3 1 42

/

◮ Objects: relations on strands

◮ Steps: sequences of multi-steps
R − S : R → S (fastest way from one state to another)

◮ Residual: ψ/φ = (φ ∪ ψ)+ − φ

◮ Unit: ∅

◮ Composition: concatenation



Braids as residual system

6

=

1 2 3 4 5 6 1 2 3 4 5 6

1 5 2 3 4 6 3 1 5 2 6 4

13 5 2 6 4

5 3 1 42

/

◮ Objects: relations on strands
◮ Steps: sequences of multi-steps

R − S : R → S (fastest way from one state to another)
◮ Residual: ψ/φ = (φ ∪ ψ)+ − φ
◮ Unit: ∅
◮ Composition: concatenation

Theorem
Braids constitute residual system (Klop,vO,de Vrijer)



Self-distributivity

(x · y) · z = (x · z) · (y · z)



Self-distributivity

xyz → xz(yz) (S-less S-rule)



Self-distributivity

xyz → xz(yz) (S-less S-rule)

◮ Equational theory (Dehornoy)



Self-distributivity

xyz → xz(yz) (S-less S-rule)

◮ Equational theory (Dehornoy)

◮ Residual system (Arbiser, vO)



xyz → xz(yz)

Interpret as first projection



xyz → xz(yz)

Interpret as an ACI-operation

(x · y) · z = x · (y · z)

= x · (y · (z · z))

= x · ((y · z) · z)

= x · (z · (y · z))

= (x · z) · (y · z)

Examples: disjunction/union, conjunction/intersection



xyz → xz(yz)

Interpret as ‘middle’

a

b

c



xyz → xz(yz)

Interpret as ‘middle’

a

b

c

a · b



xyz → xz(yz)

Interpret as ‘middle’

a

b

c

a · b



xyz → xz(yz)

Interpret as ‘middle’

a

b

c

b · c
a · c

a · b



xyz → xz(yz)

Interpret as ‘middle’

a

b

c

b · c
a · c

a · b



xyz → xz(yz)

Interpret as substitution lemma

M[x :=N][y :=P ] → M[y :=P ][x :=N[y :=P ]]



xyz → xz(yz) critical pair

wxyz

wy(xy)z wxz(yz)

wz(yz)(xz(yz))

wyz(xyz) wz(xz)(yz)

wz(yz)(xyz)



[y ][z ] → [z ][y [z ]] critical pair

[x ][y ][z ]

[y ][x [y ]][z ] [x ][z ][y [z ]]

[z ][y [z ]][x [z ][y [z ]]]

[y ][z ][x [y ][z ]] [z ][x [z ]][y [z ]]

[z ][y [z ]][x [y ][z ]]



Conclusion

◮ Constructive confluence (tiling)



Conclusion

◮ Constructive confluence (tiling)

◮ via local confluence (decreasing diagrams)



Conclusion

◮ Constructive confluence (tiling)

◮ via local confluence (decreasing diagrams)

◮ via orthogonality (residual systems)



Conclusion

◮ Constructive confluence (tiling)

◮ via local confluence (decreasing diagrams)

◮ via orthogonality (residual systems)

◮ complexity ?


	Confluence
	Constructive confluence
	Confluence by Local Confluence
	Confluence by Orthogonality
	Residual Systems
	Natural numbers
	Multisets
	Braids
	Self-distributivity


