Constructing Confluence

Vincent van Oostrom

Theoretical Philosophy
Utrecht University
The Netherlands
September 8, 2006

Confluence

Constructive confluence

Confluence by Local Confluence

Confluence by Orthogonality

Residual Systems
Natural numbers
Multisets
Braids
Self-distributivity

Confluence of rewrite relation \rightarrow

Confluence of rewrite relation \rightarrow

- $\forall a, b, c$ such that a reduces to b, c

Confluence of rewrite relation \rightarrow

- $\forall a, b, c$ such that a reduces to b, c
- $\exists d$ such that b, c reduce to d

Relations vs. systems

Rewrite relation?

Relations vs. systems

No, want to construct valley on basis of steps in peak

Relations vs. systems

Rewrite system!

Relations vs. systems

- Definition

Abstract Rewriting System is $\langle A, \Phi$, src, tgt \rangle

- A set of objects
- Φ set of steps
- src, tgt : $\Phi \rightarrow A$
source, target functions

Relations vs. systems

- Definition

Abstract Rewriting System is $\langle A, \Phi$, src, tgt \rangle

- A set of objects
- Φ set of steps
- src, tgt : $\Phi \rightarrow A$
source, target functions
- Steps $\phi, \psi, \chi, \omega, \ldots$

Relations vs. systems

- Definition

Abstract Rewriting System is $\langle A, \Phi$, src, tgt \rangle

- A set of objects
- Φ set of steps
- src, tgt : $\Phi \rightarrow A$
source, target functions
- Steps $\phi, \psi, \chi, \omega, \ldots$
- $\phi: a \rightarrow b$
ϕ is step with source a and target b

Confluence of rewrite system \rightarrow

Confluence of rewrite system \rightarrow

- $\forall \phi, \psi$ co-initial reductions (peak)

Confluence of rewrite system \rightarrow

- $\forall \phi, \psi$ co-initial reductions (peak)
- $\exists \chi, \omega$ co-final reductions (valley)

Confluence of rewrite system \rightarrow

- $\forall \phi, \psi$ co-initial reductions (peak)
- $\exists \chi, \omega$ co-final reductions (valley)
$-\operatorname{tgt}(\phi)=\operatorname{src}(\chi), \operatorname{tgt}(\psi)=\operatorname{src}(\omega)$ (diagram)

Constructive confluence

Constructive confluence

- $\forall \phi, \psi$ peak

Constructive confluence

- $\forall \phi, \psi$ peak
- $\psi / \phi, \phi / \psi$ construct valley

Constructive confluence

- $\forall \phi, \psi$ peak
- $\psi / \phi, \phi / \psi$ construct valley
- $\operatorname{tgt}(\phi)=\operatorname{src}(\psi / \phi), \operatorname{tgt}(\psi)=\operatorname{src}(\phi / \psi)$ (diagram)

Residual function

- / residual function

Residual function

- / residual function
- witnessing constructive confluence proof

Residual function

- / residual function
- witnessing constructive confluence proof
- from peaks to valleys constructing diagrams

Confluence by Local Confluence?

Confluence by Local Confluence?

- $\forall \phi, \psi$ co-initial steps (local peak)

Confluence by Local Confluence?

- $\forall \phi, \psi$ co-initial steps (local peak)
- $\exists \chi, \omega$ co-final reductions (valley)

Confluence by Local Confluence?

- No confluence (Counterexample Kleene)

Confluence by Local Confluence?

- $\forall \phi, \psi$ co-initial steps (local peak)

Confluence by Local Confluence?

- $\forall \phi, \psi$ co-initial steps (local peak)
- $\exists \chi, \omega$ co-final steps (local valley)

Confluence by Local Confluence?

- $\forall \phi, \psi$ co-initial steps (local peak)
- $\exists \chi, \omega$ co-final steps (local valley)
- Diamond property \Rightarrow confluence (Newman)

Confluence by Local Confluence?

- $\forall \phi, \psi$ co-initial steps (local peak)

Confluence by Local Confluence?

- $\forall \phi, \psi$ co-initial steps (local peak)
- $\exists \chi, \omega$ co-final reductions (valley) $\& \rightarrow$ is terminating

Confluence by Local Confluence?

- $\forall \phi, \psi$ co-initial steps (local peak)
- $\exists \chi, \omega$ co-final reductions (valley) $\& \rightarrow$ is terminating
- Local confluence \& termination \Rightarrow confluence (Newman)

Confluence by Local Confluence?

$-\forall \rightarrow, \rightarrow \in A, \rightarrow$-step ϕ, \rightarrow-step ψ, co-initial

Confluence by Local Confluence?

$-\forall \rightarrow, \rightarrow \in A, \rightarrow$-step ϕ, \rightarrow-step ψ, co-initial

- \exists decreasing co-final reductions for well-founded order (A, \prec)

Confluence by Local Confluence?

$-\forall \rightarrow, \rightarrow \in A, \rightarrow$-step ϕ, \rightarrow-step ψ, co-initial

- \exists decreasing co-final reductions for well-founded order (A, \prec)
- Decreasing diagrams \Rightarrow confluence of $\bigcup A(\mathrm{vO})$

Decreasing diagrams method

- given rewrite system \rightarrow

Decreasing diagrams method

- given rewrite system \rightarrow
- decompose \rightarrow into set A of rewrite systems $(\rightarrow=\bigcup A)$

Decreasing diagrams method

- given rewrite system \rightarrow
- decompose \rightarrow into set A of rewrite systems $(\rightarrow=\bigcup A)$
- well-foundedly ordered (\prec)

Decreasing diagrams method

- given rewrite system \rightarrow
- decompose \rightarrow into set A of rewrite systems $(\rightarrow=\bigcup A)$
- well-foundedly ordered (\prec)
- \forall co-initial \rightarrow and \rightarrow steps

Decreasing diagrams method

- given rewrite system \rightarrow
- decompose \rightarrow into set A of rewrite systems $(\rightarrow=\bigcup A)$
- well-foundedly ordered (\prec)
- \forall co-initial \rightarrow and \rightarrow steps
- \exists co-final \rightarrow, \rightarrow-decreasing and \rightarrow, \rightarrow-decreasing reductions

Decreasing diagrams method

- given rewrite system \rightarrow
- decompose \rightarrow into set A of rewrite systems $(\rightarrow=\bigcup A)$
- well-foundedly ordered (\prec)
- \forall co-initial \rightarrow and \rightarrow steps
- \exists co-final \rightarrow, \rightarrow-decreasing and \rightarrow, \rightarrow-decreasing reductions
$\rightarrow \rightarrow$, \rightarrow decreasing: steps below \rightarrow; \rightarrow-step; steps below \rightarrow, \rightarrow

Decreasing diagrams method

- given rewrite system \rightarrow
- decompose \rightarrow into set A of rewrite systems $(\rightarrow=\bigcup A)$
- well-foundedly ordered (\prec)
- \forall co-initial \rightarrow and \rightarrow steps
$-\exists$ co-final \rightarrow, \rightarrow-decreasing and \rightarrow, \rightarrow-decreasing reductions
$\rightarrow \rightarrow$, \rightarrow decreasing: steps below \rightarrow; \rightarrow-step; steps below \rightarrow, \rightarrow
- constructive (tiling)

Decreasing diagrams method

- given rewrite system \rightarrow
- decompose \rightarrow into set A of rewrite systems $(\rightarrow=\bigcup A)$
- well-foundedly ordered (\prec)
- \forall co-initial \rightarrow and \rightarrow steps
$-\exists$ co-final \rightarrow, \rightarrow-decreasing and \rightarrow, \rightarrow-decreasing reductions
$\rightarrow \rightarrow$, \rightarrow decreasing: steps below \rightarrow; \rightarrow-step; steps below \rightarrow, \rightarrow
- constructive (tiling)
- graph rewriting (Blom), explicit substitutions (vO)

Decreasing diagrams method

- given rewrite system \rightarrow
- decompose \rightarrow into set A of rewrite systems $(\rightarrow=\bigcup A)$
- well-foundedly ordered (\prec)
- \forall co-initial \rightarrow and \rightarrow steps
$-\exists$ co-final \rightarrow, \rightarrow-decreasing and \rightarrow, \rightarrow-decreasing reductions
$\rightarrow \rightarrow$, \rightarrow decreasing: steps below \rightarrow; \rightarrow-step; steps below \rightarrow, \rightarrow
- constructive (tiling)
- graph rewriting (Blom), explicit substitutions (vO)
- ambients (Lévy), bisimilarity (Pous), modularity (vO), ...

Decreasing diagrams method

- given rewrite system \rightarrow
- decompose \rightarrow into set A of rewrite systems $(\rightarrow=\bigcup A)$
- well-foundedly ordered (\prec)
- \forall co-initial \rightarrow and \rightarrow steps
- \exists co-final \rightarrow, \rightarrow-decreasing and \rightarrow, \rightarrow-decreasing reductions
$\rightarrow \rightarrow, \rightarrow$-decreasing: steps below \rightarrow; \rightarrow-step; steps below \rightarrow, \rightarrow
- constructive (tiling)
- graph rewriting (Blom), explicit substitutions (vO)
- ambients (Lévy), bisimilarity (Pous), modularity (vO), ...
- complete for countable rewrite systems (open otherwise)

Confluence of Combinatory Logic?

$$
\begin{aligned}
A(I, x) & =x \\
A(A(K, x), y) & =x \\
A(A(A(S, x), y), z) & =A(A(x, z), A(y, z))
\end{aligned}
$$

- Combinatory equational logic (Schönfinkel, Curry)

Confluence of Combinatory Logic?

$$
\begin{aligned}
A(I, x) & =x \\
A(A(K, x), y) & =x \\
A(A(A(S, x), y), z) & =A(A(x, z), A(y, z))
\end{aligned}
$$

- Combinatory equational logic (Schönfinkel, Curry)
- A application, I identity, K constant, S substitution

Confluence of Combinatory Logic?

$$
\begin{aligned}
(I \cdot x) & =x \\
((K \cdot x) \cdot y) & =x \\
(((S \cdot x) \cdot y) \cdot z) & =((x \cdot z) \cdot(y \cdot z))
\end{aligned}
$$

- . infix application

Confluence of Combinatory Logic?

$$
\begin{aligned}
I \cdot x & =x \\
K \cdot x \cdot y & =x \\
S \cdot x \cdot y \cdot z & =x \cdot z \cdot(y \cdot z)
\end{aligned}
$$

- . left-associative

Confluence of Combinatory Logic?

$$
\begin{aligned}
1 x & =x \\
K x y & =x \\
S x y z & =x z(y z)
\end{aligned}
$$

- denoted by juxtaposition

Confluence of Combinatory Logic?

$$
\begin{aligned}
1 x & \rightarrow x \\
K x y & \rightarrow x \\
S x y z & \rightarrow x z(y z)
\end{aligned}
$$

- Combinatory rewriting logic (CL)

Confluence of Combinatory Logic?

$$
\begin{aligned}
1 x & \rightarrow x \\
K x y & \rightarrow x \\
S x y z & \rightarrow x z(y z)
\end{aligned}
$$

- Combinatory rewriting logic (CL)
- CL constructively confluent?

Combinatory equational logic

$$
\begin{aligned}
& \overline{I=r}(I=r) \frac{s=t}{s^{\tau}=t^{\tau}}(\text { substitutive }) \frac{s_{1}=t_{1} \quad s_{2}=t_{2}}{c=c}(c) \frac{s_{1} s_{2}=t_{1} t_{2}}{()} \\
& \overline{s=s} \text { (reflexive) } \frac{s=t}{t=s} \text { (symmetric) } \frac{s=t \quad t=u}{s=u} \text { (transitive) }
\end{aligned}
$$

Combinatory equational logic

$$
\begin{aligned}
& \overline{I=r}(I=r) \frac{s=t}{s^{\tau}=t^{\tau}}(\text { substitutive }) \frac{s_{1}=t_{1} \quad s_{2}=t_{2}}{c=c}(c) \frac{s_{1} s_{2}=t_{1} t_{2}}{()} \\
& \overline{s=s} \text { (reflexive) } \frac{s=t}{t=s} \text { (symmetric) } \frac{s=t \quad t=u}{s=u} \text { (transitive) }
\end{aligned}
$$

Theorem $t \approx s \Longleftrightarrow t \leftrightarrow^{*} s \Longleftrightarrow t=s$ (Birkhoff)

Combinatory equational logic

$$
\overline{I=r}(I=r) \quad \frac{s=t}{s^{\tau}=t^{\tau}}(\text { substitutive }) \quad \overline{c=c}(c) \quad \frac{s_{1}=t_{1} \quad s_{2}=t_{2}}{s_{1} s_{2}=t_{1} t_{2}}()
$$

$\overline{s=s}$ (reflexive) $\frac{s=t}{t=s}$ (symmetric) $\frac{s=t \quad t=u}{s=u}$ (transitive)
Rewriting logic $=$ Equational logic - symmetry (Meseguer)

Combinatory rewriting logic

$$
\overline{I \geq r}(I \rightarrow r) \frac{s \geq t}{s^{\tau} \geq t^{\tau}}(\text { substitutive }) \quad \overline{c \geq c}(c) \frac{s_{1} \geq t_{1} \quad s_{2} \geq t_{2}}{s_{1} s_{2} \geq t_{1} t_{2}}()
$$

$\overline{s \geq s}$ (reflexive)

$$
\frac{s \geq t \quad t \geq u}{s \geq u} \text { (transitive) }
$$

Combinatory rewriting logic

$$
\begin{array}{ll}
\overline{I \geq r}(I \rightarrow r) \frac{s \geq t}{s^{\tau} \geq t^{\tau}}(\text { substitutive }) & \overline{c \geq c}(c) \frac{s_{1} \geq t_{1} \quad s_{2} \geq t_{2}}{s_{1} s_{2} \geq t_{1} t_{2}}() \\
\overline{s \geq s}(\text { reflexive }) & \frac{s \geq t \quad t \geq u}{s \geq u} \text { (transitive) }
\end{array}
$$

Theorem
$t \succeq s \Longleftrightarrow t \rightarrow s \Longleftrightarrow t \geq s(v O)$

Combinatory rewriting logic

$$
\overline{I \geq r}(I \rightarrow r) \frac{s \geq t}{s^{\tau} \geq t^{\tau}}(\text { substitutive }) \quad \overline{c \geq c}(c) \frac{s_{1} \geq t_{1} \quad s_{2} \geq t_{2}}{s_{1} s_{2} \geq t_{1} t_{2}}()
$$

$\overline{s \geq s}$ (reflexive)

$$
\frac{s \geq t \quad t \geq u}{s \geq u} \text { (transitive) }
$$

On closed terms reflexivity superfluous (use congruence)

Combinatory rewriting logic

$$
\overline{I \geq r}(I \rightarrow r) \frac{s \geq t}{s^{\tau} \geq t^{\tau}}(\text { substitutive }) \quad \overline{c \geq c}(c) \frac{s_{1} \geq t_{1} \quad s_{2} \geq t_{2}}{s_{1} s_{2} \geq t_{1} t_{2}}()
$$

$$
\frac{s \geq t \quad t \geq u}{s \geq u} \text { (transitive) }
$$

On closed terms reflexivity superfluous (use congruence)

Combinatory rewriting logic

$$
\overline{I \geq r}(I \rightarrow r) \frac{s \geq t}{s^{\tau} \geq t^{\tau}}(\text { substitutive }) \quad \overline{c \geq c}(c) \frac{s_{1} \geq t_{1} \quad s_{2} \geq t_{2}}{s_{1} s_{2} \geq t_{1} t_{2}}()
$$

$$
\frac{s \geq t \quad t \geq u}{s \geq u} \text { (transitive) }
$$

Allow rewriting inside substitutions

Combinatory rewriting logic

$$
\overline{l \geq r}(I \rightarrow r) \frac{s \geq t \quad \tau \geq \theta}{s^{\tau} \geq t^{\theta}}(\text { subst. }) \quad \overline{c \geq c}(c) \frac{s_{1} \geq t_{1} \quad s_{2} \geq t_{2}}{s_{1} s_{2} \geq t_{1} t_{2}}()
$$

$$
\frac{s \geq t \quad t \geq u}{s \geq u} \text { (transitive) }
$$

Allow rewriting inside substitutions

Combinatory rewriting logic

$$
\overline{l \geq r}(I \rightarrow r) \frac{s \geq t \quad \tau \geq \theta}{s^{\tau} \geq t^{\theta}}(\text { subst. }) \frac{}{c \geq c}(c) \frac{s_{1} \geq t_{1} \quad s_{2} \geq t_{2}}{s_{1} s_{2} \geq t_{1} t_{2}}()
$$

$$
\frac{s \geq t \quad t \geq u}{s \geq u} \text { (transitive) }
$$

Substitutivity superfluous (instantiate rules immediately)

Combinatory rewriting logic

$$
\begin{aligned}
& \frac{\tau \geq \theta}{I^{\tau} \geq r^{\theta}}(I \rightarrow r) \quad \overline{c \geq c}(c) \quad \frac{s_{1} \geq t_{1} \quad s_{2} \geq t_{2}}{s_{1} s_{2} \geq t_{1} t_{2}}() \\
& \frac{s \geq t \quad t \geq u}{s \geq u}(\text { transitive })
\end{aligned}
$$

Combinatory rewriting logic

$$
\begin{aligned}
& \frac{\tau \geq \theta}{I^{\tau} \geq r^{\theta}}(I \rightarrow r) \quad \overline{c \geq c}(c) \quad \frac{s_{1} \geq t_{1} \quad s_{2} \geq t_{2}}{s_{1} s_{2} \geq t_{1} t_{2}}() \\
& \frac{s \geq t \quad t \geq u}{s \geq u}(\text { transitive })
\end{aligned}
$$

Residual function on combinatory rewriting logic proofs?

Combinatory rewriting logic

$$
\begin{aligned}
\frac{\tau \geq \theta}{I^{\tau} \geq r^{\theta}}(I & \rightarrow r) \quad \overline{c \geq c}(c) \quad \frac{s_{1} \geq t_{1} \quad s_{2} \geq t_{2}}{s_{1} s_{2} \geq t_{1} t_{2}}() \\
& \frac{s \geq t \quad t \geq u}{s \geq u}(\text { transitive })
\end{aligned}
$$

Residual function on combinatory rewriting logic proof terms!

Combinatory rewriting logic proof terms

$$
\begin{aligned}
\iota(x): I x & \rightarrow x \\
\kappa(x, y): K x y & \rightarrow x \\
\sigma(x, y, z): S x y z & \rightarrow x z(y z) \\
& \frac{\Phi: \tau \geq \theta}{\varrho^{\Phi}: I^{\tau} \geq r^{\theta}}(\varrho: I \rightarrow r)
\end{aligned}
$$

Combinatory rewriting logic proof terms

$$
\begin{aligned}
& \iota(x): I x \rightarrow x \\
& \kappa(x, y): K x y \rightarrow x \\
& \sigma(x, y, z): S x y z \rightarrow x z(y z) \\
& \frac{\Phi: \tau \geq \theta}{\varrho^{\Phi}: I^{\tau} \geq r^{\theta}}(\varrho: I \rightarrow r) \\
& \frac{\phi: s_{1} \geq t_{1} \quad \psi: s_{2} \geq t_{2}}{c: c=c}(c) \frac{\phi \psi: s_{1} s_{2} \geq t_{1} t_{2}}{}()
\end{aligned}
$$

Combinatory rewriting logic proof terms

$$
\begin{aligned}
& \iota(x): I x \rightarrow x \\
& \kappa(x, y): K x y \rightarrow x \\
& \sigma(x, y, z): S x y z \rightarrow x z(y z) \\
& \frac{\phi: \tau \geq \theta}{\varrho^{\phi}: I^{\tau} \geq r^{\theta}}(\varrho: I \rightarrow r) \\
& \frac{c: c=c}{}(c) \frac{\phi: s_{1} \geq t_{1} \quad \psi: s_{2} \geq t_{2}}{\phi \psi: s_{1} s_{2} \geq t_{1} t_{2}}() \\
& \frac{\phi: s \geq t \psi: t \geq u}{\phi \circ \psi: s \geq u}(\circ)
\end{aligned}
$$

Combinatory rewriting logic proof term examples

$$
I(I t) \geq I t ?
$$

Combinatory rewriting logic proof term examples

$$
I(I t) \geq I t ?
$$

$$
\begin{aligned}
& \frac{I x \geq x}{I(I t) \geq I t}(I x \rightarrow x) \\
& (\text { substitutive })
\end{aligned}
$$

Combinatory rewriting logic proof term examples

$$
I(I t) \geq I t ?
$$

$$
\begin{gathered}
\frac{\overline{l x \geq x}}{\frac{l(I t) \geq l t}{l \mid}} \text { (substitutive) }
\end{gathered}
$$

- $\iota(I t): I(I t) \geq l t$

Combinatory rewriting logic proof term examples

$$
I(I t) \geq I t ?
$$

Combinatory rewriting logic proof term examples

$$
\begin{aligned}
& I(I t) \geq I t ? \\
& \\
& \quad \frac{\frac{I \geq I}{}(\text { reflexive }) \frac{\frac{I x \geq x}{I t \geq t}}{I(I t) \geq I t}(\text { substitutive })}{I}() \\
& \nabla I(\iota(t)): I(I t) \geq I t
\end{aligned}
$$

Confluence of combinatory rewriting logic example

Confluence of combinatory rewriting logic example

Confluence of combinatory rewriting logic example

- I($\iota(t)) / \iota(I t)=\iota(t)=\iota(I t) / I(\iota(t))$

Residual function for combinatory rewriting logic

$$
\begin{aligned}
c / c & =c \\
\left(\phi_{1} \phi_{2}\right) /\left(\psi_{1} \psi_{2}\right) & =\left(\phi_{1} / \psi_{1}\right)\left(\phi_{2} / \psi_{2}\right) \\
\varrho\left(\phi_{1}, \ldots, \phi_{n}\right) / I\left(\psi_{1}, \ldots, \psi_{n}\right) & =\varrho\left(\phi_{1} / \psi_{1}, \ldots, \phi_{n} / \psi_{n}\right) \\
I\left(\phi_{1}, \ldots, \phi_{n}\right) / \varrho\left(\psi_{1}, \ldots, \psi_{n}\right) & =r\left(\phi_{1} / \psi_{1}, \ldots, \phi_{n} / \psi_{n}\right) \\
\varrho\left(\phi_{1}, \ldots, \phi_{n}\right) / \varrho\left(\psi_{1}, \ldots, \psi_{n}\right) & =r\left(\phi_{1} / \psi_{1}, \ldots, \phi_{n} / \psi_{n}\right) \\
\chi /(\phi \circ \psi) & =(\chi / \phi) / \psi \\
(\phi \circ \psi) / \chi & =\phi / \chi \circ \psi /(\chi / \phi)
\end{aligned}
$$

Residual function for combinatory rewriting logic

$$
\begin{aligned}
c / c & =c \\
\left(\phi_{1} \phi_{2}\right) /\left(\psi_{1} \psi_{2}\right) & =\left(\phi_{1} / \psi_{1}\right)\left(\phi_{2} / \psi_{2}\right) \\
\varrho\left(\phi_{1}, \ldots, \phi_{n}\right) / I\left(\psi_{1}, \ldots, \psi_{n}\right) & =\varrho\left(\phi_{1} / \psi_{1}, \ldots, \phi_{n} / \psi_{n}\right) \\
I\left(\phi_{1}, \ldots, \phi_{n}\right) / \varrho\left(\psi_{1}, \ldots, \psi_{n}\right) & =r\left(\phi_{1} / \psi_{1}, \ldots, \phi_{n} / \psi_{n}\right) \\
\varrho\left(\phi_{1}, \ldots, \phi_{n}\right) / \varrho\left(\psi_{1}, \ldots, \psi_{n}\right) & =r\left(\phi_{1} / \psi_{1}, \ldots, \phi_{n} / \psi_{n}\right) \\
\chi /(\phi \circ \psi) & =(\chi / \phi) / \psi \\
(\phi \circ \psi) / \chi & =\phi / \chi \circ \psi /(\chi / \phi)
\end{aligned}
$$

- Reified inductive confluence proof for orthogonal systems

Residual function for combinatory rewriting logic

$$
\begin{aligned}
c / c & =c \\
\left(\phi_{1} \phi_{2}\right) /\left(\psi_{1} \psi_{2}\right) & =\left(\phi_{1} / \psi_{1}\right)\left(\phi_{2} / \psi_{2}\right) \\
\varrho\left(\phi_{1}, \ldots, \phi_{n}\right) / I\left(\psi_{1}, \ldots, \psi_{n}\right) & =\varrho\left(\phi_{1} / \psi_{1}, \ldots, \phi_{n} / \psi_{n}\right) \\
I\left(\phi_{1}, \ldots, \phi_{n}\right) / \varrho\left(\psi_{1}, \ldots, \psi_{n}\right) & =r\left(\phi_{1} / \psi_{1}, \ldots, \phi_{n} / \psi_{n}\right) \\
\varrho\left(\phi_{1}, \ldots, \phi_{n}\right) / \varrho\left(\psi_{1}, \ldots, \psi_{n}\right) & =r\left(\phi_{1} / \psi_{1}, \ldots, \phi_{n} / \psi_{n}\right) \\
\chi /(\phi \circ \psi) & =(\chi / \phi) / \psi \\
(\phi \circ \psi) / \chi & =\phi / \chi \circ \psi /(\chi / \phi)
\end{aligned}
$$

- Reified inductive confluence proof for orthogonal systems
- OTRSs (Rosen), $\lambda \beta$ (Tait \& Martin-Löf), HOTRS (vO)

Residual function for combinatory rewriting logic

$$
\begin{aligned}
c / c & =c \\
\left(\phi_{1} \phi_{2}\right) /\left(\psi_{1} \psi_{2}\right) & =\left(\phi_{1} / \psi_{1}\right)\left(\phi_{2} / \psi_{2}\right) \\
\varrho\left(\phi_{1}, \ldots, \phi_{n}\right) / I\left(\psi_{1}, \ldots, \psi_{n}\right) & =\varrho\left(\phi_{1} / \psi_{1}, \ldots, \phi_{n} / \psi_{n}\right) \\
I\left(\phi_{1}, \ldots, \phi_{n}\right) / \varrho\left(\psi_{1}, \ldots, \psi_{n}\right) & =r\left(\phi_{1} / \psi_{1}, \ldots, \phi_{n} / \psi_{n}\right) \\
\varrho\left(\phi_{1}, \ldots, \phi_{n}\right) / \varrho\left(\psi_{1}, \ldots, \psi_{n}\right) & =r\left(\phi_{1} / \psi_{1}, \ldots, \phi_{n} / \psi_{n}\right) \\
\chi /(\phi \circ \psi) & =(\chi / \phi) / \psi \\
(\phi \circ \psi) / \chi & =\phi / \chi \circ \psi /(\chi / \phi)
\end{aligned}
$$

- Reified inductive confluence proof for orthogonal systems
- OTRSs (Rosen), $\lambda \beta$ (Tait \& Martin-Löf), HOTRS (vO)
- Characterize orthogonality abstractly via / ?

Residual systems

Definition
Residual system is $\langle\rightarrow, 1, /, \circ\rangle$

- \rightarrow an abstract rewriting system
- / residual function
- 1 unit function $\operatorname{tgt}\left(1_{a}\right)=a=\operatorname{src}\left(1_{a}\right)$
- \circ composition function on ϕ, ψ s.t. $\operatorname{tgt}(\phi)=\operatorname{src}(\psi)$

$$
\begin{aligned}
\phi / \phi & =1 \\
\phi / 1 & =\phi \\
1 / \phi & =1 \\
(\phi / \psi) /(\chi / \psi) & =(\phi / \chi) /(\psi / \chi) \\
1 \circ 1 & =1 \\
\chi /(\phi \circ \psi) & =(\chi / \phi) / \psi \\
(\phi \circ \psi) / \chi & =(\phi / \chi) \circ(\psi /(\chi / \phi))
\end{aligned}
$$

Natural numbers as residual algebra

- Objects: $\{*\}$ (single object)
- Steps: \mathbb{N} (natural numbers)
- Residual: - (cut-off subtraction)
- Unit: 0 (zero)
- Composition: + (addition)

$$
\begin{aligned}
& n-n=0 \\
& n-0=n \\
& 0-n=0 \\
& (n \doteq m) \doteq(k \doteq m)=(n \doteq k) \doteq(m \doteq k) \\
& 0+0=0 \\
& k \doteq(n+m)=(k \doteq n) \doteq m \\
& (n+m) \dot{-}=(n \dot{-})+(m \dot{-}(k \dot{-}))
\end{aligned}
$$

Multisets as residual algebra

- Objects: $\{*\}$ (single object)
- Steps: Mst (A) (multisets over A)
- Residual: - (multiset difference)
- Unit: \emptyset (empty multiset)
- Composition: \uplus (multiset sum)

$$
\begin{aligned}
M-M & =\emptyset \\
M-\emptyset & =M \\
\emptyset-M & =\emptyset \\
(M-N)-(K-N) & =(M-K)-(N-K) \\
\emptyset \uplus \emptyset & =\emptyset \\
K-(M \uplus N) & =(K-M)-N \\
(M \uplus N)-K & =(M-K) \uplus(N-(K-M))
\end{aligned}
$$

Commutative residual algebras

Definition

commutative residual algebra also satisfies

$$
\begin{aligned}
(\phi / \psi) / \phi & =1 \\
\phi /(\phi / \psi) & =\psi /(\psi / \phi)
\end{aligned}
$$

Commutative residual algebras

Definition

commutative residual algebra also satisfies

$$
\begin{aligned}
(\phi / \psi) / \phi & =1 \\
\phi /(\phi / \psi) & =\psi /(\psi / \phi)
\end{aligned}
$$

residual and composition are total (algebra)

Commutative residual algebras

Definition
commutative residual algebra also satisfies

$$
\begin{aligned}
(\phi / \psi) / \phi & =1 \\
\phi /(\phi / \psi) & =\psi /(\psi / \phi)
\end{aligned}
$$

example: natural numbers with cut-off division

Commutative residual algebras

Definition

 commutative residual algebra also satisfies$$
\begin{aligned}
(\phi / \psi) / \phi & =1 \\
\phi /(\phi / \psi) & =\psi /(\psi / \phi)
\end{aligned}
$$

\preceq well-founded $(a \preceq b$ if $a / b=1) \Rightarrow$ multisets (Visser,vO)

Commutative residual algebras

Definition

commutative residual algebra also satisfies

$$
\begin{aligned}
(\phi / \psi) / \phi & =1 \\
\phi /(\phi / \psi) & =\psi /(\psi / \phi)
\end{aligned}
$$

\preceq well-founded ($a \preceq b$ if $a / b=1$) \Rightarrow multisets (Visser,vO) iso to commutative BCK algebras with relative cancellation

Commutative residual algebras

Definition

commutative residual algebra also satisfies

$$
\begin{aligned}
(\phi / \psi) / \phi & =1 \\
\phi /(\phi / \psi) & =\psi /(\psi / \phi)
\end{aligned}
$$

\preceq well-founded ($a \preceq b$ if $a / b=1$) \Rightarrow multisets (Visser,vO)
Uniquely decomposes into atoms (Luttik,vO)

- \preceq well-founded partial-order
- 1 least
- strictly compatible: $\phi \prec \psi \Rightarrow \phi \circ \chi \prec \psi \circ \chi$
- precompositional: $\phi \preceq \psi \circ \chi \Rightarrow \phi=\psi^{\prime} \circ \chi^{\prime}, \psi^{\prime} \preceq \psi, \chi^{\prime} \preceq \chi$
- Archimedean: $\forall n \phi^{n} \preceq \psi \Rightarrow \phi=1$.

Braid problem

Braid identities

Braids as residual system

Braids as residual system

- Objects: relations on strands total (i $R j$ or $j R i)$, irreflexive $(\neg(i R i))$, transitive $\left(R^{+}=R\right)$

Braids as residual system

- Objects: relations on strands
- Steps: sequences of multi-steps
$R-S: R \rightarrow S$ (fastest way from one state to another) $\langle 2,5\rangle,\langle 3,5\rangle,\langle 4,5\rangle$ and $\langle 1,3\rangle,\langle 2,3\rangle,\langle 2,5\rangle,\langle 4,5\rangle,\langle 4,6\rangle$

Braids as residual system

- Objects: relations on strands
- Steps: sequences of multi-steps
$R-S: R \rightarrow S$ (fastest way from one state to another)
- Residual: $\psi / \phi=(\phi \cup \psi)^{+}-\phi$

Braids as residual system

- Objects: relations on strands
- Steps: sequences of multi-steps
$R-S: R \rightarrow S$ (fastest way from one state to another)
- Residual: $\psi / \phi=(\phi \cup \psi)^{+}-\phi$
- Unit: \emptyset

Braids as residual system

- Objects: relations on strands
- Steps: sequences of multi-steps
$R-S: R \rightarrow S$ (fastest way from one state to another)
- Residual: $\psi / \phi=(\phi \cup \psi)^{+}-\phi$
- Unit: \emptyset
- Composition: concatenation

Braids as residual system

- Objects: relations on strands
- Steps: sequences of multi-steps
$R-S: R \rightarrow S$ (fastest way from one state to another)
- Residual: $\psi / \phi=(\phi \cup \psi)^{+}-\phi$
- Unit: \emptyset
- Composition: concatenation

Theorem
Braids constitute residual system (Klop,vO,de Vrijer)

Self-distributivity

$$
(x \cdot y) \cdot z=(x \cdot z) \cdot(y \cdot z)
$$

Self-distributivity

$$
x y z \rightarrow x z(y z)(S \text {-less } S \text {-rule })
$$

Self-distributivity

$$
x y z \rightarrow x z(y z)(S \text {-less } S \text {-rule })
$$

- Equational theory (Dehornoy)

Self-distributivity

$$
x y z \rightarrow x z(y z)(S \text {-less } S \text {-rule })
$$

- Equational theory (Dehornoy)
- Residual system (Arbiser, vO)

$x y z \rightarrow x z(y z)$

Interpret as first projection

$x y z \rightarrow x z(y z)$

Interpret as an ACl -operation

$$
\begin{aligned}
(x \cdot y) \cdot z & =x \cdot(y \cdot z) \\
& =x \cdot(y \cdot(z \cdot z)) \\
& =x \cdot((y \cdot z) \cdot z) \\
& =x \cdot(z \cdot(y \cdot z)) \\
& =(x \cdot z) \cdot(y \cdot z)
\end{aligned}
$$

Examples: disjunction/union, conjunction/intersection

$x y z \rightarrow x z(y z)$

Interpret as 'middle'

$x y z \rightarrow x z(y z)$

Interpret as 'middle'

$x y z \rightarrow x z(y z)$

Interpret as 'middle'

$x y z \rightarrow x z(y z)$

Interpret as 'middle'

$x y z \rightarrow x z(y z)$

Interpret as 'middle'

$x y z \rightarrow x z(y z)$

Interpret as substitution lemma

$$
M[x:=N][y:=P] \rightarrow M[y:=P][x:=N[y:=P]]
$$

$x y z \rightarrow x z(y z)$ critical pair

$[y][z] \rightarrow[z][y[z]]$ critical pair

Conclusion

- Constructive confluence (tiling)

Conclusion

- Constructive confluence (tiling)
- via local confluence (decreasing diagrams)

Conclusion

- Constructive confluence (tiling)
- via local confluence (decreasing diagrams)
- via orthogonality (residual systems)

Conclusion

- Constructive confluence (tiling)
- via local confluence (decreasing diagrams)
- via orthogonality (residual systems)
- complexity ?

