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Confluence of rewrite relation →

a

b c

d

◮ ∀a, b, c such that a reduces to b,c

◮ ∃d such that b, c reduce to d
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Relations vs. systems

◮ Definition
Abstract Rewriting System is 〈A,Φ, src, tgt〉

◮ A set of objects
◮ Φ set of steps
◮ src, tgt : Φ → A

source, target functions

◮ Steps φ, ψ, χ, ω, . . .

◮ φ : a → b
φ is step with source a and target b
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Confluence of rewrite system →

ψφ

χ ω

◮ ∀φ,ψ co-initial reductions (peak)
◮ ∃χ, ω co-final reductions (valley)
◮ tgt(φ) = src(χ), tgt(ψ) = src(ω) (diagram)



Constructive confluence



Constructive confluence

ψφ

◮ ∀φ,ψ peak



Constructive confluence

ψφ

ψ/φ φ/ψ

◮ ∀φ,ψ peak

◮ ψ/φ, φ/ψ construct valley



Constructive confluence

ψφ

ψ/φ φ/ψ

◮ ∀φ,ψ peak

◮ ψ/φ, φ/ψ construct valley

◮ tgt(φ) = src(ψ/φ), tgt(ψ) = src(φ/ψ) (diagram)
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◮ / residual function
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Residual function

◮ / residual function

◮ witnessing constructive confluence proof

◮ from peaks to valleys constructing diagrams
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◮ No confluence (Counterexample Kleene)
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Confluence by Local Confluence?

ψφ

χ ω

◮ ∀φ,ψ co-initial steps (local peak)
◮ ∃χ, ω co-final reductions (valley) & → is terminating
◮ Local confluence & termination ⇒ confluence (Newman)
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Confluence by Local Confluence?

g_ g−◮

g
_,−◮ g

_,−◮

φ ψ

◮ ∀_,−◮ ∈ A, _-step φ, −◮-step ψ, co-initial
◮ ∃ decreasing co-final reductions for well-founded order (A,≺)
◮ Decreasing diagrams ⇒ confluence of

⋃
A (vO)
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Decreasing diagrams method

◮ given rewrite system →

◮ decompose → into set A of rewrite systems (→ =
⋃

A)

◮ well-foundedly ordered (≺)

◮ ∀ co-initial _ and −◮ steps

◮ ∃ co-final _,−◮-decreasing and −◮,_-decreasing reductions

◮ _,−◮-decreasing: steps below _; _-step; steps below _, −◮

◮ constructive (tiling)

◮ graph rewriting (Blom), explicit substitutions (vO)

◮ ambients (Lévy), bisimilarity (Pous), modularity (vO), . . .

◮ complete for countable rewrite systems (open otherwise)



Confluence of Combinatory Logic?

A(I , x) = x

A(A(K , x), y) = x

A(A(A(S , x), y), z) = A(A(x , z),A(y , z))

◮ Combinatory equational logic (Schönfinkel, Curry)
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A(I , x) = x

A(A(K , x), y) = x

A(A(A(S , x), y), z) = A(A(x , z),A(y , z))

◮ Combinatory equational logic (Schönfinkel, Curry)

◮ A application, I identity, K constant, S substitution
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Confluence of Combinatory Logic?

I · x = x

K · x · y = x

S · x · y · z = x · z · (y · z)

◮ · left-associative



Confluence of Combinatory Logic?

Ix = x

Kxy = x

Sxyz = xz(yz)

◮ · denoted by juxtaposition
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Confluence of Combinatory Logic?

Ix → x

Kxy → x

Sxyz → xz(yz)

◮ Combinatory rewriting logic (CL)

◮ CL constructively confluent?
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Combinatory equational logic

(l = r)
l = r

s = t
(substitutive)

sτ = tτ
(c)

c = c

s1 = t1 s2 = t2
()

s1s2 = t1t2

(reflexive)
s = s

s = t
(symmetric)

t = s

s = t t = u
(transitive)

s = u

Rewriting logic = Equational logic − symmetry (Meseguer)
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Combinatory rewriting logic

(l → r)
l ≥ r

s ≥ t τ ≥ θ
(subst.)

sτ ≥ tθ
(c)

c ≥ c

s1 ≥ t1 s2 ≥ t2
()

s1s2 ≥ t1t2

s ≥ t t ≥ u
(transitive)

s ≥ u

Substitutivity superfluous (instantiate rules immediately)
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Combinatory rewriting logic

τ ≥ θ
(l → r)

lτ ≥ r θ
(c)

c ≥ c

s1 ≥ t1 s2 ≥ t2
()

s1s2 ≥ t1t2

s ≥ t t ≥ u
(transitive)

s ≥ u

Residual function on combinatory rewriting logic proofs?



Combinatory rewriting logic

τ ≥ θ
(l → r)

lτ ≥ r θ
(c)

c ≥ c

s1 ≥ t1 s2 ≥ t2
()

s1s2 ≥ t1t2

s ≥ t t ≥ u
(transitive)

s ≥ u

Residual function on combinatory rewriting logic proof terms!
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Combinatory rewriting logic proof terms

ι(x) : Ix → x

κ(x , y) : Kxy → x

σ(x , y , z) : Sxyz → xz(yz)

Φ : τ ≥ θ
(̺ : l → r)

̺Φ : lτ ≥ r θ

(c)
c : c = c
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()
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Combinatory rewriting logic proof terms

ι(x) : Ix → x

κ(x , y) : Kxy → x

σ(x , y , z) : Sxyz → xz(yz)

Φ : τ ≥ θ
(̺ : l → r)

̺Φ : lτ ≥ r θ

(c)
c : c = c

φ : s1 ≥ t1 ψ : s2 ≥ t2
()

φψ : s1s2 ≥ t1t2

φ : s ≥ t ψ : t ≥ u
(◦)

φ ◦ ψ : s ≥ u



Combinatory rewriting logic proof term examples

I (It) ≥ It?



Combinatory rewriting logic proof term examples

I (It) ≥ It?

(Ix → x)
Ix ≥ x

(substitutive)
I (It) ≥ It



Combinatory rewriting logic proof term examples
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I (It) ≥ It?

(reflexive)
I ≥ I

(Ix → x)
Ix ≥ x

(substitutive)
It ≥ t

()
I (It) ≥ It



Combinatory rewriting logic proof term examples

I (It) ≥ It?

(reflexive)
I ≥ I

(Ix → x)
Ix ≥ x

(substitutive)
It ≥ t

()
I (It) ≥ It

◮ I (ι(t)) : I (It) ≥ It
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Confluence of combinatory rewriting logic example

I (It)

It It

t

I (ι(t))ι(It)

ι(t) ι(t)

◮ I (ι(t))/ι(It) = ι(t) = ι(It)/I (ι(t))
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χ/(φ ◦ ψ) = (χ/φ)/ψ

(φ ◦ ψ)/χ = φ/χ ◦ ψ/(χ/φ)
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Residual function for combinatory rewriting logic

c/c = c

(φ1φ2)/(ψ1ψ2) = (φ1/ψ1)(φ2/ψ2)

̺(φ1, . . . , φn)/l(ψ1, . . . , ψn) = ̺(φ1/ψ1, . . . , φn/ψn)

l(φ1, . . . , φn)/̺(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

̺(φ1, . . . , φn)/̺(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

χ/(φ ◦ ψ) = (χ/φ)/ψ

(φ ◦ ψ)/χ = φ/χ ◦ ψ/(χ/φ)

◮ Reified inductive confluence proof for orthogonal systems

◮ OTRSs (Rosen), λβ (Tait & Martin-Löf), HOTRS (vO)

◮ Characterize orthogonality abstractly via / ?



Residual systems

Definition
Residual system is 〈→, 1, /, ◦〉

◮ → an abstract rewriting system

◮ / residual function

◮ 1 unit function tgt(1a) = a = src(1a)

◮ ◦ composition function on φ, ψ s.t. tgt(φ) = src(ψ)

φ/φ = 1
φ/1 = φ
1/φ = 1

(φ/ψ)/(χ/ψ) = (φ/χ)/(ψ/χ)
1 ◦ 1 = 1

χ/(φ ◦ ψ) = (χ/φ)/ψ
(φ ◦ ψ)/χ = (φ/χ) ◦ (ψ/(χ/φ))



Natural numbers as residual algebra

◮ Objects: {∗} (single object)

◮ Steps: N (natural numbers)

◮ Residual: .− (cut-off subtraction)

◮ Unit: 0 (zero)

◮ Composition: + (addition)

n .− n = 0

n .− 0 = n

0 .− n = 0

(n .− m) .− (k .− m) = (n .− k) .− (m .− k)

0 + 0 = 0

k .− (n + m) = (k .− n) .− m

(n + m) .− k = (n .− k) + (m .− (k .− n))



Multisets as residual algebra

◮ Objects: {∗} (single object)

◮ Steps: Mst(A) (multisets over A)

◮ Residual: − (multiset difference)

◮ Unit: ∅ (empty multiset)

◮ Composition: ⊎ (multiset sum)

M − M = ∅

M − ∅ = M

∅ − M = ∅

(M − N) − (K − N) = (M − K ) − (N − K )

∅ ⊎ ∅ = ∅

K − (M ⊎ N) = (K − M) − N

(M ⊎ N) − K = (M − K ) ⊎ (N − (K − M))
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Definition
commutative residual algebra also satisfies
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φ/(φ/ψ) = ψ/(ψ/φ)

residual and composition are total (algebra)



Commutative residual algebras

Definition
commutative residual algebra also satisfies

(φ/ψ)/φ = 1
φ/(φ/ψ) = ψ/(ψ/φ)

example: natural numbers with cut-off division



Commutative residual algebras
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� well-founded (a � b if a/b = 1) ⇒ multisets (Visser,vO)



Commutative residual algebras

Definition
commutative residual algebra also satisfies

(φ/ψ)/φ = 1
φ/(φ/ψ) = ψ/(ψ/φ)

� well-founded (a � b if a/b = 1) ⇒ multisets (Visser,vO)
iso to commutative BCK algebras with relative cancellation



Commutative residual algebras

Definition
commutative residual algebra also satisfies

(φ/ψ)/φ = 1
φ/(φ/ψ) = ψ/(ψ/φ)

� well-founded (a � b if a/b = 1) ⇒ multisets (Visser,vO)
Uniquely decomposes into atoms (Luttik,vO)

◮ � well-founded partial-order

◮ 1 least

◮ strictly compatible: φ ≺ ψ ⇒ φ ◦ χ ≺ ψ ◦ χ

◮ precompositional: φ � ψ ◦ χ ⇒ φ = ψ′ ◦ χ′, ψ′ � ψ, χ′ � χ

◮ Archimedean: ∀n φn � ψ ⇒ φ = 1.



Braid problem



Braid identities

==



Braids as residual system

4

2 3 4 5 6 1 2 3 4 5 6

1 5 2 3 4 6 3 1 5 2 6

1



Braids as residual system

4

2 3 4 5 6 1 2 3 4 5 6

1 5 2 3 4 6 3 1 5 2 6

1

◮ Objects: relations on strands
total (i R j or j R i), irreflexive (¬(iRi)), transitive (R+ = R)



Braids as residual system

4

2 3 4 5 6 1 2 3 4 5 6

1 5 2 3 4 6 3 1 5 2 6

1

◮ Objects: relations on strands

◮ Steps: sequences of multi-steps
R − S : R → S (fastest way from one state to another)
〈2, 5〉, 〈3, 5〉, 〈4, 5〉 and 〈1, 3〉, 〈2, 3〉, 〈2, 5〉, 〈4, 5〉, 〈4, 6〉



Braids as residual system

6
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1 5 2 3 4 6 3 1 5 2 6 4

13 5 2 6 4

5 3 1 42

/

◮ Objects: relations on strands

◮ Steps: sequences of multi-steps
R − S : R → S (fastest way from one state to another)

◮ Residual: ψ/φ = (φ ∪ ψ)+ − φ



Braids as residual system

6

=

1 2 3 4 5 6 1 2 3 4 5 6

1 5 2 3 4 6 3 1 5 2 6 4

13 5 2 6 4

5 3 1 42

/

◮ Objects: relations on strands

◮ Steps: sequences of multi-steps
R − S : R → S (fastest way from one state to another)

◮ Residual: ψ/φ = (φ ∪ ψ)+ − φ

◮ Unit: ∅



Braids as residual system

6

=

1 2 3 4 5 6 1 2 3 4 5 6

1 5 2 3 4 6 3 1 5 2 6 4

13 5 2 6 4

5 3 1 42

/

◮ Objects: relations on strands

◮ Steps: sequences of multi-steps
R − S : R → S (fastest way from one state to another)

◮ Residual: ψ/φ = (φ ∪ ψ)+ − φ

◮ Unit: ∅

◮ Composition: concatenation



Braids as residual system

6

=

1 2 3 4 5 6 1 2 3 4 5 6

1 5 2 3 4 6 3 1 5 2 6 4

13 5 2 6 4

5 3 1 42

/

◮ Objects: relations on strands
◮ Steps: sequences of multi-steps

R − S : R → S (fastest way from one state to another)
◮ Residual: ψ/φ = (φ ∪ ψ)+ − φ
◮ Unit: ∅
◮ Composition: concatenation

Theorem
Braids constitute residual system (Klop,vO,de Vrijer)



Self-distributivity

(x · y) · z = (x · z) · (y · z)



Self-distributivity

xyz → xz(yz) (S-less S-rule)
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Self-distributivity

xyz → xz(yz) (S-less S-rule)

◮ Equational theory (Dehornoy)

◮ Residual system (Arbiser, vO)
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Interpret as first projection



xyz → xz(yz)

Interpret as an ACI-operation

(x · y) · z = x · (y · z)

= x · (y · (z · z))

= x · ((y · z) · z)

= x · (z · (y · z))

= (x · z) · (y · z)

Examples: disjunction/union, conjunction/intersection
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xyz → xz(yz)

Interpret as ‘middle’

a

b

c

b · c
a · c

a · b



xyz → xz(yz)

Interpret as substitution lemma

M[x :=N][y :=P ] → M[y :=P ][x :=N[y :=P ]]



xyz → xz(yz) critical pair

wxyz

wy(xy)z wxz(yz)

wz(yz)(xz(yz))

wyz(xyz) wz(xz)(yz)

wz(yz)(xyz)



[y ][z ] → [z ][y [z ]] critical pair

[x ][y ][z ]

[y ][x [y ]][z ] [x ][z ][y [z ]]

[z ][y [z ]][x [z ][y [z ]]]

[y ][z ][x [y ][z ]] [z ][x [z ]][y [z ]]

[z ][y [z ]][x [y ][z ]]
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Conclusion

◮ Constructive confluence (tiling)

◮ via local confluence (decreasing diagrams)

◮ via orthogonality (residual systems)

◮ complexity ?
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