
Z

Patrick Dehornoy
Vincent van Oostrom

Theoretische Filosofie
Universiteit Utrecht

Nederland

May 28, 2008



Z
Intuitions

Consequences
Confluence
Hyper-cofinality

Examples
Braids
Self-distributivity
Normalising and confluent relations
λ-calculus
λ-calculus with explicit substitutions
Weakly orthogonal term rewriting systems

Z vs.angle

Non-examples

Conclusions



Z

b•

a b

a•

A rewrite relation → has the Z-property
if there is a map • from objects to objects
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there exists a many-step reduction b � a• from b to a•
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∃• : A→ A, ∀a, b ∈ A : a→ b ⇒ b � a•, a• � b•
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Z ⇒ confluence

Definition
→ confluent, if � ·� ⊆� ·�



Z ⇒ confluence

confluence ⇒
I uniqueness of normal forms

I consistent, if some objects not joinable (distinct normal forms)

I decidable, if → is terminating
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Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

induction

a0 a1 a2 a3 an+1

b0 a•0 a•1 a•2 a•n



Z ⇒ •−→ strategy is hyper-cofinal

Definition (•-strategy)

a •−→ b if a is not a normal form and b = a•
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Hyper: eventually always
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Z ⇒ •−→ strategy is hyper-cofinal

Definition
•−→ hyper-cofinal, if for any reduction which eventually always

contains a •−→-step, any co-initial reduction can be extended to
reach the first



Z ⇒ •−→ strategy is hyper-cofinal

hyper-cofinal ⇒
I confluent

I (hyper-)normalising

I bullet-fast . . .
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Definition
Braid rewriting: cross adjacent strands, right over left.
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Up to topological equivalence:
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Example: self-distributivity

Definition
Self-distributivity, rewrite relation generated by xyz → xz(yz)

Some models:

I ACI operations

I take middle of points in space

I substitution

In depth: Braids and Self-distributivity (Dehornoy 2000)
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Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

x• = x (ts)• = t•[s•]
with t[s] uniform distribution of s over t:

t[x1:=x1s, x2:=x2s, . . .]

Proof.

I (Sequentialisation) ts � t[s];

I (Substitution) t[s][r ] � t[r ][s[r ]]

I (Self) t � t•;

I (Z) s � t• � s•, if t → s.
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Example: normalising and confluent relations

Theorem
Normalising and confluent relations have the Z-property,
for • the full reduction map (map to normal form).

Proof.
If a→ b, then b � a• � b• since b reduces to its normal form b•

(normalisation) which is the same as the normal form a• of a
(confluence).

Corollary

Z-property for typed λ-calculi (by confluence and termination)

Here reverse: use Z-property to establish meta-theory
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Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full development
contracting all redexes present:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

Proof.
By induction on M:

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.
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Example: λ-calculus with explicit substitutions

Theorem
λσ has the Z-property, for • the map composed of first
σ-normalisation (.), then a Beta-full development ( •−→)

Proof.

Γ

t• = s•

t st s

t = s

Γ

t t ′

s ′t• s•

E

E
∆

∆

s

Works for other explicit substitution/proof calculi as well.
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Example: weakly orthogonal term rewriting systems

Definition
Rewrite system is weakly orthogonal, if only trivial critical pairs.

Example

I λ-calculus with β and η : λx .Mx →M, if x 6∈ M;

I predecessor/successor S(P(x)))→ x P(S(x))→ x ;

I parallel-or.

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
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Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•

Outside-in not monotonic: not g(f (f (x))) � g(f (f (f (x))))!
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Z ⇔ angle

Theorem
for any map •, Z ⇔ 〈

Proof.
(only if) Def. a ◦−→ b if b between a and a•, i.e. a � b � a•:

I a→ b ⇒ b � a• ⇒ → ⊆ ◦−→.

I a ◦−→ b ⇒ a � b ⇒ ◦−→ ⊆�.

I Suppose a ◦−→ b.

I a � b � a• by definition of ◦−→.
I a � b ⇒ a• � b• (monotonicity of •) by Z
I b � a• � b• so b ◦−→ a• by definition of ◦−→.
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not monotonic (e.g. for −3)

0
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