Ζ

Patrick Dehornoy Vincent van Oostrom

Theoretische Filosofie Universiteit Utrecht Nederland

May 28, 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ζ

Intuitions

Consequences

Confluence Hyper-cofinality

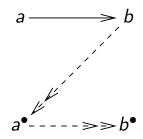
Examples

Braids Self-distributivity Normalising and confluent relations λ -calculus λ -calculus with explicit substitutions Weakly orthogonal term rewriting systems

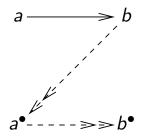
Z vs.angle

Non-examples

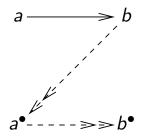
Conclusions



◆□ → ◆□ → ◆三 → ◆三 → ◆□ →



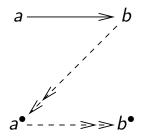
A rewrite relation \rightarrow has the Z-property



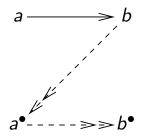
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

A rewrite relation \rightarrow has the Z-property if there is a map \bullet from objects to objects

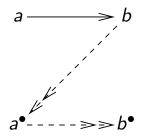


A rewrite relation \rightarrow has the Z-property if there is a map • from objects to objects such that for any step $a \rightarrow b$ from a to b

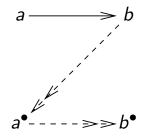


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A rewrite relation \rightarrow has the Z-property if there is a map \bullet from objects to objects such that for any step $a \rightarrow b$ from a to bthere exists a many-step reduction $b \rightarrow a^{\bullet}$ from b to a^{\bullet}

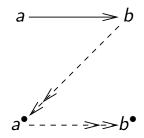


A rewrite relation \rightarrow has the Z-property if there is a map \bullet from objects to objects such that for any step $a \rightarrow b$ from a to bthere exists a many-step reduction $b \rightarrow a^{\bullet}$ from b to a^{\bullet} and there exists a many-step reduction $a^{\bullet} \rightarrow b^{\bullet}$ from a^{\bullet} to b^{\bullet}

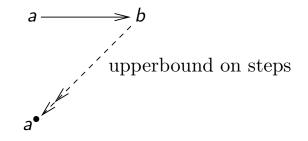


 $\exists \bullet : A \to A, \forall a, b \in A : a \to b \Rightarrow b \twoheadrightarrow a^{\bullet}, a^{\bullet} \twoheadrightarrow b^{\bullet}$

${\sf Z}$ intuitions

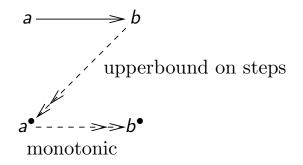


Z intuitions



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Z intuitions



$\mathsf{Z} \, \Rightarrow \, \mathsf{confluence}$

$\begin{array}{l} \text{Definition} \\ \rightarrow \text{ confluent, if } \twoheadleftarrow \cdot \twoheadrightarrow \subseteq \twoheadrightarrow \cdot \twoheadleftarrow \end{array}$

 $\mathsf{confluence} \ \Rightarrow$

- uniqueness of normal forms
- consistent, if some objects not joinable (distinct normal forms)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• decidable, if \rightarrow is terminating

Theorem

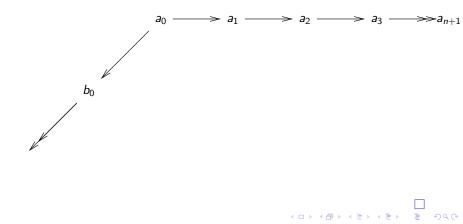
If a rewrite relation has the Z-property, then it is confluent

Proof.

Theorem

If a rewrite relation has the Z-property, then it is confluent

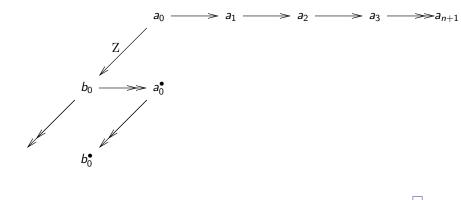
Proof.



Theorem

If a rewrite relation has the Z-property, then it is confluent

Proof.

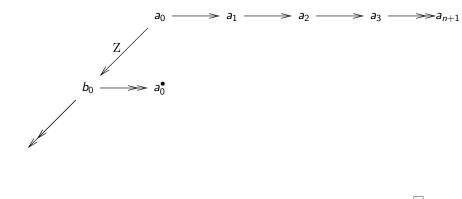


< (1)
 <li

Theorem

If a rewrite relation has the Z-property, then it is confluent

Proof.

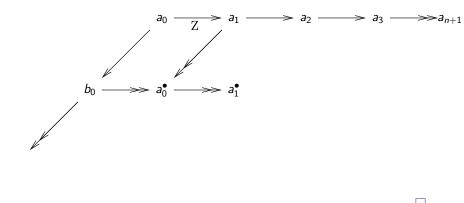


(□) (四) (三) (三) (三)

Theorem

If a rewrite relation has the Z-property, then it is confluent

Proof.

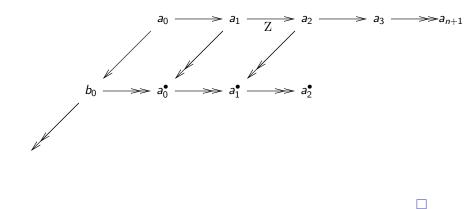


・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・

Theorem

If a rewrite relation has the Z-property, then it is confluent

Proof.

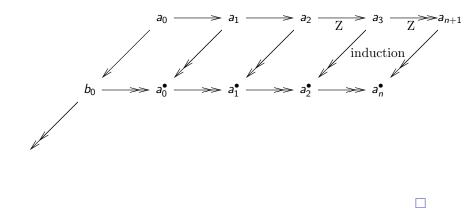


・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Theorem

If a rewrite relation has the Z-property, then it is confluent

Proof.

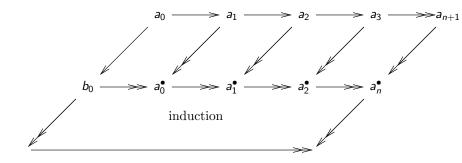


(日)

Theorem

If a rewrite relation has the Z-property, then it is confluent

Proof.



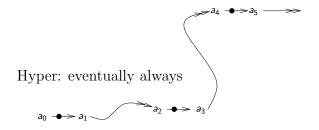
・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・

ъ

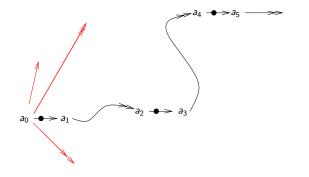
$Z \Rightarrow \longrightarrow$ strategy is hyper-cofinal

Definition (•-strategy) $a \rightarrow b$ if a is not a normal form and $b = a^{\bullet}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

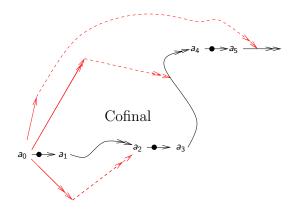


$Z \Rightarrow \longrightarrow$ strategy is hyper-cofinal



▲□▶ ▲□▶ ▲注▶ ▲注▶ ……注: のへ(?).

$Z \Rightarrow \longrightarrow$ strategy is hyper-cofinal



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Definition

 \rightarrow hyper-cofinal, if for any reduction which eventually always contains a \rightarrow -step, any co-initial reduction can be extended to reach the first

$\mathsf{Z} \ \Rightarrow \ { \longrightarrow } \ \mathsf{strategy} \ \mathsf{is} \ \mathsf{hyper-cofinal}$

hyper-cofinal \Rightarrow

- confluent
- (hyper-)normalising

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

bullet-fast . . .

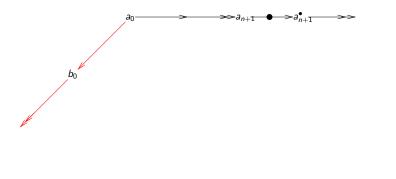
۰

Theorem → is hyper-cofinal

Proof.

Theorem → *is hyper-cofinal*

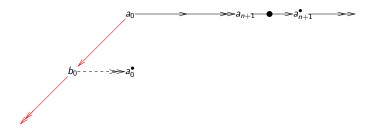
Proof.



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Theorem → is hyper-cofinal

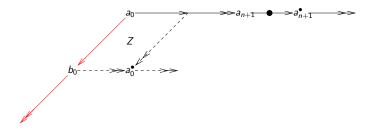
Proof.



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Theorem → is hyper-cofinal

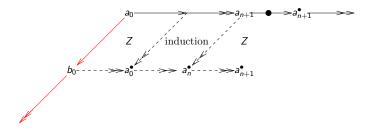
Proof.



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Theorem → is hyper-cofinal

Proof.

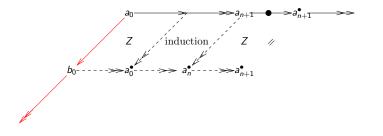


・ロト ・ 雪 ト ・ ヨ ト

э.

Theorem → is hyper-cofinal

Proof.

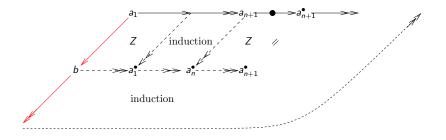


・ロト ・ 雪 ト ・ ヨ ト

э.

Theorem → *is hyper-cofinal*

Proof.



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Examples

◆□ ▶ < @ ▶ < E ▶ < E ▶ E りへぐ</p>

Definition

Braid rewriting: cross adjacent strands, right over left.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Definition

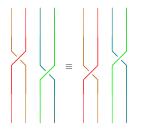
Braid rewriting: cross adjacent strands, right over left. Example:

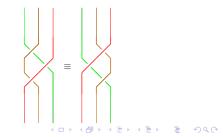
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Definition

Braid rewriting: cross adjacent strands, right over left. Example:

Up to topological equivalence:





Theorem

Braid rewriting has the Z-property, for • full crossing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example

Theorem

Braid rewriting has the Z-property, for • full crossing

Proof.

Theorem

Braid rewriting has the Z-property, for • full crossing

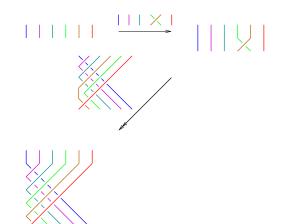
Proof.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

Braid rewriting has the Z-property, for • full crossing

Proof.

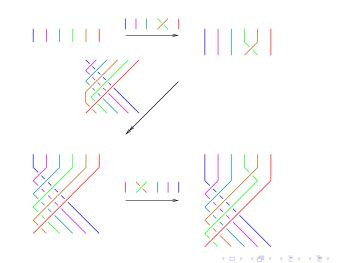


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem

Braid rewriting has the Z-property, for • full crossing

Proof.



996

æ

Definition

Self-distributivity, rewrite relation generated by $xyz \rightarrow xz(yz)$

(ロ)、(型)、(E)、(E)、 E) の(の)

Definition

Self-distributivity, rewrite relation generated by $xyz \rightarrow xz(yz)$

Some models:

- ACI operations
- take middle of points in space
- substitution

Definition

Self-distributivity, rewrite relation generated by $xyz \rightarrow xz(yz)$

Some models:

- ACI operations
- take middle of points in space
- substitution

In depth: Braids and Self-distributivity (Dehornoy 2000)

Theorem

Self-distributivity has the Z-property, for • full distribution:

$$x^{\bullet} = x$$
 $(ts)^{\bullet} = t^{\bullet}[s^{\bullet}]$

with t[s] uniform distribution of s over t:

$$t[x_1:=x_1s, x_2:=x_2s, \ldots]$$

Theorem

Self-distributivity has the Z-property, for • full distribution:

 $x^{\bullet} = x$ $(ts)^{\bullet} = t^{\bullet}[s^{\bullet}]$ with t[s] uniform distribution of s over t:

$$t[x_1:=x_1s, x_2:=x_2s, \ldots]$$

Example

Theorem Self-distributivity has the Z-property, for • full distribution: $x^{\bullet} = x$ (ts)• = $t^{\bullet}[s^{\bullet}]$ with t[s] uniform distribution of s over t: $t[x_1:=x_1s, x_2:=x_2s, ...]$

Proof. By induction on *t*:

Theorem Self-distributivity has the Z-property, for • full distribution: $x^{\bullet} = x$ (ts)• = $t^{\bullet}[s^{\bullet}]$ with t[s] uniform distribution of s over t: $t[x_1:=x_1s, x_2:=x_2s, ...]$

Proof.

By induction on *t*:

• (Sequentialisation) $ts \rightarrow t[s];$

Theorem

Self-distributivity has the Z-property, for • full distribution:

 $x^{\bullet} = x \qquad (ts)^{\bullet} = t^{\bullet}[s^{\bullet}]$ with t[s] uniform distribution of s over t: t[x_1:=x_1s, x_2:=x_2s, ...]

Proof.

By induction on *t*:

- (Sequentialisation) $ts \rightarrow t[s];$
- (Substitution) $t[s][r] \rightarrow t[r][s[r]]$

Theorem

Self-distributivity has the Z-property, for • full distribution:

 $x^{\bullet} = x \qquad (ts)^{\bullet} = t^{\bullet}[s^{\bullet}]$ with t[s] uniform distribution of s over t: t[x_1:=x_1s, x_2:=x_2s, ...]

Proof.

By induction on *t*:

- (Sequentialisation) $ts \rightarrow t[s];$
- (Substitution) $t[s][r] \rightarrow t[r][s[r]]$

• (Self)
$$t \rightarrow t^{\bullet}$$
;

Theorem

Self-distributivity has the Z-property, for • full distribution:

 $x^{\bullet} = x \qquad (ts)^{\bullet} = t^{\bullet}[s^{\bullet}]$ with t[s] uniform distribution of s over t: t[x_1:=x_1s, x_2:=x_2s, ...]

Proof.

By induction on *t*:

- (Sequentialisation) $ts \rightarrow t[s];$
- (Substitution) $t[s][r] \rightarrow t[r][s[r]]$

• (Self)
$$t \rightarrow t^{\bullet}$$
;

• (Z)
$$s \rightarrow t^{\bullet} \rightarrow s^{\bullet}$$
, if $t \rightarrow s$.

Theorem

Normalising and confluent relations have the Z-property, for \bullet the full reduction map (map to normal form).

Theorem

Normalising and confluent relations have the Z-property, for \bullet the full reduction map (map to normal form).

Proof.

If $a \to b$, then $b \to a^{\bullet} \to b^{\bullet}$ since *b* reduces to its normal form b^{\bullet} (normalisation) which is the same as the normal form a^{\bullet} of *a* (confluence).

Theorem

Normalising and confluent relations have the Z-property, for \bullet the full reduction map (map to normal form).

Proof.

If $a \to b$, then $b \to a^{\bullet} \to b^{\bullet}$ since *b* reduces to its normal form b^{\bullet} (normalisation) which is the same as the normal form a^{\bullet} of *a* (confluence).

Corollary

Z-property for typed λ -calculi (by confluence and termination)

Theorem

Normalising and confluent relations have the Z-property, for \bullet the full reduction map (map to normal form).

Proof.

If $a \to b$, then $b \to a^{\bullet} \to b^{\bullet}$ since *b* reduces to its normal form b^{\bullet} (normalisation) which is the same as the normal form a^{\bullet} of *a* (confluence).

Corollary

Z-property for typed λ -calculi (by confluence and termination) Here reverse: use Z-property to establish meta-theory

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full development contracting all redexes present:

$$\begin{array}{rcl} x^{\bullet} &=& x\\ (\lambda x.M)^{\bullet} &=& \lambda x.M^{\bullet}\\ (MN)^{\bullet} &=& M'[x:=N^{\bullet}] & \text{if } M \text{ is an abstraction, } M^{\bullet} = \lambda x.M'\\ &=& M^{\bullet}N^{\bullet} & \text{otherwise} \end{array}$$

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full development contracting all redexes present:

$$\begin{array}{rcl} x^{\bullet} &=& x\\ (\lambda x.M)^{\bullet} &=& \lambda x.M^{\bullet}\\ (MN)^{\bullet} &=& M'[x:=N^{\bullet}] & \text{if } M \text{ is an abstraction, } M^{\bullet} = \lambda x.M'\\ &=& M^{\bullet}N^{\bullet} & \text{otherwise} \end{array}$$

Example

►
$$I^{\bullet} = I; (I = \lambda x.x)$$

► $(I(II))^{\bullet} = I, (III)^{\bullet} = II;$
► $((\lambda xy.x)zw)^{\bullet} = (\lambda y.z)w;$
► $((\lambda xy.lyx)zl)^{\bullet} = (\lambda y.yz)I;$

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full development contracting all redexes present:

$$\begin{array}{rcl} x^{\bullet} &=& x\\ (\lambda x.M)^{\bullet} &=& \lambda x.M^{\bullet}\\ (MN)^{\bullet} &=& M'[x:=N^{\bullet}] & \text{if } M \text{ is an abstraction, } M^{\bullet} = \lambda x.M'\\ &=& M^{\bullet}N^{\bullet} & \text{otherwise} \end{array}$$

Proof.

By induction on *M*:

• (Substitution)
$$M[y := P][x := N] = M[x := N][y := P[x := N]];$$

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full development contracting all redexes present:

$$\begin{array}{rcl} x^{\bullet} &=& x\\ (\lambda x.M)^{\bullet} &=& \lambda x.M^{\bullet}\\ (MN)^{\bullet} &=& M'[x:=N^{\bullet}] & \text{if } M \text{ is an abstraction, } M^{\bullet} = \lambda x.M'\\ &=& M^{\bullet}N^{\bullet} & \text{otherwise} \end{array}$$

Proof.

By induction on *M*:

• (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];

► (Self)
$$M \rightarrow M^{\bullet}$$
;

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full development contracting all redexes present:

$$\begin{array}{rcl} x^{\bullet} &=& x\\ (\lambda x.M)^{\bullet} &=& \lambda x.M^{\bullet}\\ (MN)^{\bullet} &=& M'[x:=N^{\bullet}] & \text{if } M \text{ is an abstraction, } M^{\bullet} = \lambda x.M'\\ &=& M^{\bullet}N^{\bullet} & \text{otherwise} \end{array}$$

Proof.

By induction on *M*:

• (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];

- ► (Self) $M \rightarrow M^{\bullet}$;
- (Rhs) $M^{\bullet}[x:=N^{\bullet}] \twoheadrightarrow M[x:=N]^{\bullet}$; and

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full development contracting all redexes present:

$$\begin{array}{rcl} x^{\bullet} &=& x\\ (\lambda x.M)^{\bullet} &=& \lambda x.M^{\bullet}\\ (MN)^{\bullet} &=& M'[x:=N^{\bullet}] & \text{if } M \text{ is an abstraction, } M^{\bullet} = \lambda x.M'\\ &=& M^{\bullet}N^{\bullet} & \text{otherwise} \end{array}$$

Proof.

By induction on *M*:

• (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];

► (Self)
$$M \rightarrow M^{\bullet}$$
;

• (Rhs)
$$M^{\bullet}[x:=N^{\bullet}] \twoheadrightarrow M[x:=N]^{\bullet}$$
; and

$$\blacktriangleright (\mathsf{Z}) \quad M \to N \Rightarrow N \twoheadrightarrow M^{\bullet} \twoheadrightarrow N^{\bullet}.$$

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full development contracting all redexes present:

$$\begin{array}{rcl} x^{\bullet} &=& x\\ (\lambda x.M)^{\bullet} &=& \lambda x.M^{\bullet}\\ (MN)^{\bullet} &=& M'[x:=N^{\bullet}] & \text{if } M \text{ is an abstraction, } M^{\bullet} = \lambda x.M'\\ &=& M^{\bullet}N^{\bullet} & \text{otherwise} \end{array}$$

Proof.

By induction on *M*:

• (Substitution) M[y := P][x := N] = M[x := N][y := P[x := N]];

► (Self)
$$M \rightarrow M^{\bullet}$$
;

► (Rhs)
$$M^{\bullet}[x:=N^{\bullet}] \twoheadrightarrow M[x:=N]^{\bullet}$$
; and

$$\blacktriangleright (\mathsf{Z}) \quad M \to N \Rightarrow N \twoheadrightarrow M^{\bullet} \twoheadrightarrow N^{\bullet}.$$

Same method works for all orthogonal first/higher-order TRSs

э.

Theorem $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full superdevelopment contracting all redexes present or upward created: $x^{\bullet} = x$

$$\begin{array}{rcl} (\lambda x.M)^{\bullet} &=& \lambda x.M^{\bullet} \\ (MN)^{\bullet} &=& M'[x:=N^{\bullet}] & \text{if } M \text{ is a term, } M^{\bullet} = \lambda x.M' \\ &=& M^{\bullet}N^{\bullet} & \text{otherwise} \end{array}$$

Theorem $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full superdevelopment contracting all redexes present or upward created: $x^{\bullet} = x$ $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$ $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is a term, $M^{\bullet} = \lambda x.M'$ $= M^{\bullet}N^{\bullet}$ otherwise

Example

►
$$I^{\bullet} = I; (I = \lambda x.x)$$

► $(I(II))^{\bullet} = I, (III)^{\bullet} = I;$
► $((\lambda xy.x)zw)^{\bullet} = z;$
► $((\lambda xy.lyx)zI)^{\bullet} = lz$

Theorem $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full superdevelopment contracting all redexes present or upward created: $x^{\bullet} = x$ $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$ $(MAN)^{\bullet} = M'[x_{1}, N^{\bullet}]$ if M is a term M^{\bullet} (MAN)

 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is a term, $M^{\bullet} = \lambda x.M'$ = $M^{\bullet}N^{\bullet}$ otherwise

Proof.

Same ('an abstraction' \mapsto 'a term') proof by induction on M :

• (Substitution) M[y := P][x := N] = M[x := N][y := P[x := N]];

Theorem $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full superdevelopment contracting all redexes present or upward created: $x^{\bullet} = x$ $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$

 $\begin{array}{rcl} (\lambda x.M)^{\bullet} &=& \lambda x.M^{\bullet} \\ (MN)^{\bullet} &=& M'[x:=N^{\bullet}] & \text{if } M \text{ is a term, } M^{\bullet} = \lambda x.M' \\ &=& M^{\bullet}N^{\bullet} & \text{otherwise} \end{array}$

Proof.

Same ('an abstraction' \mapsto 'a term') proof by induction on M :

• (Substitution) M[y := P][x := N] = M[x := N][y := P[x := N]];

► (Self)
$$M \rightarrow M^{\bullet}$$
;

Theorem $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full superdevelopment contracting all redexes present or upward created: $x^{\bullet} = x$

$$\begin{array}{rcl} (\lambda x.M)^{\bullet} &=& \lambda x.M^{\bullet} \\ (MN)^{\bullet} &=& M'[x:=N^{\bullet}] & \text{if } M \text{ is a term, } M^{\bullet} = \lambda x.M' \\ &=& M^{\bullet}N^{\bullet} & \text{otherwise} \end{array}$$

Proof.

Same ('an abstraction' \mapsto 'a term') proof by induction on M :

• (Substitution) M[y := P][x := N] = M[x := N][y := P[x := N]];

► (Self)
$$M \twoheadrightarrow M^{\bullet}$$
;

► (Rhs) $M^{\bullet}[x:=N^{\bullet}] \twoheadrightarrow M[x:=N]^{\bullet}$; and

Theorem $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full superdevelopment contracting all redexes present or upward created: $x^{\bullet} = x$

$$\begin{array}{rcl} (\lambda x.M)^{\bullet} &=& \lambda x.M^{\bullet} \\ (MN)^{\bullet} &=& M'[x:=N^{\bullet}] & \text{if } M \text{ is a term, } M^{\bullet} = \lambda x.M' \\ &=& M^{\bullet}N^{\bullet} & \text{otherwise} \end{array}$$

Proof.

Same ('an abstraction' \mapsto 'a term') proof by induction on M :

• (Substitution) M[y := P][x := N] = M[x := N][y := P[x := N]];

► (Self)
$$M \rightarrow M^{\bullet}$$
;

► (Rhs)
$$M^{\bullet}[x:=N^{\bullet}] \twoheadrightarrow M[x:=N]^{\bullet}$$
; and

$$\blacktriangleright (\mathsf{Z}) \quad M \to N \Rightarrow N \twoheadrightarrow M^{\bullet} \twoheadrightarrow N^{\bullet}.$$

Theorem $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full superdevelopment contracting all redexes present or upward created: $x^{\bullet} = x$ $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$ $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is a term, $M^{\bullet} = \lambda x.M'$ $= M^{\bullet}N^{\bullet}$ otherwise

Proof.

Same ('an abstraction' \mapsto 'a term') proof by induction on M :

• (Substitution) M[y := P][x := N] = M[x := N][y := P[x := N]];

► (Self)
$$M \rightarrow M^{\bullet}$$
;

▶ (Rhs)
$$M^{\bullet}[x:=N^{\bullet}] \twoheadrightarrow M[x:=N]^{\bullet}$$
; and

$$\blacktriangleright (\mathsf{Z}) \qquad M \to N \Rightarrow N \twoheadrightarrow M^{\bullet} \twoheadrightarrow N^{\bullet}.$$

Moral: possibly more than one witnessing map for Z-property

Example: λ -calculus with explicit substitutions

Theorem

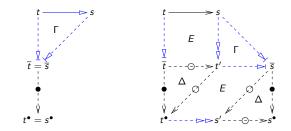
 $\lambda \sigma$ has the Z-property, for • the map composed of first σ -normalisation (>), then a Beta-full development (-•-)

Example: λ -calculus with explicit substitutions

Theorem

 $\lambda \sigma$ has the Z-property, for • the map composed of first σ -normalisation (>), then a Beta-full development (-+-)

Proof.

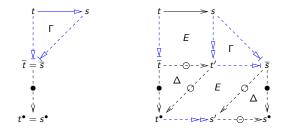


Example: λ -calculus with explicit substitutions

Theorem

 $\lambda \sigma$ has the Z-property, for • the map composed of first σ -normalisation (>), then a Beta-full development (-+-)

Proof.



Works for other explicit substitution/proof calculi as well.

(日)、

э

Rewrite system is weakly orthogonal, if only trivial critical pairs.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

Rewrite system is weakly orthogonal, if only trivial critical pairs.

Example

- λ -calculus with β and $\eta : \lambda x.Mx \to M$, if $x \notin M$;
- ▶ predecessor/successor $S(P(x))) \rightarrow x \quad P(S(x)) \rightarrow x;$

parallel-or.

Theorem

Weakly orthogonal first/higher-order term rewrite systems have the Z-property, for • full inside-out development

Theorem

Weakly orthogonal first/higher-order term rewrite systems have the Z-property, for • full inside-out development

Theorem

Weakly orthogonal first/higher-order term rewrite systems have the Z-property, for • full inside-out development

Proof.

 $c(x) \rightarrow x$ $f(f(x)) \rightarrow f(x)$ $g(f(f(f(x)))) \rightarrow g(f(f(x)))$

Then $g(f(f(c(f(f(x)))))) \rightarrow g(f(f(f(x)))))$ gives Z: $g(f(f(c(f(f(x))))))^{\bullet} = g(f(f(x))) = g(f(f(f(x)))))^{\bullet}$

Theorem

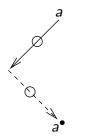
Weakly orthogonal first/higher-order term rewrite systems have the Z-property, for • full inside-out development

Proof.

 $c(x) \rightarrow x$ $f(f(x)) \rightarrow f(x)$ $g(f(f(f(x)))) \rightarrow g(f(f(x)))$ Then $g(f(f(c(f(f(x)))))) \rightarrow g(f(f(f(f(x))))))$ gives Z: $g(f(f(c(f(f(x)))))))^{\bullet} = g(f(f(x))) = g(f(f(f(f(x)))))^{\bullet}$ Outside-in not monotonic: not $g(f(f(x))) \rightarrow g(f(f(f(x)))))$!

Z vs. angle

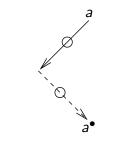
- Dehornoy:
 Z-property of → for •;
- ► Takahashi: angle (() property of → for •: ∃→→, → ⊆ →→ ⊆ →>



▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Z vs. angle

- Dehornoy:
 Z-property of → for •;
- ► Takahashi: angle (() property of → for •: ∃→→, → ⊆ →→ ⊆ →>



 \rightarrow steps are divisors of \rightarrow

Theorem for any map \bullet , $Z \Leftrightarrow \langle$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

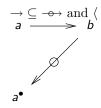
Proof.

Theorem for any map \bullet , $Z \Leftrightarrow \langle$

Proof. (If)

Theorem for any map \bullet , $Z \Leftrightarrow \langle$

Proof. (If)



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

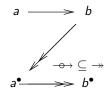
$\mathsf{Z} \, \Leftrightarrow \, \mathsf{angle}$

Theorem for any map \bullet , $Z \Leftrightarrow \langle$

Proof. (If)

Theorem for any map \bullet , $Z \Leftrightarrow \langle$

Proof. (If)



Theorem for any map •, $Z \Leftrightarrow \langle$

Proof.

(only if) Def. $a \rightarrow b$ if b between a and a^{\bullet} , i.e. $a \rightarrow b \rightarrow a^{\bullet}$:

$$\blacktriangleright a \to b \Rightarrow b \twoheadrightarrow a^{\bullet} \Rightarrow \to \subseteq \bullet \rightarrow.$$

$$\blacktriangleright a \dashrightarrow b \Rightarrow a \twoheadrightarrow b \Rightarrow \dashrightarrow \subseteq \twoheadrightarrow.$$

Suppose
$$a \rightarrow b$$
.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Non-examples

<ロ> <@> < E> < E> E のQの

▶ if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;

- ▶ if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- ▶ \rightarrow has Z-property iff $\rightarrow^{=}$ has IZ-property;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- ▶ \rightarrow has Z-property iff $\rightarrow^{=}$ has IZ-property;

• • $1 \circ \bullet_2$ has Z, if • i do.

- ▶ if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- ▶ \rightarrow has Z-property iff $\rightarrow^{=}$ has IZ-property;
- •₁ •₂ has Z, if •_i do.
- ▶ *slower* order: $\bullet_1 \leq \bullet_2$, if $\forall a, a^{\bullet_1} \twoheadrightarrow a^{\bullet_2}$;

- ▶ if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- ▶ \rightarrow has Z-property iff $\rightarrow^{=}$ has IZ-property;
- •₁ •₂ has Z, if •_i do.
- ▶ *slower* order: $\bullet_1 \leq \bullet_2$, if $\forall a, a^{\bullet_1} \rightarrow a^{\bullet_2}$;

• • $i \leq \bullet_1 \circ \bullet_2;$

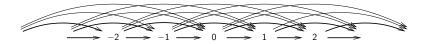
- if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- ▶ \rightarrow has Z-property iff $\rightarrow^{=}$ has IZ-property;
- •₁ •₂ has Z, if •_i do.
- ▶ slower order: $\bullet_1 \leq \bullet_2$, if $\forall a, a^{\bullet_1} \twoheadrightarrow a^{\bullet_2}$;
- • $_i \leq \bullet_1 \circ \bullet_2;$
- no slowest/minimally slow/fastest/maximally fast;

- if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- ▶ \rightarrow has Z-property iff $\rightarrow^{=}$ has IZ-property;
- •₁ •₂ has Z, if •_i do.
- ▶ *slower* order: $\bullet_1 \leq \bullet_2$, if $\forall a, a^{\bullet_1} \twoheadrightarrow a^{\bullet_2}$;
- • $_i \leq \bullet_1 \circ \bullet_2;$
- no slowest/minimally slow/fastest/maximally fast;
- ▶ for normalising/finite systems: go to 'normal' form fastest.

- if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- ▶ \rightarrow has Z-property iff $\rightarrow^{=}$ has IZ-property;
- •₁ •₂ has Z, if •_i do.
- ▶ *slower* order: $\bullet_1 \leq \bullet_2$, if $\forall a, a^{\bullet_1} \twoheadrightarrow a^{\bullet_2}$;
- • $i \leq \bullet_1 \circ \bullet_2;$
- no slowest/minimally slow/fastest/maximally fast;
- for normalising/finite systems: go to 'normal' form fastest.

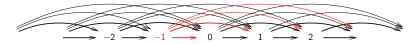
Used to get ideas about (confluent) systems which do not have Z

${\mathbb Z}$ does not have Z



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

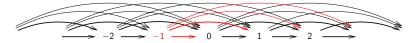
${\mathbb Z}$ does not have Z



for given integer, no upperbound on steps from it

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

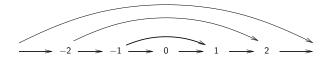
not finitely branching, no finite TRS



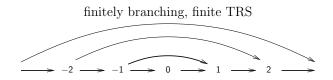
for given integer, no upperbound on steps from it

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$\hat{\mathbb{Z}}$ does not imply Z



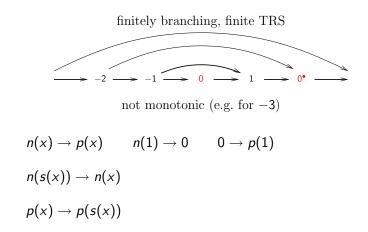
$\hat{\mathbb{Z}}$ does not imply Z



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $egin{aligned} n(x) &
ightarrow p(x) & n(1)
ightarrow 0 &
ightarrow p(1) \ n(s(x)) &
ightarrow n(x) \ p(x) &
ightarrow p(s(x)) \end{aligned}$

$\hat{\mathbb{Z}}$ does not imply Z



\mathbb{Z}^{\flat} does have Z

 \longrightarrow -2 \longrightarrow -1 \longrightarrow 0 \longrightarrow 1 \longrightarrow 2 \longrightarrow

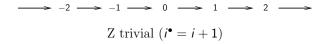
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

finitely branching, finite TRS, no transitivity

\longrightarrow -2 \longrightarrow -1 \longrightarrow 0 \longrightarrow 1 \longrightarrow 2 \longrightarrow

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

finitely branching, finite TRS, no transitivity



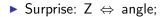
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

finitely branching, finite TRS, no transitivity

$$\xrightarrow{-2} \xrightarrow{-1} \xrightarrow{-2} 0 \xrightarrow{-1} x^{-2} x$$

Examples show:

- ► confluent \Rightarrow Z
- transitivity might be harmful



- Surprise: $Z \Leftrightarrow$ angle;
- Claim: gives simplest confluence proofs;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Surprise: $Z \Leftrightarrow$ angle;
- Claim: gives simplest confluence proofs;
- Conjecture: β with restricted η -expansion does not have Z;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Surprise: $Z \Leftrightarrow$ angle;
- Claim: gives simplest confluence proofs;
- Conjecture: β with restricted η -expansion does not have Z;

Problem: characterise systems having Z-property;

- Surprise: $Z \Leftrightarrow$ angle;
- Claim: gives simplest confluence proofs;
- Conjecture: β with restricted η -expansion does not have Z;

- Problem: characterise systems having Z-property;
- Puzzle: is Z a modular property of TRSs?;

- Surprise: $Z \Leftrightarrow$ angle;
- Claim: gives simplest confluence proofs;
- Conjecture: β with restricted η -expansion does not have Z;

- Problem: characterise systems having Z-property;
- Puzzle: is Z a modular property of TRSs?;
- ► Further work: Garside categories ⇔ residual systems.