
Z

Patrick Dehornoy
Vincent van Oostrom

Theoretische Filosofie
Universiteit Utrecht

Nederland

May 28, 2008

Z
Intuitions

Consequences
Confluence
Hyper-cofinality

Examples
Braids
Self-distributivity
Normalising and confluent relations
λ-calculus
λ-calculus with explicit substitutions
Weakly orthogonal term rewriting systems

Z vs.angle

Non-examples

Conclusions

Z

b•

a b

a•

A rewrite relation → has the Z-property
if there is a map • from objects to objects
such that for any step a→ b from a to b
there exists a many-step reduction b � a• from b to a•

and there exists a many-step reduction a• � b• from a• to b•

Z

b•

a b

a•

A rewrite relation → has the Z-property

if there is a map • from objects to objects
such that for any step a→ b from a to b
there exists a many-step reduction b � a• from b to a•

and there exists a many-step reduction a• � b• from a• to b•

Z

b•

a b

a•

A rewrite relation → has the Z-property
if there is a map • from objects to objects

such that for any step a→ b from a to b
there exists a many-step reduction b � a• from b to a•

and there exists a many-step reduction a• � b• from a• to b•

Z

b•

a b

a•

A rewrite relation → has the Z-property
if there is a map • from objects to objects
such that for any step a→ b from a to b

there exists a many-step reduction b � a• from b to a•

and there exists a many-step reduction a• � b• from a• to b•

Z

b•

a b

a•

A rewrite relation → has the Z-property
if there is a map • from objects to objects
such that for any step a→ b from a to b
there exists a many-step reduction b � a• from b to a•

and there exists a many-step reduction a• � b• from a• to b•

Z

b•

a b

a•

A rewrite relation → has the Z-property
if there is a map • from objects to objects
such that for any step a→ b from a to b
there exists a many-step reduction b � a• from b to a•

and there exists a many-step reduction a• � b• from a• to b•

Z

b•

a b

a•

∃• : A→ A, ∀a, b ∈ A : a→ b ⇒ b � a•, a• � b•

Z intuitions

a b

a• b•

Z intuitions

a b

a•

upperbound on steps

Z intuitions

monotonic

a b

a• b•

upperbound on steps

Z ⇒ confluence

Definition
→ confluent, if � ·� ⊆� ·�

Z ⇒ confluence

confluence ⇒
I uniqueness of normal forms

I consistent, if some objects not joinable (distinct normal forms)

I decidable, if → is terminating

Z ⇒ confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

an+1

b0

a0 a1 a2 a3

Z ⇒ confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

b0

a0 a1 a2 a3 an+1

Z ⇒ confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

b•0

a0 a1 a2 a3 an+1

b0 a•0

Z

Z ⇒ confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

Z

a0 a1 a2 a3 an+1

b0 a•0

Z ⇒ confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

Z
a0 a1 a2 a3 an+1

b0 a•0 a•1

Z ⇒ confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

Z
a0 a1 a2 a3 an+1

b0 a•0 a•1 a•2

Z ⇒ confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

Z
a0 a1 a2 a3 an+1

b0 a•0 a•1 a•2 a•n

induction

Z

Z ⇒ confluence

Theorem
If a rewrite relation has the Z-property, then it is confluent

Proof.

induction

a0 a1 a2 a3 an+1

b0 a•0 a•1 a•2 a•n

Z ⇒ •−→ strategy is hyper-cofinal

Definition (•-strategy)

a •−→ b if a is not a normal form and b = a•

Z ⇒ •−→ strategy is hyper-cofinal

Hyper: eventually always

a0 a1
a2 a3

a4 a5

Z ⇒ •−→ strategy is hyper-cofinal

a5

a0 a1
a2 a3

a4

Z ⇒ •−→ strategy is hyper-cofinal

Cofinal

a0 a1
a2 a3

a4 a5

Z ⇒ •−→ strategy is hyper-cofinal

Definition
•−→ hyper-cofinal, if for any reduction which eventually always

contains a •−→-step, any co-initial reduction can be extended to
reach the first

Z ⇒ •−→ strategy is hyper-cofinal

hyper-cofinal ⇒
I confluent

I (hyper-)normalising

I bullet-fast . . .

Z ⇒ •−→ strategy is hyper-cofinal

Theorem
•−→ is hyper-cofinal

Proof.

induction

=Z

a•n+1

induction

a•n

Z

a•0b0

a0 an+1 a•n+1

Z ⇒ •−→ strategy is hyper-cofinal

Theorem
•−→ is hyper-cofinal

Proof.

a•0

a0

b0

an+1 a•n+1

induction

=Z

a•n+1

induction

a•n

Z

Z ⇒ •−→ strategy is hyper-cofinal

Theorem
•−→ is hyper-cofinal

Proof.

Z

a0

b0 a•0

an+1 a•n+1

induction

=Z

a•n+1

induction

a•n

Z ⇒ •−→ strategy is hyper-cofinal

Theorem
•−→ is hyper-cofinal

Proof.

a•n

a0

b0 a•0

an+1 a•n+1

Z

induction

=Z

a•n+1

induction

Z ⇒ •−→ strategy is hyper-cofinal

Theorem
•−→ is hyper-cofinal

Proof.

=

a0

b0 a•0

an+1

a•n+1

a•n+1

inductionZ Z

a•n

induction

Z ⇒ •−→ strategy is hyper-cofinal

Theorem
•−→ is hyper-cofinal

Proof.

induction

a0

b0 a•0

an+1

a•n+1

a•n+1

=inductionZ Z

a•n

Z ⇒ •−→ strategy is hyper-cofinal

Theorem
•−→ is hyper-cofinal

Proof.

induction

a1

b a•1

an+1

a•n+1

a•n+1

=inductionZ Z

a•n

Examples

Example: braids

Definition
Braid rewriting: cross adjacent strands, right over left.

Example:

Up to topological equivalence:

≡≡

Example: braids

Definition
Braid rewriting: cross adjacent strands, right over left.

Example:

Up to topological equivalence:

≡≡

Example: braids

Definition
Braid rewriting: cross adjacent strands, right over left.

Example:

Up to topological equivalence:

≡≡

Example: braids

Theorem
Braid rewriting has the Z-property, for • full crossing

Example

Example: braids

Theorem
Braid rewriting has the Z-property, for • full crossing

Proof.

Example: braids

Theorem
Braid rewriting has the Z-property, for • full crossing

Proof.

Example: braids

Theorem
Braid rewriting has the Z-property, for • full crossing

Proof.

Example: braids

Theorem
Braid rewriting has the Z-property, for • full crossing

Proof.

Example: self-distributivity

Definition
Self-distributivity, rewrite relation generated by xyz → xz(yz)

Some models:

I ACI operations

I take middle of points in space

I substitution

In depth: Braids and Self-distributivity (Dehornoy 2000)

Example: self-distributivity

Definition
Self-distributivity, rewrite relation generated by xyz → xz(yz)

Some models:

I ACI operations

I take middle of points in space

I substitution

In depth: Braids and Self-distributivity (Dehornoy 2000)

Example: self-distributivity

Definition
Self-distributivity, rewrite relation generated by xyz → xz(yz)

Some models:

I ACI operations

I take middle of points in space

I substitution

In depth: Braids and Self-distributivity (Dehornoy 2000)

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

x• = x (ts)• = t•[s•]
with t[s] uniform distribution of s over t:

t[x1:=x1s, x2:=x2s, . . .]

Proof.

I (Sequentialisation) ts � t[s];

I (Substitution) t[s][r] � t[r][s[r]]

I (Self) t � t•;

I (Z) s � t• � s•, if t → s.

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

x• = x (ts)• = t•[s•]
with t[s] uniform distribution of s over t:

t[x1:=x1s, x2:=x2s, . . .]

Example

I (xy)• = x [y] = x [x :=xy] = xy ;

I (xyz)• = (xy)[x :=xz , y :=yz] = xz(yz).

Proof.

I (Sequentialisation) ts � t[s];

I (Substitution) t[s][r] � t[r][s[r]]

I (Self) t � t•;

I (Z) s � t• � s•, if t → s.

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

x• = x (ts)• = t•[s•]
with t[s] uniform distribution of s over t:

t[x1:=x1s, x2:=x2s, . . .]

Proof.
By induction on t:

I (Sequentialisation) ts � t[s];

I (Substitution) t[s][r] � t[r][s[r]]

I (Self) t � t•;

I (Z) s � t• � s•, if t → s.

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

x• = x (ts)• = t•[s•]
with t[s] uniform distribution of s over t:

t[x1:=x1s, x2:=x2s, . . .]

Proof.
By induction on t:

I (Sequentialisation) ts � t[s];

I (Substitution) t[s][r] � t[r][s[r]]

I (Self) t � t•;

I (Z) s � t• � s•, if t → s.

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

x• = x (ts)• = t•[s•]
with t[s] uniform distribution of s over t:

t[x1:=x1s, x2:=x2s, . . .]

Proof.
By induction on t:

I (Sequentialisation) ts � t[s];

I (Substitution) t[s][r] � t[r][s[r]]

I (Self) t � t•;

I (Z) s � t• � s•, if t → s.

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

x• = x (ts)• = t•[s•]
with t[s] uniform distribution of s over t:

t[x1:=x1s, x2:=x2s, . . .]

Proof.
By induction on t:

I (Sequentialisation) ts � t[s];

I (Substitution) t[s][r] � t[r][s[r]]

I (Self) t � t•;

I (Z) s � t• � s•, if t → s.

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

x• = x (ts)• = t•[s•]
with t[s] uniform distribution of s over t:

t[x1:=x1s, x2:=x2s, . . .]

Proof.
By induction on t:

I (Sequentialisation) ts � t[s];

I (Substitution) t[s][r] � t[r][s[r]]

I (Self) t � t•;

I (Z) s � t• � s•, if t → s.

Example: normalising and confluent relations

Theorem
Normalising and confluent relations have the Z-property,
for • the full reduction map (map to normal form).

Proof.
If a→ b, then b � a• � b• since b reduces to its normal form b•

(normalisation) which is the same as the normal form a• of a
(confluence).

Corollary

Z-property for typed λ-calculi (by confluence and termination)

Here reverse: use Z-property to establish meta-theory

Example: normalising and confluent relations

Theorem
Normalising and confluent relations have the Z-property,
for • the full reduction map (map to normal form).

Proof.
If a→ b, then b � a• � b• since b reduces to its normal form b•

(normalisation) which is the same as the normal form a• of a
(confluence).

Corollary

Z-property for typed λ-calculi (by confluence and termination)

Here reverse: use Z-property to establish meta-theory

Example: normalising and confluent relations

Theorem
Normalising and confluent relations have the Z-property,
for • the full reduction map (map to normal form).

Proof.
If a→ b, then b � a• � b• since b reduces to its normal form b•

(normalisation) which is the same as the normal form a• of a
(confluence).

Corollary

Z-property for typed λ-calculi (by confluence and termination)

Here reverse: use Z-property to establish meta-theory

Example: normalising and confluent relations

Theorem
Normalising and confluent relations have the Z-property,
for • the full reduction map (map to normal form).

Proof.
If a→ b, then b � a• � b• since b reduces to its normal form b•

(normalisation) which is the same as the normal form a• of a
(confluence).

Corollary

Z-property for typed λ-calculi (by confluence and termination)

Here reverse: use Z-property to establish meta-theory

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full development
contracting all redexes present:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

Proof.
By induction on M:

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full development
contracting all redexes present:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

Example

I I • = I ; (I = λx .x)

I (I (II))• = I , (III)• = II ;

I ((λxy .x)zw)• = (λy .z)w ;

I ((λxy .Iyx)zI)• = (λy .yz)I ;

Proof.
By induction on M:

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full development
contracting all redexes present:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

Proof.
By induction on M:

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full development
contracting all redexes present:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

Proof.
By induction on M:

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full development
contracting all redexes present:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

Proof.
By induction on M:

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full development
contracting all redexes present:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

Proof.
By induction on M:

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full development
contracting all redexes present:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

Proof.
By induction on M:

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Same method works for all orthogonal first/higher-order TRSs

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full super-
development contracting all redexes present or upward created:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is a term, M• = λx .M ′

= M•N• otherwise

Proof.
Same (‘an abstraction’7→ ‘a term’) proof by induction on M :

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full super-
development contracting all redexes present or upward created:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is a term, M• = λx .M ′

= M•N• otherwise

Example

I I • = I ; (I = λx .x)

I (I (II))• = I , (III)• = I ;

I ((λxy .x)zw)• = z ;

I ((λxy .Iyx)zI)• = Iz

Proof.
Same (‘an abstraction’7→ ‘a term’) proof by induction on M :

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full super-
development contracting all redexes present or upward created:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is a term, M• = λx .M ′

= M•N• otherwise

Proof.
Same (‘an abstraction’7→ ‘a term’) proof by induction on M :

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full super-
development contracting all redexes present or upward created:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is a term, M• = λx .M ′

= M•N• otherwise

Proof.
Same (‘an abstraction’7→ ‘a term’) proof by induction on M :

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full super-
development contracting all redexes present or upward created:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is a term, M• = λx .M ′

= M•N• otherwise

Proof.
Same (‘an abstraction’7→ ‘a term’) proof by induction on M :

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full super-
development contracting all redexes present or upward created:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is a term, M• = λx .M ′

= M•N• otherwise

Proof.
Same (‘an abstraction’7→ ‘a term’) proof by induction on M :

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full super-
development contracting all redexes present or upward created:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is a term, M• = λx .M ′

= M•N• otherwise

Proof.
Same (‘an abstraction’7→ ‘a term’) proof by induction on M :

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Moral: possibly more than one witnessing map for Z-property

Example: λ-calculus with explicit substitutions

Theorem
λσ has the Z-property, for • the map composed of first
σ-normalisation (.), then a Beta-full development (•−→)

Proof.

Γ

t• = s•

t st s

t = s

Γ

t t ′

s ′t• s•

E

E
∆

∆

s

Works for other explicit substitution/proof calculi as well.

Example: λ-calculus with explicit substitutions

Theorem
λσ has the Z-property, for • the map composed of first
σ-normalisation (.), then a Beta-full development (•−→)

Proof.

Γ

t• = s•

t st s

t = s

Γ

t t ′

s ′t• s•

E

E
∆

∆

s

Works for other explicit substitution/proof calculi as well.

Example: λ-calculus with explicit substitutions

Theorem
λσ has the Z-property, for • the map composed of first
σ-normalisation (.), then a Beta-full development (•−→)

Proof.

Γ

t• = s•

t st s

t = s

Γ

t t ′

s ′t• s•

E

E
∆

∆

s

Works for other explicit substitution/proof calculi as well.

Example: weakly orthogonal term rewriting systems

Definition
Rewrite system is weakly orthogonal, if only trivial critical pairs.

Example

I λ-calculus with β and η : λx .Mx →M, if x 6∈ M;

I predecessor/successor S(P(x)))→ x P(S(x))→ x ;

I parallel-or.

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•

Example: weakly orthogonal term rewriting systems

Definition
Rewrite system is weakly orthogonal, if only trivial critical pairs.

Example

I λ-calculus with β and η : λx .Mx →M, if x 6∈ M;

I predecessor/successor S(P(x)))→ x P(S(x))→ x ;

I parallel-or.

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•

Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•

Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•

Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•

Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•

Outside-in not monotonic: not g(f (f (x))) � g(f (f (f (x))))!

Z vs. angle

I Dehornoy:
Z-property of → for •;

I Takahashi:
angle (〈) property of → for •: ∃ ◦−→,→ ⊆ ◦−→ ⊆�

a

a•

Z vs. angle

I Dehornoy:
Z-property of → for •;

I Takahashi:
angle (〈) property of → for •: ∃ ◦−→,→ ⊆ ◦−→ ⊆�

a

a•

◦−→ steps are divisors of •−→

Z ⇔ angle

Theorem
for any map •, Z ⇔ 〈

Proof.

Z ⇔ angle

Theorem
for any map •, Z ⇔ 〈

Proof.
(If)

a b

Z ⇔ angle

Theorem
for any map •, Z ⇔ 〈

Proof.
(If)

→ ⊆ ◦−→ and 〈
a b

a•

Z ⇔ angle

Theorem
for any map •, Z ⇔ 〈

Proof.
(If)

〈

a b

a• b•

Z ⇔ angle

Theorem
for any map •, Z ⇔ 〈

Proof.
(If)

◦−→ ⊆�

a b

a• b•

Z ⇔ angle

Theorem
for any map •, Z ⇔ 〈

Proof.
(only if) Def. a ◦−→ b if b between a and a•, i.e. a � b � a•:

I a→ b ⇒ b � a• ⇒ → ⊆ ◦−→.

I a ◦−→ b ⇒ a � b ⇒ ◦−→ ⊆�.

I Suppose a ◦−→ b.

I a � b � a• by definition of ◦−→.
I a � b ⇒ a• � b• (monotonicity of •) by Z
I b � a• � b• so b ◦−→ a• by definition of ◦−→.

Non-examples

Some properties of •s

I if a � b then a• � b•;

I → has Z-property iff →= has IZ-property;

I •1 ◦ •2 has Z, if •i do.

I slower order: •1 ≤ •2, if ∀a, a•1 � a•2 ;

I •i ≤ •1 ◦ •2;

I no slowest/minimally slow/fastest/maximally fast;

I for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z

Some properties of •s

I if a � b then a• � b•;

I → has Z-property iff →= has IZ-property;

I •1 ◦ •2 has Z, if •i do.

I slower order: •1 ≤ •2, if ∀a, a•1 � a•2 ;

I •i ≤ •1 ◦ •2;

I no slowest/minimally slow/fastest/maximally fast;

I for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z

Some properties of •s

I if a � b then a• � b•;

I → has Z-property iff →= has IZ-property;

I •1 ◦ •2 has Z, if •i do.

I slower order: •1 ≤ •2, if ∀a, a•1 � a•2 ;

I •i ≤ •1 ◦ •2;

I no slowest/minimally slow/fastest/maximally fast;

I for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z

Some properties of •s

I if a � b then a• � b•;

I → has Z-property iff →= has IZ-property;

I •1 ◦ •2 has Z, if •i do.

I slower order: •1 ≤ •2, if ∀a, a•1 � a•2 ;

I •i ≤ •1 ◦ •2;

I no slowest/minimally slow/fastest/maximally fast;

I for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z

Some properties of •s

I if a � b then a• � b•;

I → has Z-property iff →= has IZ-property;

I •1 ◦ •2 has Z, if •i do.

I slower order: •1 ≤ •2, if ∀a, a•1 � a•2 ;

I •i ≤ •1 ◦ •2;

I no slowest/minimally slow/fastest/maximally fast;

I for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z

Some properties of •s

I if a � b then a• � b•;

I → has Z-property iff →= has IZ-property;

I •1 ◦ •2 has Z, if •i do.

I slower order: •1 ≤ •2, if ∀a, a•1 � a•2 ;

I •i ≤ •1 ◦ •2;

I no slowest/minimally slow/fastest/maximally fast;

I for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z

Some properties of •s

I if a � b then a• � b•;

I → has Z-property iff →= has IZ-property;

I •1 ◦ •2 has Z, if •i do.

I slower order: •1 ≤ •2, if ∀a, a•1 � a•2 ;

I •i ≤ •1 ◦ •2;

I no slowest/minimally slow/fastest/maximally fast;

I for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z

Some properties of •s

I if a � b then a• � b•;

I → has Z-property iff →= has IZ-property;

I •1 ◦ •2 has Z, if •i do.

I slower order: •1 ≤ •2, if ∀a, a•1 � a•2 ;

I •i ≤ •1 ◦ •2;

I no slowest/minimally slow/fastest/maximally fast;

I for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z

Z does not have Z

1−1 0−2 2

Z does not have Z

−1 10−2 2

for given integer, no upperbound on steps from it

Z does not have Z

−1 10−2 2

not finitely branching, no finite TRS

for given integer, no upperbound on steps from it

Ẑ does not imply Z

1−1 0−2 2

n(x)→ p(x) n(1)→ 0 0→ p(1)

n(s(x))→ n(x)

p(x)→ p(s(x))

Ẑ does not imply Z

1−1 0−2 2

finitely branching, finite TRS

n(x)→ p(x) n(1)→ 0 0→ p(1)

n(s(x))→ n(x)

p(x)→ p(s(x))

Ẑ does not imply Z

0•1−1−2

finitely branching, finite TRS

not monotonic (e.g. for −3)

0

n(x)→ p(x) n(1)→ 0 0→ p(1)

n(s(x))→ n(x)

p(x)→ p(s(x))

Z[does have Z

1−1 0−2 2

Examples show:

I confluent 6 ⇒ Z

I transitivity might be harmful

Z[does have Z

1−1 0−2 2

finitely branching, finite TRS, no transitivity

Examples show:

I confluent 6 ⇒ Z

I transitivity might be harmful

Z[does have Z

Z trivial (i• = i + 1)

1−1 0−2 2

finitely branching, finite TRS, no transitivity

Examples show:

I confluent 6 ⇒ Z

I transitivity might be harmful

Z[does have Z

Z trivial (i• = i + 1)

1−1 0−2 2

finitely branching, finite TRS, no transitivity

Examples show:

I confluent 6 ⇒ Z

I transitivity might be harmful

Conclusions

I Surprise: Z ⇔ angle;

I Claim: gives simplest confluence proofs;

I Conjecture: β with restricted η-expansion does not have Z;

I Problem: characterise systems having Z-property;

I Puzzle: is Z a modular property of TRSs?;

I Further work: Garside categories ⇔ residual systems.

Conclusions

I Surprise: Z ⇔ angle;

I Claim: gives simplest confluence proofs;

I Conjecture: β with restricted η-expansion does not have Z;

I Problem: characterise systems having Z-property;

I Puzzle: is Z a modular property of TRSs?;

I Further work: Garside categories ⇔ residual systems.

Conclusions

I Surprise: Z ⇔ angle;

I Claim: gives simplest confluence proofs;

I Conjecture: β with restricted η-expansion does not have Z;

I Problem: characterise systems having Z-property;

I Puzzle: is Z a modular property of TRSs?;

I Further work: Garside categories ⇔ residual systems.

Conclusions

I Surprise: Z ⇔ angle;

I Claim: gives simplest confluence proofs;

I Conjecture: β with restricted η-expansion does not have Z;

I Problem: characterise systems having Z-property;

I Puzzle: is Z a modular property of TRSs?;

I Further work: Garside categories ⇔ residual systems.

Conclusions

I Surprise: Z ⇔ angle;

I Claim: gives simplest confluence proofs;

I Conjecture: β with restricted η-expansion does not have Z;

I Problem: characterise systems having Z-property;

I Puzzle: is Z a modular property of TRSs?;

I Further work: Garside categories ⇔ residual systems.

Conclusions

I Surprise: Z ⇔ angle;

I Claim: gives simplest confluence proofs;

I Conjecture: β with restricted η-expansion does not have Z;

I Problem: characterise systems having Z-property;

I Puzzle: is Z a modular property of TRSs?;

I Further work: Garside categories ⇔ residual systems.

	Z
	Intuitions

	Consequences
	Confluence
	Hyper-cofinality

	Examples
	Braids
	Self-distributivity
	Normalising and confluent relations
	-calculus
	-calculus with explicit substitutions
	Weakly orthogonal term rewriting systems

	Z vs.angle
	Non-examples
	Conclusions

