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sorting by swapping adjacent elements
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Reduction steps: arrows start at first element of swapped pair



sorting by swapping adjacent elements
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Reduction steps: inversions in blue, anti-inversions in red



sorting local commutation diagrams

self-overlap

ba

ab ab=

cab

acb cbacab

same

cba

bca

abc

bac acb

cab

independent

baxy

abxy bayx

abyx

overlap

Comparing inversions (↙) to arbitrary reduction steps (↘)



sorting local commutation diagrams

≤

=

≤ ≤

≤

Left path not longer than right path when closing diagram as ↘↙



optimality of inversion sorting

Theorem
inversion sorting is optimal

Proof.
all local commutation diagrams of shape

≤

∀ local peak ∃ valley s.t. left path not longer than right path
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inversion local confluence diagrams

self-overlap

ba

ab ab=

same

cba

bca

abc

bac acb

cab

independent

baxy

abxy bayx

abyx

Comparing inversion to itself



inversion local confluence diagrams

≤

=

≤

≤

Left path not longer than right path when closing diagram



inversion sorting is O(n2)

Theorem
inversion sorting is O(n2)

Proof.
all sorting algorithms are O(n2) because some is (e.g. bubblesort):
all local confluence diagrams of shape

≤

∀ local peak ∃ valley s.t. left path not longer than right path



inversion sorting is O(n2)

Theorem
inversion sorting is O(n2)

Proof.
all sorting algorithms are O(n2) because some is (e.g. bubblesort):
all confluence diagrams of shape

≤

∀ peak ∃ valley s.t. left path not longer than right path



orthogonality of sorting

(φ/ψ)/(χ/ψ) ≈ (φ/χ)/(ψ/χ)

χ

ψ

φ

φ/ψ

φ/χ

ψ/χ

χ/ψ

Orthogonal = to have a residual map (/) on steps



orthogonality of sorting

Definition (Residual system)

I 1 the empty step

I / the residual map from pairs of steps to steps

I

φ/φ ≈ 1
φ/1 ≈ φ
1/φ ≈ 1

(φ/ψ)/(χ/ψ) ≈ (φ/χ)/(ψ/χ)



orthogonality of sorting

Theorem
sorting gives a residual system

Proof.
step φ from list ` is multi-inversion: relation ̂ s.t. if îj

I out-of-order: ` = . . . i . . . j . . . but i > j ;

I transitive: if ĵk, then îk;

I scopic: if ` = . . . i . . . k . . . j . . ., then either îk or ĵk

define 1 to be the empty relation,
define φ/ψ as (φ ∪ ψ)+ − ψ.

Example

(cba _ bcba
bca)/(cba _

ccba
cab) = (cab _dbcab abc)



braid problem



braid confluence diagrams

≈

=

self-overlap

same

independent

≈

Reductions end in topologically equivalent (≈) braids



braid confluence diagrams

i + 1

=

i i

i j

j i

|i − j | ≥ 2

i i + 1

i i + 1

i

Reduction steps labelled by gap# of crossing
ij ≈ ji if |i − j | ≥ 2 and i(i + 1)i ≈ (i + 1)i(i + 1)



sorting vs. braiding

I sorting is braiding without crossing strands (inverting) twice

I model braids as ‘repeated sorting’

I model braids as reduction sequences of multi-inversions



sorting vs. braiding

I sorting is braiding without crossing strands (inverting) twice

I model braids as ‘repeated sorting’

I model braids as reduction sequences of multi-inversions



sorting vs. braiding

I sorting is braiding without crossing strands (inverting) twice

I model braids as ‘repeated sorting’

I model braids as reduction sequences of multi-inversions



orthogonality of braids

(φ/ψ)/χ

χ

φψ

φ/ψ

ψ/φ

χ/(φ/ψ)

φ/(ψ ◦ χ) ≈ (φ/ψ)/χ

(ψ ◦ χ)/φ ≈ (ψ/φ) ◦ (χ/(φ/ψ))

Orthogonal reduction sequences = to have stepwise residuals



orthogonality of braids

Definition (Residual system with composition)

I 1 the empty reduction

I / the residual map from pairs of reductions to reductions

I ◦ the composition map on composable reductions

I

φ/φ ≈ 1
φ/1 ≈ φ
1/φ ≈ 1

(φ/ψ)/(χ/ψ) ≈ (φ/χ)/(ψ/χ)
1 ◦ 1 ≈ 1

χ/(φ ◦ ψ) ≈ (χ/φ)/ψ
(φ ◦ ψ)/χ ≈ (φ/χ) ◦ (ψ/(χ/φ))



orthogonality of braids

Theorem
braiding gives a residual system with composition

Proof.

I steps are sequences of multi-inversions

I without out-of-order restriction (omit but . . . )

I define ◦ to be formal composition

I / on sequences defined via composition laws



orthogonality of braids

Example

6

=

1 2 3 4 5 6 1 2 3 4 5 6

1 5 2 3 4 6 3 1 5 2 6 4

13 5 2 6 4

5 3 1 42

/



alternative route: braid completion
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Adjoin 12 and 21 as atomic steps, and repeat (stops directly).



self-distributivity: (x · y) · z ≈ (x · z) · (y · z)



self-distributivity: (x · y) · z ≈ (x · z) · (y · z)

Interpret as first projection



self-distributivity: (x · y) · z ≈ (x · z) · (y · z)

Interpret as an ACI-operation

(x · y) · z =A x · (y · z)

=I x · (y · (z · z))

=A x · ((y · z) · z)

=C x · (z · (y · z))

=A (x · z) · (y · z)

Examples: disjunction/union, conjunction/intersection



self-distributivity: (x · y) · z ≈ (x · z) · (y · z)

Interpret as ‘middle’

a

b

c
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self-distributivity: (x · y) · z ≈ (x · z) · (y · z)

Interpret as ‘middle’
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b
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a · b



self-distributivity: (x · y) · z ≈ (x · z) · (y · z)

Interpret as ‘middle’

a

b

c

b · c
a · c

a · b



self-distributivity rule: xyz → xz(yz) critical pair

I applicative notation: · infix, associating to left

I as expansion rule better behaved than as reduction rule
I a single critical pair:

wxyz

wy(xy)z wxz(yz)

wz(yz)(xz(yz))

wyz(xyz) wz(xz)(yz)

wz(yz)(xyz)

I w represents spine . . .
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self-distributivity rule: xyz → xz(yz) critical pair

I applicative notation: · infix, associating to left
I as expansion rule better behaved than as reduction rule
I a single critical pair:

wxyz

wy(xy)z wxz(yz)
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Spine rectification

z @

y z y zx

@

@ @

@

x

Spine is stable!



Spine rectification

z @y

@ @

z

z

@@

y

If you don’t have a spine, they can’t break you



self-distributivity rule: [y ][z ]→ [z ][y [z ]]

I elements on spine juxtaposed

I rule to be applied modulo associativity

I the critical pair becomes:

I almost braiding, but one extra step . . .
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self-distributivity rule: [y ][z ]→ [z ][y [z ]]

I elements on spine juxtaposed
I rule to be applied modulo associativity
I the critical pair becomes:

[x ][y ][z ]

[y ][x [y ]][z ] [x ][z ][y [z ]]

[z ][y [z ]][x [z ][y [z ]]]

[y ][z ][x [y ][z ]] [z ][x [z ]][y [z ]]

[z ][y [z ]][x [y ][z ]]

I almost braiding, but one extra step . . .



self-distributivity rule: [y ][z ]→ [z ][y [z ]]

I elements on spine juxtaposed
I rule to be applied modulo associativity
I the critical pair becomes:

[x ][y ][z ]

i + 1i

[y ][x [y ]][z ]

i + 1

[x ][z ][y [z ]]

i

[z ][y [z ]][x [z ][y [z ]]]

[y ][z ][x [y ][z ]] [z ][x [z ]][y [z ]]

i + 1i

[z ][y [z ]][x [y ][z ]]

I almost braiding, but one extra step . . .



braiding vs. self-distributivity

I [y ][z ]→ [z ][y [z ]] swaps z and y , remembering y crossed z . . .

I braids.

I self-distributivity braids inside memory. . .

I extra step.
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braiding vs. self-distributivity

I [y ][z ]→ [z ][y [z ]] swaps z and y , remembering y crossed z . . .

I braids.

I self-distributivity braids inside memory. . .

I extra step.



orthogonality of self-distributivity

Theorem
self-distributivity gives a residual system

Idea.
Multi-distribution defined similar to multi-conversions, but

I relates positions in the (rectified) term

I may relate only to right-wing uncles; ̂(piq)(pj) with i < j

I must be left-convex; ̂(piq1q2)(pj) implies ̂(piq1)(pj)

/ as before; constructed by using standard residual theory to relate
positions before and after the (non-linear) term rewrite step



the substitution lemma of the λ-calculus

(λx .M[y :=P])N[y :=P]

(λy .(λx .M)N)P

M[y :=P][x :=N[y :=P]] ≈ M[x :=N][y :=P]

(λy .M[x :=N])P

Substitution Lemma of the λ-calculus



the substitution lemma of the λ-calculus

(λx .M[y :=P])N[y :=P]

(λy .(λx .M)N)P

M[y :=P][x :=N[y :=P]]← M[x :=N][y :=P]

(λy .M[x :=N])P

Critical pair for λ-calculus with explicit substitutions



the substitution lemma of the λ-calculus

(λx .M[y :=P])N[y :=P]

(λy .(λx .M)N)P

M[y :=P][x :=N[y :=P]]← M[x :=N][y :=P]

(λy .M[x :=N])P

Critical pair for λ-calculus with explicit substitutions
Is this rule in itself confluent? (left-to-right no)



the substitution lemma of the λ-calculus

(λx .M[y :=P])N[y :=P]

(λy .(λx .M)N)P

M[y :=P][x :=N[y :=P]]← M[x :=N][y :=P]

(λy .M[x :=N])P

Critical pair for λ-calculus with explicit substitutions
This is self-distributivity, so even orthogonal!



residual systems (with composition)

Definition

I 1 the empty reduction

I / the residual map from pairs of reductions to reductions

I ◦ the composition map on composable reductions

I

φ/φ ≈ 1
φ/1 ≈ φ
1/φ ≈ 1

(φ/ψ)/(χ/ψ) ≈ (φ/χ)/(ψ/χ)
1 ◦ 1 ≈ 1

χ/(φ ◦ ψ) ≈ (χ/φ)/ψ
(φ ◦ ψ)/χ ≈ (φ/χ) ◦ (ψ/(χ/φ))

Union a defined operation: φ ∪ ψ = φ ◦ (ψ/φ) (pushout)



residual systems (with composition)

Example

I multi-inversions in sorting

I braids

I self-distributivity

I orthogonal term rewriting systems (β-reduction, CL)

I associativity

I . . .

I also many residual algebras (singleton carrier) . . .
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I braids

I self-distributivity

I orthogonal term rewriting systems (β-reduction, CL)

I associativity

I . . .
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residual algebras (with composition)

I natural numbers (as steps from object to itself)

I .− (cut-off subtraction), 0 (zero), + (addition);

n .− n ≈ 0

n .− 0 ≈ n

0 .− n ≈ 0

(n .−m) .− (k .−m) ≈ (n .− k) .− (m .− k)

0 + 0 ≈ 0

k .− (n + m) ≈ (k .− n) .−m

(n + m) .− k ≈ (n .− k) + (m .− (k .− n))

Generated from its



residual algebras (with composition)

I natural numbers (as steps from object to itself)

I .− (cut-off subtraction), 0 (zero), + (addition);

n .− n ≈ 0

n .− 0 ≈ n

0 .− n ≈ 0

(n .−m) .− (k .−m) ≈ (n .− k) .− (m .− k)

0 + 0 ≈ 0

k .− (n + m) ≈ (k .− n) .−m

(n + m) .− k ≈ (n .− k) + (m .− (k .− n))

Truth-values with reverse implication, false (no composition)

Positive natural numbers with cut-off division, 1, multiplication



residual algebras (with composition)

I multisets over some set (as steps from object to itself)

I − (multiset difference), ∅ (empty multiset), ] (multiset sum);

M −M ≈ ∅
M − ∅ ≈ M

∅ −M ≈ ∅
(M − N)− (K − N) ≈ (M − K )− (N − K )

∅ ] ∅ ≈ ∅
K − (M ] N) ≈ (K −M)− N

(M ] N)− K ≈ (M − K ) ] (N − (K −M))



residual algebras (with composition)

I multisets over some set (as steps from object to itself)

I − (multiset difference), ∅ (empty multiset), ] (multiset sum);

M −M ≈ ∅
M − ∅ ≈ M

∅ −M ≈ ∅
(M − N)− (K − N) ≈ (M − K )− (N − K )

∅ ] ∅ ≈ ∅
K − (M ] N) ≈ (K −M)− N

(M ] N)− K ≈ (M − K ) ] (N − (K −M))

Sets with set-difference, ∅, disjoint union.



residual algebras (with composition)

I multisets over some set (as steps from object to itself)

I − (multiset difference), ∅ (empty multiset), ] (multiset sum);

M −M ≈ ∅
M − ∅ ≈ M

∅ −M ≈ ∅
(M − N)− (K − N) ≈ (M − K )− (N − K )

∅ ] ∅ ≈ ∅
K − (M ] N) ≈ (K −M)− N

(M ] N)− K ≈ (M − K ) ] (N − (K −M))

all compositions are commutative



commutative residual algebras

Definition
commutative residual algebra with composition (CRAC) satisfies

(φ/ψ)/φ ≈ 1
φ/(φ/ψ) ≈ ψ/(ψ/φ)

(follows from computing (φ ◦ ψ)/(ψ ◦ φ) ≈ 1!)

I 2nd equation states commutativity of intersection φ/(φ/ψ)

I Very useful for equational reasoning about multisets in Coq.

I Iso to commutative BCK algebras with relative cancellation

I In above examples � well-founded; a � b if a/b ≈ 1.

I Other interesting CRACs?
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CRAs are multisets

Theorem
every well-founded CRAC iso to multiset CRAC

Proof.
The following axioms hold

I � well-founded partial-order

I 1 least

I strictly compatible: φ ≺ ψ ⇒ φ ◦ χ ≺ ψ ◦ χ
I precompositional: φ � ψ ◦ χ ⇒ φ = ψ′ ◦ χ′, ψ′ � ψ, χ′ � χ
I Archimedean: ∀n φn � ψ ⇒ φ = 1.

so every element uniquely decomposes into atoms

Unique decomposition result generalises FTA; also applies to
process algebra



well-founded CRAs are multisets



Formalisation

commutative integer
residual algebra

‘base’ residual algebra

setoids

residual algebra commutative residual algebra

commutative residualresidual algebra
with composition algebra with composition

integer residual algebra

Eval compute in 17 ∧ 20.
Eval compute in 32 ∧ 18.
Eval compute in 5 ∧ 5.



Formalisation

commutative integer
residual algebra

‘base’ residual algebra

setoids

residual algebra commutative residual algebra

commutative residualresidual algebra
with composition algebra with composition

integer residual algebra

Covers Visser’s stack numbers



Formalisation

commutative integer
residual algebra

‘base’ residual algebra

setoids

residual algebra commutative residual algebra

commutative residualresidual algebra
with composition algebra with composition

integer residual algebra

Multiple inheritance?



Conclusion

I connected and studied systems from diverse fields via residual
systems

I ‘more’ examples of residual systems/algebras than expected

I algebras useful for equational reasoning with ‘minus’

I do residuals come before or after composition?



decreasing diagrams theorem

g_ g−I

g_,−I g_,−I

φ ψ

≺ well-founded order on labels in A ⇒
⋃

A confluent



decreasing diagrams theorem

g_ g−I

g_,−I g_,−I

φ ψ

≺ well-founded order on labels in A ⇒
⋃

A confluent
covers all ‘local confluence ⇒ confluence’ results in Terese Ch1.
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