Sorting \leadsto braids \leadsto self-distributivity \leadsto substitution lemma of the λ-calculus \leadsto multisets

Vincent van Oostrom

Theoretical Philosophy Universiteit Utrecht
The Netherlands
supported by LIX

January 31, 2008

Sorting

Braids

Self-distributivity

Substitution lemma of the λ-calculus

Multisets
sorting by swapping adjacent elements

Reduction steps: arrows start at first element of swapped pair
sorting by swapping adjacent elements

Reduction steps: inversions in blue, anti-inversions in red

sorting local commutation diagrams

independent
Comparing inversions (\swarrow) to arbitrary reduction steps (\searrow)

sorting local commutation diagrams

Left path not longer than right path when closing diagram as

optimality of inversion sorting

Theorem
inversion sorting is optimal
Proof.
all local commutation diagrams of shape

\forall local peak \exists valley s.t. left path not longer than right path

optimality of inversion sorting

Theorem
inversion sorting is optimal
Proof.
all commutation diagrams of shape

\forall peak \exists valley s.t. left path not longer than right path

inversion local confluence diagrams

Comparing inversion to itself

inversion local confluence diagrams

Left path not longer than right path when closing diagram

inversion sorting is $O\left(n^{2}\right)$

Theorem
inversion sorting is $O\left(n^{2}\right)$
Proof.
all sorting algorithms are $O\left(n^{2}\right)$ because some is (e.g. bubblesort): all local confluence diagrams of shape

\forall local peak \exists valley s.t. left path not longer than right path

inversion sorting is $O\left(n^{2}\right)$

Theorem
inversion sorting is $O\left(n^{2}\right)$
Proof.
all sorting algorithms are $O\left(n^{2}\right)$ because some is (e.g. bubblesort): all confluence diagrams of shape

\forall peak \exists valley s.t. left path not longer than right path

orthogonality of sorting

Orthogonal $=$ to have a residual map (/) on steps

orthogonality of sorting

Definition (Residual system)

- 1 the empty step
- / the residual map from pairs of steps to steps

$$
\begin{aligned}
\phi / \phi & \approx 1 \\
\phi / 1 & \approx \phi \\
1 / \phi & \approx 1 \\
(\phi / \psi) /(\chi / \psi) & \approx(\phi / \chi) /(\psi / \chi)
\end{aligned}
$$

orthogonality of sorting

Theorem
sorting gives a residual system
Proof.
step ϕ from list ℓ is multi-inversion: relation ${ }^{\wedge}$ s.t. if $\widehat{i j}$

- out-of-order: $\ell=\ldots i \ldots j \ldots$ but $i>j$;
- transitive: if $\widehat{j k}$, then $\widehat{i k}$;
- scopic: if $\ell=\ldots i \ldots k \ldots j \ldots$, then either $\hat{i k}$ or $\widehat{j k}$ define 1 to be the empty relation, define ϕ / ψ as $(\phi \cup \psi)^{+}-\psi$.

Example
$(c b a \rightarrow \widehat{c b a} b c a) /(c b a \rightarrow \widehat{c b a} c a b)=(c a b \rightarrow \widehat{\widehat{c a b}} a b c)$

braid problem

braid confluence diagrams

Reductions end in topologically equivalent (\approx) braids

braid confluence diagrams

Reduction steps labelled by gap\# of crossing
$i j \approx j i$ if $|i-j| \geq 2$ and $i(i+1) i \approx(i+1) i(i+1)$

sorting vs. braiding

- sorting is braiding without crossing strands (inverting) twice

sorting vs. braiding

- sorting is braiding without crossing strands (inverting) twice
- model braids as 'repeated sorting'

sorting vs. braiding

- sorting is braiding without crossing strands (inverting) twice
- model braids as 'repeated sorting'
- model braids as reduction sequences of multi-inversions

orthogonality of braids

Orthogonal reduction sequences $=$ to have stepwise residuals

orthogonality of braids

Definition (Residual system with composition)

- 1 the empty reduction
- / the residual map from pairs of reductions to reductions
- o the composition map on composable reductions

$$
\begin{aligned}
\phi / \phi & \approx 1 \\
\phi / 1 & \approx \phi \\
1 / \phi & \approx 1 \\
(\phi / \psi) /(\chi / \psi) & \approx(\phi / \chi) /(\psi / \chi) \\
1 \circ 1 & \approx 1 \\
\chi /(\phi \circ \psi) & \approx(\chi / \phi) / \psi \\
(\phi \circ \psi) / \chi & \approx(\phi / \chi) \circ(\psi /(\chi / \phi))
\end{aligned}
$$

orthogonality of braids

Theorem
braiding gives a residual system with composition
Proof.

- steps are sequences of multi-inversions
- without out-of-order restriction (omit but ...)
- define \circ to be formal composition
- / on sequences defined via composition laws

orthogonality of braids

Example

alternative route: braid completion

Adjoin 12 and 21 as atomic steps, and repeat (stops directly).

self-distributivity: $(x \cdot y) \cdot z \approx(x \cdot z) \cdot(y \cdot z)$

self-distributivity: $(x \cdot y) \cdot z \approx(x \cdot z) \cdot(y \cdot z)$

Interpret as first projection

self-distributivity: $(x \cdot y) \cdot z \approx(x \cdot z) \cdot(y \cdot z)$

Interpret as an ACl -operation

$$
\begin{array}{rll}
(x \cdot y) \cdot z & =A_{A} & x \cdot(y \cdot z) \\
& =\text { I } & x \cdot(y \cdot(z \cdot z)) \\
& ={ }_{A} & x \cdot((y \cdot z) \cdot z) \\
& =C & x \cdot(z \cdot(y \cdot z)) \\
& =A_{A} & (x \cdot z) \cdot(y \cdot z)
\end{array}
$$

Examples: disjunction/union, conjunction/intersection

self-distributivity: $(x \cdot y) \cdot z \approx(x \cdot z) \cdot(y \cdot z)$

Interpret as 'middle'

self-distributivity: $(x \cdot y) \cdot z \approx(x \cdot z) \cdot(y \cdot z)$

Interpret as 'middle'

self-distributivity: $(x \cdot y) \cdot z \approx(x \cdot z) \cdot(y \cdot z)$

Interpret as 'middle'

self-distributivity: $(x \cdot y) \cdot z \approx(x \cdot z) \cdot(y \cdot z)$

Interpret as 'middle'

self-distributivity: $(x \cdot y) \cdot z \approx(x \cdot z) \cdot(y \cdot z)$

Interpret as 'middle'

self-distributivity rule: $x y z \rightarrow x z(y z)$ critical pair

- applicative notation: • infix, associating to left

self-distributivity rule: $x y z \rightarrow x z(y z)$ critical pair

- applicative notation: • infix, associating to left
- as expansion rule better behaved than as reduction rule

self-distributivity rule: $x y z \rightarrow x z(y z)$ critical pair

- applicative notation: • infix, associating to left
- as expansion rule better behaved than as reduction rule
- a single critical pair:

self-distributivity rule: $x y z \rightarrow x z(y z)$ critical pair

- applicative notation: • infix, associating to left
- as expansion rule better behaved than as reduction rule
- a single critical pair:

- w represents spine ...

Spine rectification

Spine is stable!

Spine rectification

If you don't have a spine, they can't break you

self-distributivity rule: $[y][z] \rightarrow[z][y[z]]$

- elements on spine juxtaposed

self-distributivity rule: $[y][z] \rightarrow[z][y[z]]$

- elements on spine juxtaposed
- rule to be applied modulo associativity

self-distributivity rule: $[y][z] \rightarrow[z][y[z]]$

- elements on spine juxtaposed
- rule to be applied modulo associativity
- the critical pair becomes:

self-distributivity rule: $[y][z] \rightarrow[z][y[z]]$

- elements on spine juxtaposed
- rule to be applied modulo associativity
- the critical pair becomes:

- almost braiding, but one extra step

braiding vs. self-distributivity

- $[y][z] \rightarrow[z][y[z]]$ swaps z and y, remembering y crossed $z \ldots$

braiding vs. self-distributivity

- $[y][z] \rightarrow[z][y[z]]$ swaps z and y, remembering y crossed $z \ldots$
- braids.

braiding vs. self-distributivity

- $[y][z] \rightarrow[z][y[z]]$ swaps z and y, remembering y crossed $z \ldots$
- braids.
- self-distributivity braids inside memory...

braiding vs. self-distributivity

- $[y][z] \rightarrow[z][y[z]]$ swaps z and y, remembering y crossed $z \ldots$
- braids.
- self-distributivity braids inside memory...
- extra step.

orthogonality of self-distributivity

Theorem
self-distributivity gives a residual system
Idea.
Multi-distribution defined similar to multi-conversions, but

- relates positions in the (rectified) term
- may relate only to right-wing uncles; ($\widehat{p i q)(p j})$ with $i<j$
- must be left-convex; $\left(\widehat{\left.p i q_{1} q_{2}\right)(p j}\right)$ implies $\left(\widehat{\left.p i q_{1}\right)(p j}\right)$
/ as before; constructed by using standard residual theory to relate positions before and after the (non-linear) term rewrite step $\quad \square$

the substitution lemma of the λ-calculus

Substitution Lemma of the λ-calculus
the substitution lemma of the λ-calculus

Critical pair for λ-calculus with explicit substitutions

the substitution lemma of the λ-calculus

Critical pair for λ-calculus with explicit substitutions Is this rule in itself confluent? (left-to-right no)

the substitution lemma of the λ-calculus

Critical pair for λ-calculus with explicit substitutions This is self-distributivity, so even orthogonal!

residual systems (with composition)

Definition

- 1 the empty reduction
- / the residual map from pairs of reductions to reductions
- o the composition map on composable reductions

$$
\begin{aligned}
\phi / \phi & \approx 1 \\
\phi / 1 & \approx \phi \\
1 / \phi & \approx 1 \\
(\phi / \psi) /(\chi / \psi) & \approx(\phi / \chi) /(\psi / \chi) \\
1 \circ 1 & \approx 1 \\
\chi /(\phi \circ \psi) & \approx(\chi / \phi) / \psi \\
(\phi \circ \psi) / \chi & \approx(\phi / \chi) \circ(\psi /(\chi / \phi))
\end{aligned}
$$

Union a defined operation: $\phi \cup \psi=\phi \circ(\psi / \phi)$ (pushout)

residual systems (with composition)

Example

- multi-inversions in sorting

residual systems (with composition)

Example

- multi-inversions in sorting
- braids

residual systems (with composition)

Example

- multi-inversions in sorting
- braids
- self-distributivity

residual systems (with composition)

Example

- multi-inversions in sorting
- braids
- self-distributivity
- orthogonal term rewriting systems (β-reduction, CL)

residual systems (with composition)

Example

- multi-inversions in sorting
- braids
- self-distributivity
- orthogonal term rewriting systems (β-reduction, CL)
- associativity

residual systems (with composition)

Example

- multi-inversions in sorting
- braids
- self-distributivity
- orthogonal term rewriting systems (β-reduction, CL)
- associativity

residual systems (with composition)

Example

- multi-inversions in sorting
- braids
- self-distributivity
- orthogonal term rewriting systems (β-reduction, CL)
- associativity
- also many residual algebras (singleton carrier) ...

residual algebras (with composition)

- natural numbers (as steps from object to itself)
- - (cut-off subtraction), 0 (zero), + (addition);

$$
\begin{aligned}
& n \div n \approx 0 \\
& n-0 \approx n \\
& 0-n \approx 0 \\
& (n \doteq m) \doteq(k \dot{-}) \approx(n \doteq k) \doteq(m \dot{-}) \\
& 0+0 \approx 0 \\
& k \dot{-}(n+m) \approx(k \dot{-}) \doteq m \\
& (n+m) \doteq k \approx(n \doteq k)+(m \doteq(k \dot{ }) \text {) }
\end{aligned}
$$

Generated from its

residual algebras (with composition)

- natural numbers (as steps from object to itself)
- (cut-off subtraction), 0 (zero), + (addition);

$$
\begin{aligned}
& n \div n \approx 0 \\
& n-0 \approx n \\
& 0-n \approx 0 \\
& (n \doteq m) \dot{-}(k \dot{-}) \approx(n \doteq k) \dot{-}(m \dot{-}) \\
& 0+0 \approx 0 \\
& k \dot{-}(n+m) \approx(k \dot{ })-m \\
& (n+m) \doteq k \approx(n \doteq k)+(m \doteq(k \dot{\circ}))
\end{aligned}
$$

Truth-values with reverse implication, false (no composition)
Positive natural numbers with cut-off division, 1, multiplication

residual algebras (with composition)

- multisets over some set (as steps from object to itself)
- - (multiset difference), \emptyset (empty multiset), \uplus (multiset sum);

$$
\begin{aligned}
M-M & \approx \emptyset \\
M-\emptyset & \approx M \\
\emptyset-M & \approx \emptyset \\
(M-N)-(K-N) & \approx(M-K)-(N-K) \\
\emptyset \uplus \emptyset & \approx \emptyset \\
K-(M \uplus N) & \approx(K-M)-N \\
(M \uplus N)-K & \approx(M-K) \uplus(N-(K-M))
\end{aligned}
$$

residual algebras (with composition)

- multisets over some set (as steps from object to itself)
- - (multiset difference), \emptyset (empty multiset), \uplus (multiset sum);

$$
\begin{aligned}
M-M & \approx \emptyset \\
M-\emptyset & \approx M \\
\emptyset-M & \approx \emptyset \\
(M-N)-(K-N) & \approx(M-K)-(N-K) \\
\emptyset \uplus \emptyset & \approx \emptyset \\
K-(M \uplus N) & \approx(K-M)-N \\
(M \uplus N)-K & \approx(M-K) \uplus(N-(K-M))
\end{aligned}
$$

Sets with set-difference, \emptyset, disjoint union.

residual algebras (with composition)

- multisets over some set (as steps from object to itself)
- - (multiset difference), \emptyset (empty multiset), \uplus (multiset sum);

$$
\begin{aligned}
M-M & \approx \emptyset \\
M-\emptyset & \approx M \\
\emptyset-M & \approx \emptyset \\
(M-N)-(K-N) & \approx(M-K)-(N-K) \\
\emptyset \uplus \emptyset & \approx \emptyset \\
K-(M \uplus N) & \approx(K-M)-N \\
(M \uplus N)-K & \approx(M-K) \uplus(N-(K-M))
\end{aligned}
$$

all compositions are commutative

commutative residual algebras

Definition

commutative residual algebra with composition (CRAC) satisfies

$$
\begin{aligned}
& (\phi / \psi) / \phi \approx 1 \\
& \phi /(\phi / \psi) \approx \psi /(\psi / \phi)
\end{aligned}
$$

(follows from computing $(\phi \circ \psi) /(\psi \circ \phi) \approx 1$!)

commutative residual algebras

Definition

commutative residual algebra with composition (CRAC) satisfies

$$
\begin{aligned}
& (\phi / \psi) / \phi \approx 1 \\
& \phi /(\phi / \psi) \approx \psi /(\psi / \phi)
\end{aligned}
$$

- 2nd equation states commutativity of intersection $\phi /(\phi / \psi)$

commutative residual algebras

Definition

commutative residual algebra with composition (CRAC) satisfies

$$
\begin{aligned}
& (\phi / \psi) / \phi \approx 1 \\
& \phi /(\phi / \psi) \approx \psi /(\psi / \phi)
\end{aligned}
$$

- 2nd equation states commutativity of intersection $\phi /(\phi / \psi)$
- Very useful for equational reasoning about multisets in Coq.

commutative residual algebras

Definition

commutative residual algebra with composition (CRAC) satisfies

$$
\begin{aligned}
& (\phi / \psi) / \phi \approx 1 \\
& \phi /(\phi / \psi) \approx \psi /(\psi / \phi)
\end{aligned}
$$

- 2nd equation states commutativity of intersection $\phi /(\phi / \psi)$
- Very useful for equational reasoning about multisets in Coq.
- Iso to commutative BCK algebras with relative cancellation

commutative residual algebras

Definition

commutative residual algebra with composition (CRAC) satisfies

$$
\begin{aligned}
& (\phi / \psi) / \phi \approx 1 \\
& \phi /(\phi / \psi) \approx \psi /(\psi / \phi)
\end{aligned}
$$

- 2nd equation states commutativity of intersection $\phi /(\phi / \psi)$
- Very useful for equational reasoning about multisets in Coq.
- Iso to commutative BCK algebras with relative cancellation
- In above examples \preceq well-founded; $a \preceq b$ if $a / b \approx 1$.

commutative residual algebras

Definition

commutative residual algebra with composition (CRAC) satisfies

$$
\begin{aligned}
& (\phi / \psi) / \phi \approx 1 \\
& \phi /(\phi / \psi) \approx \psi /(\psi / \phi)
\end{aligned}
$$

- 2nd equation states commutativity of intersection $\phi /(\phi / \psi)$
- Very useful for equational reasoning about multisets in Coq.
- Iso to commutative BCK algebras with relative cancellation
- In above examples \preceq well-founded; $a \preceq b$ if $a / b \approx 1$.
- Other interesting CRACs?

CRAs are multisets

Theorem
every well-founded CRAC iso to multiset CRAC
Proof.
The following axioms hold

- \preceq well-founded partial-order
- 1 least
- strictly compatible: $\phi \prec \psi \Rightarrow \phi \circ \chi \prec \psi \circ \chi$
- precompositional: $\phi \preceq \psi \circ \chi \Rightarrow \phi=\psi^{\prime} \circ \chi^{\prime}, \psi^{\prime} \preceq \psi, \chi^{\prime} \preceq \chi$
- Archimedean: $\forall n \phi^{n} \preceq \psi \Rightarrow \phi=1$.
so every element uniquely decomposes into atoms
Unique decomposition result generalises FTA; also applies to process algebra

well-founded CRAs are multisets

Formalisation

Eval compute in $17 \wedge 20$. Eval compute in $32 \wedge 18$. Eval compute in $5 \wedge 5$.

Formalisation

Covers Visser's stack numbers

Formalisation

Multiple inheritance?

Conclusion

- connected and studied systems from diverse fields via residual systems
- 'more' examples of residual systems/algebras than expected
- algebras useful for equational reasoning with 'minus'
- do residuals come before or after composition?

decreasing diagrams theorem

\prec well-founded order on labels in $A \Rightarrow \bigcup A$ confluent

decreasing diagrams theorem

\prec well-founded order on labels in $A \Rightarrow \bigcup A$ confluent covers all 'local confluence \Rightarrow confluence' results in Terese Ch1.

