A well-founded involutive monoid for confluence

Vincent van Oostrom

Universiteit Utrecht
TeReSe, Utrecht, December 9, 2011

Involutive monoids (0.4)

A well-founded order on French strings (0.4)

An application to proving confluence (0.2)

Boustrophedon

Gortyn code, Crete, 5th century B.C. (wikipedia)

Boustrophedon

Boustrophedon

how the cow ploughs

Boustrophedon

anguolq wos 9df wor

Boustrophedon

2dguolq wos 9df wod

Boustrophedon

2dguolq wos 9df wod

Boustrophedon

anguolq wos 9df wor

Boustrophedon

anguolq wos ont wor

Boustrophedon

anguolq wos 9df wor

Boustrophedon

anguolq wos ont wor

Boustrophedon

anguolq wos ont wor

Boustrophedon

anguolq wos 9df wor

Boustrophedon

anguolq wos 9df wor

Boustrophedon

anguolq wos 9df wor

Boustrophedon

how the cow ploughs

Boustrophedon

how the plow coughs

Boustrophedon

how the cow ploughs

Boustrophedon

how the cow ploughs

Boustrophedon

how the cow ploughs

Boustrophedon

\square
how the cow ploughs

Boustrophedon

\square
how the cow ploughs

Boustrophedon

\square
how the cow ploughs

Boustrophedon

anguolq wos odf wor

Boustrophedon

anguolq wos ont wor

Boustrophedon

2dguolq wos odt wod

Boustrophedon

2nguolq wos odt wod

Boustrophedon

2dguolq wos odt wod

Boustrophedon

Martinus Nijhoff, Het kind en ik, Nieuwe Gedichten, 1934 (Hortus Botanicus, Universiteitsmuseum Utrecht, next to pond)

Boustrophedon

EN TELKENS ALS IK EVEN TそIV THH XI TAФ 界T入IИX LIET HIJ HET WATER BEVEN TそIWGヨTIU đЯヨV THH VA

Boustrophedon

EN TELKENS ALS IK EVEN LIET HIJ HET WATER BEVEN TそIWGŋTIU đЯヨW THH ИAH

How to represent linearly?

French strings (chaînes)

Definition

- French letter is an accented (acute or grave) letter

French strings (chaînes)

Definition

- French letter is an accented (acute or grave) letter
- juxtaposition e èv̀èǹ juxtaposed to ḱníḱté gives èv̀̀̀nḱńíḱté

French strings (chaînes)

Definition

- French letter is an accented (acute or grave) letter
- juxtaposition -
- empty string ε

French strings (chaînes)

Definition

- French letter is an accented (acute or grave) letter
- juxtaposition -
- empty string ε
- mirroring -1 tèilkèns mirrors śńéḱlét

French strings (chaînes)

Definition

- French letter is an accented (acute or grave) letter
- juxtaposition \quad
- empty string ε
- mirroring ${ }^{-1}$
- \widehat{L} set of French Strings on L (â for either à or á)

French strings (chaînes)

Definition

- French letter is an accented (acute or grave) letter
- juxtaposition -
- empty string ε
- mirroring -1
- \bar{L} set of French Strings on L

French strings (chaînes)

Definition

- French letter is an accented (acute or grave) letter
- juxtaposition -
- empty string ε
- mirroring -1
- \widehat{L} set of French Strings on L
letter markup (representation preserves length,prefix,suffix)

Monoid of strings

$$
\begin{aligned}
(s r) q & =s(r q) \\
s \varepsilon & =\varepsilon \\
\varepsilon s & =s
\end{aligned}
$$

(associativity)
(right identity)
(left identity)

Involutive monoid of French strings

$$
\begin{aligned}
(s r) q & =s(r q) \\
s \varepsilon & =\varepsilon \\
\varepsilon s & =s \\
\left(s^{-1}\right)^{-1} & =s \\
(s r)^{-1} & =r^{-1} s^{-1}
\end{aligned}
$$

(associativity)
(right identity)
(left identity)
(involutive)
(anti-automorphic)

Involutive monoid of French strings

$$
\begin{aligned}
(s r) q & =s(r q) \\
s \varepsilon & =\varepsilon \\
\varepsilon s & =s \\
\left(s^{-1}\right)^{-1} & =s \\
(s r)^{-1} & =r^{-1} s^{-1}
\end{aligned}
$$

(associativity)
(right identity)
(left identity)
(involutive)
(anti-automorphic)

$$
\varepsilon^{-1}=\varepsilon
$$

Involutive monoid of French strings

$$
\begin{aligned}
(s r) q & =s(r q) \\
s \varepsilon & =\varepsilon \\
\varepsilon s & =s \\
\left(s^{-1}\right)^{-1} & =s \\
(s r)^{-1} & =r^{-1} s^{-1}
\end{aligned}
$$

$$
\varepsilon^{-1}=\varepsilon
$$

(derived)

Proof.

$$
\varepsilon^{-1}=\varepsilon \varepsilon^{-1}=\left(\varepsilon^{-1}\right)^{-1} \varepsilon^{-1}=\left(\varepsilon \varepsilon^{-1}\right)^{-1}=\left(\varepsilon^{-1}\right)^{-1}=\varepsilon
$$

Involutive monoid

Definition
set with

- associative binary operation.
- identity element e
- involutive anti-automorphism ${ }^{-1}$

$$
\begin{aligned}
(a \cdot b) \cdot c & =a \cdot(b \cdot c) \\
a \cdot e & =a \\
e \cdot a & =a \\
\left(a^{-1}\right)^{-1} & =a \\
(a \cdot b)^{-1} & =b^{-1} \cdot a^{-1} \\
\varepsilon^{-1} & =\varepsilon
\end{aligned}
$$

(associative) (right identity) (left identity) (involutive) (anti-automorphic) (derived)

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map
- integers with addition, zero, unary minus

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant-* map
- positive rationals with multiplication, one, inverse

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant-* map
- group

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant-* map
- group (examples $(\mathbb{Z},+, 0,-),\left(\mathbb{Q}^{+}, \cdot, 1,{ }^{-1}\right)$)
- natural numbers with addition, zero, identity map

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant-* map
- group (examples $(\mathbb{Z},+, 0,-),\left(\mathbb{Q}^{+}, \cdot, 1,{ }^{-1}\right)$)
- multisets with multiset sum, empty multiset, identity map

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map
- group (examples $(\mathbb{Z},+, 0,-),\left(\mathbb{Q}^{+}, \cdot, 1,^{-1}\right)$)
- commutative monoid with identity map

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map
- group (examples $\left.(\mathbb{Z},+, 0,-),\left(\mathbb{Q}^{+}, \cdot, 1,{ }^{-1}\right)\right)$
- commutative monoid (examples ($\mathbb{N},+, 0),([L], \uplus,[]))$
- diagrams of \backslash with gluing, point, mirroring in vertical axis

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map
- group (examples $(\mathbb{Z},+, 0,-),\left(\mathbb{Q}^{+}, \cdot, 1,{ }^{-1}\right)$)
- commutative monoid (examples $(\mathbb{N},+, 0),([L], \uplus,[]))$
- diagrams of \backslash with gluing, point, mirroring in vertical axis
- number pairs with pointwise addition, $(0,0)$, swapping

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map
- group (examples $(\mathbb{Z},+, 0,-),\left(\mathbb{Q}^{+}, \cdot, 1,{ }^{-1}\right)$)
- commutative monoid (examples $(\mathbb{N},+, 0),([L], \uplus,[]))$
- diagrams of \backslash with gluing, point, mirroring in vertical axis
- number triples with composition given by $\left(n_{1}, m_{1}, k_{1}\right) \cdot\left(n_{2}, m_{2}, k_{2}\right)=\left(n_{1}+n_{2}, m_{1}+k_{1} \cdot n_{2}+m_{2}, k_{1}+k_{2}\right)$, zero $(0,0,0)$, involution $(n, m, k)^{-1}=(k, m, n)$

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map
- group (examples $(\mathbb{Z},+, 0,-),\left(\mathbb{Q}^{+}, \cdot, 1,{ }^{-1}\right)$)
- commutative monoid (examples $(\mathbb{N},+, 0),([L], \uplus,[]))$
- diagrams of \backslash with gluing, point, mirroring in vertical axis
- number triples with composition given by $\left(n_{1}, m_{1}, k_{1}\right) \cdot\left(n_{2}, m_{2}, k_{2}\right)=\left(n_{1}+n_{2}, m_{1}+k_{1} \cdot n_{2}+m_{2}, k_{1}+k_{2}\right)$, zero $(0,0,0)$, involution $(n, m, k)^{-1}=(k, m, n)$

$$
\begin{aligned}
& \left(\left(n_{1}, m_{1}, k_{1}\right) \cdot\left(n_{2}, m_{2}, k_{2}\right)\right) \cdot\left(n_{3}, m_{3}, k_{3}\right) \\
& \quad=\left(n_{1}+n_{2}, m_{1}+k_{1} \cdot n_{2}+m_{2}, k_{1}+k_{2}\right) \cdot\left(n_{3}, m_{3}, k_{3}\right) \\
& \quad=\left(n_{1}+n_{2}+n_{3}, m_{1}+k_{1} \cdot n_{2}+m_{2}+\left(k_{1}+k_{2}\right) \cdot n_{3}+m_{3}, k_{1}+k_{2}+k_{3}\right) \\
& \quad=\left(n_{1}+n_{2}+n_{3}, m_{1}+k_{1} \cdot\left(n_{2}+n_{3}\right)+m_{2}+k_{2} \cdot n_{3}+m_{3}, k_{1}+k_{2}+k_{3}\right) \\
& \quad=\left(n_{1}, m_{1}, k_{1}\right) \cdot\left(n_{2}+n_{3}, m_{2}+k_{2} \cdot n_{3}+m_{3}, k_{2}+k_{3}\right) \\
& \quad=\left(n_{1}, m_{1}, k_{1}\right) \cdot\left(\left(n_{2}, m_{2}, k_{2}\right) \cdot\left(n_{3}, m_{3}, k_{3}\right)\right)
\end{aligned}
$$

Involutive monoid homomorphisms

Definition
maps preserving operations

Examples

- involutive monoid to itself (identity)

Involutive monoid homomorphisms

Definition

maps preserving operations

Examples

- involutive monoid to itself (identity)
- French strings \rightarrow number pairs (grave,acute) ćèńàr̀ $\mapsto(3,2)$

Involutive monoid homomorphisms

Definition

maps preserving operations

Examples

- involutive monoid to itself (identity)
- number pairs \rightarrow natural numbers (sum) $(3,2) \mapsto 5$

Involutive monoid homomorphisms

Definition

maps preserving operations

Examples

- involutive monoid to itself (identity)
- French strings \rightarrow natural numbers (length) composition of previous two

Involutive monoid homomorphisms

Definition

maps preserving operations

Examples

- involutive monoid to itself (identity)
- French strings \rightarrow natural numbers (length)
- French strings \rightarrow multisets (letters) báŕrìàró $\mapsto[a, a, b, b, o, r, r]$

Involutive monoid homomorphisms

Definition

maps preserving operations

Examples

- involutive monoid to itself (identity)
- French strings \rightarrow natural numbers (length)
- French strings \rightarrow multisets (letters)
- French strings \rightarrow diagrams ćèńàr̀ \mapsto

Involutive monoid homomorphisms

Definition

maps preserving operations

Examples

- involutive monoid to itself (identity)
- French strings \rightarrow natural numbers (length)
- French strings \rightarrow multisets (letters)
- diagrams \rightarrow triples

Involutive monoid homomorphisms

Definition

maps preserving operations

Examples

- involutive monoid to itself (identity)
- French strings \rightarrow natural numbers (length)
- French strings \rightarrow multisets (letters)
- French strings \rightarrow triples (area) composition of previous two

Free involutive monoid on generators

Theorem
French strings on L give free involutive monoid on L

Freeness of involutive monoid of French Strings

Freeness of involutive monoid of French Strings

Freeness of involutive monoid of French Strings

Freeness of involutive monoid of French Strings

Freeness of involutive monoid of French Strings

Freeness of involutive monoid of French Strings

Free involutive monoid on generators

Theorem
French strings on L give free involutive monoid on L

Free involutive monoid on generators

Theorem
French strings on L give free involutive monoid on L
Proof.
\bar{L} in bijection via $\grave{\ell} \mapsto \ell$ with

$$
N::=e|\ell| i(\ell)|c(\ell, N)| c(i(\ell), N)
$$

Free involutive monoid on generators

Theorem
French strings on L give free involutive monoid on L
Proof.
\widehat{L} in bijection via $\grave{\ell} \mapsto \ell$ with

$$
N::=e|\ell| i(\ell)|c(\ell, N)| c(i(\ell), N)
$$

N set of normal forms on L for TRS completing axioms

$$
\begin{aligned}
c(c(x, y), z) & \rightarrow c(x, c(y, z)) \\
c(x, e) & \rightarrow x \\
c(e, x) & \rightarrow x \\
i(i(x)) & \rightarrow x \\
i(c(x, y)) & \rightarrow c(i(y), i(x)) \\
i(e) & \rightarrow e
\end{aligned}
$$

Involutive monoid on French terms L^{\sharp}

Definition
certain terms on certain French strings

Involutive monoid on French terms L^{\sharp}

Definition
terms on strings

$m k \ell m$

Involutive monoid on French terms $L \sharp$

Definition
terms on strings

Involutive monoid on French terms L^{\sharp}

Definition
terms on strings on >-ordered letters

Involutive monoid on French terms $L \sharp$

Definition
terms on strings on >-ordered letters

Involutive monoid on French terms $L \sharp$

Definition
terms on strings on >-ordered letters where bo\# identity

Involutive monoid on French terms $L \sharp$

Definition
terms on strings on >-ordered letters where bo\# identity

Involutive monoid on French terms $L \sharp$

Definition

 terms on strings on >-ordered letters where $b \circ \sharp$ identity
$m k \ell m$
elmme

Involutive monoid on French terms $L \sharp$

Definition

terms on French strings on >-ordered letters where $b \circ \sharp$ identity operations on L^{\sharp} defined via \widehat{L}, e.g. $t \cdot u=\left(t^{b} u^{b}\right)^{\sharp}$

ḿkém
êèmó̀

A well-founded order on French terms

- (iterative) lexicographic path order based on $>$

ḿkém
êèmó̀

A well-founded order on French terms

- (iterative) lexicographic path order based on $>$
- lexicographic order on argument places compatible with marks

ḿk̂́m
ề m̀ḿ̀

A well-founded order on French terms

- (iterative) lexicographic path order based on $>$
- lexicographic order on argument places compatible with marks
- signature ordered by $\triangleright=\binom{>_{\text {mul }}}{>}$ via $\binom{$ multiset }{ area }

ḿkém
Ø̂̀ m̀ḿ̀

A well-founded order on French strings/terms

- (iterative) lexicographic path order based on $>$
- lexicographic order on argument places compatible with marks
- signature ordered by $\triangleright=\binom{>_{\text {mul }}}{>}$ via $\binom{$ multiset }{ area }

ḿkém
ề m̀ḿ̀

Properties of $>_{l p o}$

- head of term $>$-related to heads of all subterms

Properties of $\nabla_{\text {lpo }}$

- head of term $>$-related to heads of all subterms

Properties of $\nabla_{\text {lpo }}$

- head of term $>$-related to heads of all subterms
- $>_{\text {Ipo }}$ not an ordered monoid
- $s \hat{\ell} r>_{\text {Ipo }} s\{\ell>\} r$ (in EBNF $\}$ is arbitrary repetition)

Properties of $\nabla_{\text {lpo }}$

- head of term $>$-related to heads of all subterms
- $>_{\text {Ipo }}$ not an ordered monoid
- str$>_{\text {Ipo }} s\{\ell>\} r$

Proof.
induction on length $s r$, cases whether ℓ is $>$-maximal in $s \hat{\ell} r$ yes decrease in multiset of head no induction on substring/term $\hat{\ell}$ is in

Properties of $\nabla_{\text {lpo }}$

- head of term \triangleright-related to heads of all subterms
- $>_{\text {lpo }}$ not an ordered monoid
- $s \hat{\ell} r>_{\text {Ipo }} s\{\ell>\} r$

Proof.
induction on length $s r$, cases whether ℓ is $>$-maximal in $s \hat{\ell} r$
yes decrease in multiset of head no induction on substring/term $\hat{\ell}$ is in

- sौ́m$r>_{\text {lpo }} s\{\ell>\}[\grave{m}]\{\ell, m>\}[\ell \in]\{m>\} r$ ([] is option)

Properties of $\nabla_{\text {lpo }}$

- head of term $>$-related to heads of all subterms
- $>_{\text {Ipo }}$ not an ordered monoid
- $s \hat{\ell} r>_{\text {lpo }} s\{\ell>\} r$

Proof.
induction on length $s r$, cases whether ℓ is >-maximal in $s \hat{\ell} r$
yes decrease in multiset of head no induction on substring/term $\hat{\ell}$ is in

Proof.
induction on length $s r$, cases whether ℓ, m are $>$-maximal in st́mr
both decrease in area of head
ℓ decrease in the substring/term to the right of ℓ \grave{m} decrease in the substring/term to the left of \grave{m}
neither induction on substring/term 位 is in

Filling in locally decreasing diagram decreases
Theorem

Filling in locally decreasing diagram decreases
Theorem

Filling in locally decreasing diagram decreases
Theorem

Proof.
$s \ell ́ m r r>_{\text {Ipo }} s\{\ell>\}[\grave{m}]\{\ell, m>\}[\ell ́]\{m>\} r$

Idea: >-maximal steps modulo non->-maximal steps

case 1: local confluence peak of >-maximal steps

Idea: >-maximal steps modulo non->-maximal steps

Idea: >-maximal steps modulo non->-maximal steps

case 2: local coherence peak of >-maximal and non->-maximal step

Idea: >-maximal steps modulo non->-maximal steps

decrease in j th argument, lexicographically before i th

Idea: >-maximal steps modulo non->-maximal steps

case 3: local modulo peak of non->-maximal steps

Idea: >-maximal steps modulo non->-maximal steps

decrease in argument both steps are in
$\nu_{\text {lpo }}$ at work

Filling in local diagrams (1)

Filling in local diagrams (1)

Filling in local diagrams (2)

Filling in local diagrams (2)

Filling in local diagrams (3)

Filling in local diagrams (3)

Filling in local diagrams (4)

Filling in local diagrams (4)

Filling in local diagrams (5)

Filling in local diagrams (5)

Filling in local diagrams (6)

Filling in local diagrams (6)

Filling in local diagrams (6)

Conclusion

- alternative correctness proof of decreasing diagrams
(De Bruijn,vO,Klop,de Vrijer,Bezem,Jouannaud)

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of $>$-maximal steps modulo non->-maximal steps

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

- Newman's Lemma (multiset)+Lemma of Hindley-Rosen (area)

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

- Newman's Lemma+Lemma of Hindley-Rosen

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of $>$-maximal steps modulo non->-maximal steps

- Newman's Lemma+Lemma of Hindley-Rosen

- decreasing diagrams modulo: involutive letters $\dot{\ell}$, i.e. $\dot{\ell}^{-1}=\dot{\ell}$

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of $>$-maximal steps modulo non->-maximal steps

- Newman's Lemma+Lemma of Hindley-Rosen

- involutive rewriting ($\varrho: s \rightarrow r$ converse of $\varrho^{-1}: s^{-1} \rightarrow r^{-1}$)

Ik zou een dag uit vissen, ik voelde mij moedeloos. Ik maakte tussen de lissen met de hand een wak in het kroos.

Er steeg licht op van beneden uit de zwarte spiegelgrond. Ik zag een tuin onbetreden en een kind dat daar stond.

Het stond aan zijn schrijftafel te schrijven op een lei. Het woord onder de griffel herkende ik, was van mij.

Maar toen heeft het geschreven, zonder haast en zonder schroom, al wat ik van mijn leven nog ooit te schrijven droom.

En telkens als ik even knikte dat ik het wist, liet hij het water beven en het werd uitgewist.
.șezzis tiss p.ab sios wos all .zooJaboostr jisse oblgou ils

srabersed shou qu trjasi pgete rith .bsrorpJopgsqe 9trouss ob tiss sobgrtgdso sisest sisa pas all .bsrote roobb tob bsisit sis9 si

Jotattisinsor siciss nom bsrote foH

Jottise ab rabsio broour taH -(ism snow zous atis obsigdtost
 ,mootstor tabsios se tedons rabsos ngugl siesise suou dis Jous Jo .smoorb sravejinstor of tioo poss

 rougd tatous tost jisis tass .tesurgetsis brous tost sis

TeReSe business meeting
din
YOI

