Triangulation

Vincent van Oostrom and Hans Zantema

VvO: Universiteit Utrecht HZ: Technische Universiteit Eindhoven and Radboud Universiteit Nijmegen

TeReSe, Eindhoven, June 17, 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Triangulation

Completion

Triangulated

Completed

Co-nclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 「園」 釣ぬ(で)

depends on a total relation R to determine direction of \blacktriangleright

depends on a total relation R to determine direction of \blacktriangleright

Definition

triangulation of \triangleright with respect to R is $\rightarrow = \bigcup_{n \ge 1} \rightarrow_n$ with

$$\blacktriangleright \rightarrow_1 = \triangleright$$

▶ $b \rightarrow_{n+m+1} c$ if $b \leftarrow_n a \rightarrow_m c$ and b R cbut no triangle yet: b not $\bigcup_{1 < k < n+m} \leftrightarrow_k^{=}$ -related to c

depends on a total relation R to determine direction of \blacktriangleright

Definition

triangulation of \triangleright with respect to R is $\rightarrow = \bigcup_{n \ge 1} \rightarrow_n$ with

$$\blacktriangleright \rightarrow_1 = \triangleright$$

▶
$$b \rightarrow_{n+m+1} c$$
 if $b \leftarrow_n a \rightarrow_m c$ and $b R c$
but no triangle yet: b not $\bigcup_{1 < k < n+m} \leftrightarrow_k^=$ -related to c

depends on a total relation R to determine direction of \blacktriangleright

Definition

triangulation of \triangleright with respect to R is $\rightarrow = \bigcup_{n \ge 1} \rightarrow_n$ with

$$\blacktriangleright \rightarrow_1 = \triangleright$$

▶
$$b \rightarrow_{n+m+1} c$$
 if $b \leftarrow_n a \rightarrow_m c$ and $b R c$
but no triangle yet: b not $\bigcup_{1 < k < n+m} \leftrightarrow_k^=$ -related to c

・ロト ・聞ト ・ヨト ・ヨト

・ロト ・聞ト ・ヨト ・ヨト

・ロト ・聞ト ・ヨト ・ヨト

・ロト ・聞ト ・ヨト ・ヨト

Definition confluification turns \triangleright into \rightarrow with $\leftrightarrow^* = \diamondsuit^*$ and \rightarrow confluent

Definition confluification turns \triangleright into \rightarrow with $\leftrightarrow^* = \diamondsuit^*$ and \rightarrow confluent

Example

 $\mathsf{take} \to = \triangleleft \cup \triangleright$

Definition confluification turns \triangleright into \rightarrow with $\leftrightarrow^* = \diamond^*$ and \rightarrow confluent

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example

 $\mathsf{take} \to = \triangleleft \cup \triangleright$

Lemma

triangulation yields confluification

```
Definition confluification turns \triangleright into \rightarrow with \leftrightarrow^* = \diamond^* and \rightarrow confluent
```

Example

 $\mathsf{take} \to = \triangleleft \cup \triangleright$

Lemma

triangulation yields confluification

Proof.

suppose triangulating \triangleright with respect to R yields \rightarrow then $\rightarrow^{=}$ has the diamond property

Definition completion is confluification that preserves termination

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition completion is confluification that preserves termination

Counterexample

triangulating \triangleright with respect to > loses termination

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Definition completion is confluification that preserves termination

Counterexample

triangulating \triangleright with respect to > loses termination

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Definition completion is confluification that preserves termination

Counterexample

triangulating \triangleright with respect to > loses termination

need benign interaction between \triangleright and R

Benign interaction 1: $\triangleright \cup R$ terminating

Theorem triangulation is completion if $\triangleright \cup R$ terminating

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Benign interaction 1: $\triangleright \cup R$ terminating

Theorem

triangulation is completion if $\triangleright \cup R$ terminating

Proof. $\rightarrow = \bigcup_{n \ge 1} \rightarrow_n \subseteq \triangleright \cup R$ (by construction $\rightarrow_1 = \triangleright$ and $\rightarrow_{n+1} \subseteq R$ for $n \ge 1$) hence termination of \rightarrow follows from termination of $\triangleright \cup R$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Benign interaction 2: \triangleright co-deterministic, *R* terminating

Definition

- ▶ ▷ is co-P if its converse \triangleleft is P
- ▶ ▷ is deterministic if $a \triangleright b$ and $a \triangleright c$ implies b = c

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Benign interaction 2: \triangleright co-deterministic, *R* terminating

Definition

- ▶ ▷ is co-P if its converse \triangleleft is P
- ▶ ▷ is deterministic if $a \triangleright b$ and $a \triangleright c$ implies b = c

Example

- β -reduction in λ -calculus is confluent but not co-confluent
- rewrite relation on a finite set is terminating iff co-terminating

trees with steps towards root are deterministic trees with steps towards leaves are co-determistic Benign interaction 2: \triangleright co-deterministic, *R* terminating

Definition

- ▶ ▷ is co-P if its converse \triangleleft is P
- ▶ ▷ is deterministic if $a \triangleright b$ and $a \triangleright c$ implies b = c

Example

- β -reduction in λ -calculus is confluent but not co-confluent
- rewrite relation on a finite set is terminating iff co-terminating
- trees with steps towards root are deterministic trees with steps towards leaves are co-determistic

Theorem

triangulation is completion if \triangleright co-deterministic and R terminating

Δ property

Lemma

if triangulating co-determinstic \triangleright yields \rightarrow by adjoining \blacktriangleright -steps then property Δ holds:

3

イロト イポト イヨト イヨト

Δ property

Lemma

if triangulating co-determinstic \triangleright yields \rightarrow by adjoining \blacktriangleright -steps then property Δ holds:

Proof. By well-founded induction on n for \rightarrow_n and gluing Δs

Δ property

Lemma

if triangulating co-determinstic \triangleright yields \rightarrow by adjoining \blacktriangleright -steps then property Δ holds:

Proof.

By well-founded induction on n for \rightarrow_n and gluing Δs under the same assumptions

 $\begin{array}{c} \mathsf{Corollary} \\ {}_{\triangleright}^{+} \cdot \blacktriangleright \subseteq {}_{\triangleright}^{+} \cup (\blacktriangleright \cdot \twoheadrightarrow) \end{array}$

Lazy Commutation

Theorem (Doornbos & von Karger) if $\triangleright \cdot \blacktriangleright \subseteq \triangleright \cup (\blacktriangleright \cdot \neg)$ with $\rightarrow = \triangleright \cup \blacktriangleright$ then termination of \triangleright and \blacktriangleright implies termination of \rightarrow

Lazy Commutation

Theorem (Doornbos & von Karger) if $\triangleright \cdot \blacktriangleright \subseteq \triangleright \cup (\blacktriangleright \cdot \neg)$ with $\rightarrow = \triangleright \cup \blacktriangleright$ then termination of \triangleright and \blacktriangleright implies termination of \rightarrow

Proof.

Ramsey-like construction of infinite \triangleright -reduction from \rightarrow -reduction

can we obtain completeness of the triangulation \rightarrow just on the basis of properties of the original co-determinstic relation \triangleright and the adjoined steps \triangleright ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

can we obtain completeness of the triangulation \rightarrow just on the basis of properties of the original co-determinstic relation \triangleright and the adjoined steps \triangleright ? some properties

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright \text{ (adjoin)}$

can we obtain completeness of the triangulation \rightarrow just on the basis of properties of the original co-determinstic relation \triangleright and the adjoined steps \triangleright ?

some properties

- $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright \text{ (adjoin)}$
- co-deterministic (co-determinism)

can we obtain completeness of the triangulation \rightarrow just on the basis of properties of the original co-determinstic relation \triangleright and the adjoined steps \triangleright ?

some properties

 $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright \text{ (adjoin)}$

co-deterministic (co-determinism)

 $\blacktriangleright \leftarrow \cdot \rightarrow \subseteq \leftrightarrow^{=} (triangulated)$

can we obtain completeness of the triangulation \rightarrow just on the basis of properties of the original co-determinstic relation \triangleright and the adjoined steps \triangleright ?

some properties

- $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright \text{ (adjoin)}$
- ► ▷ co-deterministic (co-determinism)
- $\blacktriangleright \leftarrow \cdot \rightarrow \subseteq \leftrightarrow^{=} (triangulated)$
- $\blacktriangleright \models \subseteq \leftarrow \cdot \rightarrow (\text{triangle creation})$

Confluence by Triangulatedness

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma

 $\begin{array}{l} \textit{if} \leftarrow \cdot \rightarrow \subseteq \leftarrow \cup \rightarrow \\ \textit{then} \twoheadleftarrow \cdot \twoheadrightarrow \subseteq \leftarrow \cup \twoheadrightarrow \end{array}$

Confluence by Triangulatedness

Lemma

 $if \leftarrow \cdot \rightarrow \subseteq \leftarrow \cup \rightarrow \\ then \leftarrow \cdot \rightarrow \subseteq \leftarrow \cup \rightarrow \\$

Lemma

 \rightarrow is confluent if $\leftarrow \cdot \rightarrow \subseteq \leftrightarrow^{=}$ (triangulated)

Confluence by Triangulatedness

Lemma

 $if \leftarrow \cdot \rightarrow \subseteq \leftarrow \cup \rightarrow \\ then \leftarrow \cdot \rightarrow \subseteq \leftarrow \cup \rightarrow \\$

Lemma

ightarrow is confluent if $ightarrow \cdot
ightarrow \subseteq
ightarrow^=$ (triangulated)

Corollary (Total Triangle) \rightarrow is total on reductions peaks if $\leftarrow \cdot \rightarrow \subseteq \leftrightarrow^{=}$ (triangulated)

Lemma

 \rightarrow is terminating if set of objects finite, \triangleright and \blacktriangleright terminating, and

 $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright (adjoin)$

> co-deterministic (co-determinism)

$$\blacktriangleright \models \subseteq \leftarrow \cdot \rightarrow (triangle \ creation)$$

Proof.

because of finitenes, termination equivalent to acyclicity

Lemma

 \rightarrow is terminating if set of objects finite, \triangleright and \blacktriangleright terminating, and

 $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright (adjoin)$

co-deterministic (co-determinism)

$$\blacktriangleright \models \subseteq \leftarrow \cdot \rightarrow (triangle \ creation)$$

Proof.

by contradiction: assume a cycle with minimal weight (multiset of objects on cycle ordered my multiset extension of \blacktriangleleft)

Lemma

 \rightarrow is terminating if set of objects finite, \triangleright and \blacktriangleright terminating, and

 $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright (adjoin)$

co-deterministic (co-determinism)

$$\blacktriangleright \models \subseteq \leftarrow \cdot \rightarrow (triangle \ creation)$$

Proof.

Lemma

 \rightarrow is terminating if set of objects finite, \triangleright and \blacktriangleright terminating, and

 $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright (adjoin)$

> co-deterministic (co-determinism)

$$\blacktriangleright$$
 \blacktriangleright \subseteq \leftarrow \cdot $ightarrow$ (triangle creation)

Proof.

Lemma

 \rightarrow is terminating if set of objects finite, \triangleright and \blacktriangleright terminating, and

- $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright (adjoin)$
- co-deterministic (co-determinism)
- $\blacktriangleright \models \subseteq \leftarrow \cdot \rightarrow (triangle \ creation)$

Proof.

イロト 不得下 イヨト イヨト

Lemma

 \rightarrow is terminating if set of objects finite, \triangleright and \blacktriangleright terminating, and

- $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright (adjoin)$
- co-deterministic (co-determinism)
- $\blacktriangleright \models \subseteq \leftarrow \cdot \rightarrow (triangle \ creation)$

Proof.

イロト 不得下 イヨト イヨト

Lemma

 \rightarrow is terminating if set of objects finite, \triangleright and \blacktriangleright terminating, and

 $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright (adjoin)$

co-deterministic (co-determinism)

 $\blacktriangleright \models \subseteq \leftarrow \cdot \rightarrow (triangle \ creation)$

Proof.

イロト 不得 トイヨト イヨト

Lemma

 \rightarrow is terminating if set of objects finite, \triangleright and \blacktriangleright terminating, and

 $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright (adjoin)$

> co-deterministic (co-determinism)

 $\blacktriangleright \models \subseteq \leftarrow \cdot \rightarrow (triangle \ creation)$

Proof.

イロン 不同と イヨン イヨン

Lemma

 \rightarrow is terminating if set of objects finite, \triangleright and \blacktriangleright terminating, and

 $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright (adjoin)$

> co-deterministic (co-determinism)

 $\blacktriangleright \models \subseteq \leftarrow \cdot \rightarrow (triangle \ creation)$

Proof.

イロン 不同と イヨン イヨン

Lemma

 \rightarrow is terminating if set of objects finite, \triangleright and \blacktriangleright terminating, and

- $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright (adjoin)$
- > co-deterministic (co-determinism)
- $\blacktriangleright \models \subseteq \leftarrow \cdot \rightarrow (triangle \ creation)$

Proof.

イロト イポト イヨト イヨト

Lemma

 \rightarrow is terminating if set of objects finite, \triangleright and \blacktriangleright terminating, and

 $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright (adjoin)$

> co-deterministic (co-determinism)

 $\blacktriangleright \models \subseteq \leftarrow \cdot \rightarrow (triangle \ creation)$

Proof.

(日) (同) (日) (日)

 \rightarrow is terminating if \triangleright and \blacktriangleright terminating, and

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright \text{ (adjoin)}$

co-deterministic (co-determinism)

▶ ▶
$$\subseteq \leftarrow \cdot \rightarrow$$
 (triangle creation)

??

 \rightarrow is terminating if \triangleright and \blacktriangleright terminating, and

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright \text{ (adjoin)}$

co-deterministic (co-determinism)

▶ ▶
$$\subseteq \leftarrow \cdot \rightarrow$$
 (triangle creation)

??

- \rightarrow is terminating if \triangleright and \blacktriangleright terminating, and
 - $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright \text{(adjoin)}$
 - co-deterministic (co-determinism)

▶ ▶
$$\subseteq \leftarrow \cdot \rightarrow$$
 (triangle creation)

??

Counterexample

Loss of termination by infinite D-expansion

 \rightarrow is terminating if \triangleright and \blacktriangleright terminating, and

 $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright \text{(adjoin)}$

co-deterministic (co-determinism)

$$\blacktriangleright$$
 \blacktriangleright \subseteq \leftarrow \cdot $ightarrow$ (triangle creation)

??

Counterexample

Loss of termination by infinite >-expansion

Counterexample

Loss of termination by infinite >-expansion

 \cdots $5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0$

・ロット (日) (日) (日) (日) (日)

Termination by Shallow Triangles

Observations on triangulation of co-deterministic \triangleright :

(ロ)、(型)、(E)、(E)、 E) の(の)

Termination by Shallow Triangles

Observations on triangulation of co-deterministic >:

 $\blacktriangleright \supseteq (\triangleleft \cdot \triangleright) \cup (\triangleleft \cdot \triangleright) \cup (\triangleleft \cdot \blacktriangleright) \text{ (shallow triangle)}$

Termination by Shallow Triangles

Observations on triangulation of co-deterministic >:

Lemma

- \rightarrow is terminating if \triangleright and \blacktriangleright terminating, and
 - $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright (adjoin)$
 - > co-deterministic (co-determinism)
 - $\blacktriangleright \ \sqsubseteq ((\triangleleft \cdot \triangleright) \cup (\blacktriangleleft \cdot \triangleright) \cup (\triangleleft \cdot \blacktriangleright)) \cap (\sphericalangle \cdot ((\triangleleft \cdot \triangleright) \mathsf{id}) \cdot \bowtie)$

Termination by co-conditions

Lemma

 \rightarrow is terminating if \triangleright and \blacktriangleright terminating, and

- $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright (adjoin)$
- deterministic (determinism)
- $\blacktriangleright \models \subseteq \rightarrow \cdot \leftarrow (triangle \ creation)$

Termination by co-conditions

Lemma

- \rightarrow is terminating if \triangleright and \blacktriangleright terminating, and
 - $\blacktriangleright \rightarrow = \triangleright \cup \blacktriangleright (adjoin)$
 - deterministic (determinism)

$$\blacktriangleright \models \subseteq \rightarrow \cdot \leftarrow (triangle \ creation)$$

Proof. based essentially on ∇ -property:

<ロト <個 > < 注 > < 注 > < 注 > < 注

Puzzle

Consider a city with Red (\triangleright) and Blue (\triangleright) buslines

- Blue buses are *deterministic*, i.e. the next stop of a Blue bus (if it can go anywhere at all) is completely determined by the stop it's currently at;
- Red buses can be *triangulated*, i.e. if a Red bus can go directly from stop a to stop b, then there is a stop c such that one can go directly from both a and b to c, in each case by either taking a Red or a Blue bus.

Show that if one can make an infinite trip using buses of either company, then one can make an infinite trip using buses of one and the same company only.

triangles vs squares

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

applications??