Triangulation

Vincent van Oostrom and Hans Zantema

VvO: Universiteit Utrecht
HZ: Technische Universiteit Eindhoven and Radboud Universiteit Nijmegen
TeReSe, Eindhoven, June 17, 2011

Triangulation

Completion

Triangulated

Completed

Co-nclusion

Triangulation example

Triangulation example

Triangulation example

Triangulation example

Triangulation definition

Triangulation definition

Triangulation definition

depends on a total relation R to determine direction of \downarrow

Triangulation definition

depends on a total relation R to determine direction of \downarrow
Definition
triangulation of \triangleright with respect to R is $\rightarrow=\bigcup_{n \geq 1} \rightarrow_{n}$ with

- $\rightarrow_{1}=\triangleright$
- $b \rightarrow_{n+m+1} c$ if $b \leftarrow_{n} a \rightarrow_{m} c$ and $b R c$ but no triangle yet: b not $\bigcup_{1 \leq k \leq n+m} \leftrightarrow \overline{\bar{k}}_{k}$-related to c

Triangulation definition

depends on a total relation R to determine direction of \downarrow
Definition
triangulation of \triangleright with respect to R is $\rightarrow=\bigcup_{n \geq 1} \rightarrow_{n}$ with

- $\rightarrow_{1}=\triangleright$
- $b \rightarrow_{n+m+1} c$ if $b \leftarrow_{n} a \rightarrow_{m} c$ and $b R c$ but no triangle yet: b not $\bigcup_{1 \leq k \leq n+m} \leftrightarrow \overline{\bar{k}}_{k}$-related to c

Triangulation definition

depends on a total relation R to determine direction of \downarrow

Definition

triangulation of \triangleright with respect to R is $\rightarrow=\bigcup_{n \geq 1} \rightarrow_{n}$ with

- $\rightarrow_{1}=\triangleright$
- $b \rightarrow_{n+m+1} c$ if $b \leftarrow_{n} a \rightarrow_{m} c$ and $b R c$ but no triangle yet: b not $\bigcup_{1 \leq k \leq n+m} \leftrightarrow \overline{\bar{k}}_{k}$-related to c

Triangulation example creation

Triangulation example creation

Triangulation example creation

Triangulation example creation

Confluification

Definition

confluification turns \triangleright into \rightarrow with $\leftrightarrow^{*}=\triangleleft^{*}$ and \rightarrow confluent

Confluification

Definition

confluification turns \triangleright into \rightarrow with $\leftrightarrow^{*}=\triangleleft^{*}$ and \rightarrow confluent
Example

$$
\text { take } \rightarrow=\triangleleft \cup \triangleright
$$

Confluification

Definition
confluification turns \triangleright into \rightarrow with $\leftrightarrow^{*}=\triangleleft^{*}$ and \rightarrow confluent
Example
take $\rightarrow=\triangleleft \cup \triangleright$
Lemma
triangulation yields confluification

Confluification

Definition
confluification turns \triangleright into \rightarrow with $\leftrightarrow^{*}=\triangleleft^{*}$ and \rightarrow confluent
Example
take $\rightarrow=\triangleleft \cup \triangleright$
Lemma
triangulation yields confluification
Proof.
suppose triangulating \triangleright with respect to R yields \rightarrow then $\rightarrow=$ has the diamond property

Confluification as Completion?

Definition

completion is confluification that preserves termination

Confluification as Completion?

Definition

completion is confluification that preserves termination
Counterexample
triangulating \triangleright with respect to $>$ loses termination

Confluification as Completion?

Definition

completion is confluification that preserves termination
Counterexample
triangulating \triangleright with respect to $>$ loses termination

Confluification as Completion?

Definition

completion is confluification that preserves termination
Counterexample
triangulating \triangleright with respect to $>$ loses termination

need benign interaction between \triangleright and R

Benign interaction 1: $\triangleright \cup R$ terminating

Theorem
triangulation is completion if $\triangleright \cup R$ terminating

Benign interaction 1: $\triangleright \cup R$ terminating

Theorem
triangulation is completion if $\triangleright \cup R$ terminating
Proof.
$\rightarrow=\bigcup_{n \geq 1} \rightarrow_{n} \subseteq \triangleright \cup R$
(by construction $\rightarrow_{1}=\triangleright$ and $\rightarrow_{n+1} \subseteq R$ for $n \geq 1$)
hence termination of \rightarrow follows from termination of $\triangleright \cup R$

Benign interaction 2: \triangleright co-deterministic, R terminating

Definition

- \triangleright is co- P if its converse \triangleleft is P
- \triangleright is deterministic if $a \triangleright b$ and $a \triangleright c$ implies $b=c$

Benign interaction 2: \triangleright co-deterministic, R terminating

Definition

- \triangleright is co- P if its converse \triangleleft is P
- \triangleright is deterministic if $a \triangleright b$ and $a \triangleright c$ implies $b=c$

Example

- β-reduction in λ-calculus is confluent but not co-confluent
- rewrite relation on a finite set is terminating iff co-terminating
- trees with steps towards root are deterministic trees with steps towards leaves are co-determistic

Benign interaction 2: \triangleright co-deterministic, R terminating

Definition

- \triangleright is co- P if its converse \triangleleft is P
- \triangleright is deterministic if $a \triangleright b$ and $a \triangleright c$ implies $b=c$

Example

- β-reduction in λ-calculus is confluent but not co-confluent
- rewrite relation on a finite set is terminating iff co-terminating
- trees with steps towards root are deterministic trees with steps towards leaves are co-determistic

Theorem
triangulation is completion if \triangleright co-deterministic and R terminating

Δ property

Lemma

if triangulating co-determinstic \triangleright yields \rightarrow by adjoining $>$-steps then property Δ holds:

Δ property

Lemma

if triangulating co-determinstic \triangleright yields \rightarrow by adjoining \downarrow-steps then property Δ holds:

Proof.
By well-founded induction on n for \rightarrow_{n} and gluing Δs

Δ property

Lemma

if triangulating co-determinstic \triangleright yields \rightarrow by adjoining $>$-steps then property Δ holds:

Proof.

By well-founded induction on n for \rightarrow_{n} and gluing Δs
under the same assumptions
Corollary
$\triangleright^{+} \cdot \triangleright \subseteq \triangleright^{+} \cup(\triangleright \cdot \rightarrow)$

Lazy Commutation
Theorem (Doornbos \& von Karger)

$$
\text { if } \triangleright \cdot \triangleright \subseteq \triangleright \cup(\triangleright \cdot \rightarrow) \text { with } \rightarrow=\triangleright \cup \triangleright
$$

then termination of \triangleright and \triangleright implies termination of \rightarrow

Lazy Commutation

Theorem (Doornbos \& von Karger)
if $\triangleright \cdot \triangleright \subseteq \triangleright \cup(\triangleright \cdot \rightarrow)$ with $\rightarrow=\triangleright \cup$
then termination of \triangleright and \triangleright implies termination of \rightarrow
Proof.
Ramsey-like construction of infinite \triangleright-reduction from \rightarrow-reduction

Doing away with induction in triangulation?

can we obtain completeness of the triangulation \rightarrow just on the basis of properties of the original co-determinstic relation \triangleright and the adjoined steps $>$?

Doing away with induction in triangulation?

can we obtain completeness of the triangulation \rightarrow just on the basis of properties of the original co-determinstic relation \triangleright and the adjoined steps $>$?
some properties

- $\rightarrow=\triangleright \cup$ (adjoin)

Doing away with induction in triangulation?

can we obtain completeness of the triangulation \rightarrow just on the basis of properties of the original co-determinstic relation \triangleright and the adjoined steps $>$?
some properties

- $\rightarrow=\triangleright \cup$ (adjoin)
- \triangleright co-deterministic (co-determinism)

Doing away with induction in triangulation?

can we obtain completeness of the triangulation \rightarrow just on the basis of properties of the original co-determinstic relation \triangleright and the adjoined steps $>$?
some properties

- $\rightarrow=\triangleright \cup$ (adjoin)
- \triangleright co-deterministic (co-determinism)
$\bullet \leftarrow \cdot \rightarrow \subseteq \leftrightarrow^{=}$(triangulated)

Doing away with induction in triangulation?

can we obtain completeness of the triangulation \rightarrow just on the basis of properties of the original co-determinstic relation \triangleright and the adjoined steps $>$?
some properties

- $\rightarrow=\triangleright \cup$ (adjoin)
- \triangleright co-deterministic (co-determinism)
$\checkmark \leftarrow \cdot \rightarrow \subseteq \leftrightarrow^{=}$(triangulated)
$\rightarrow \subseteq \leftarrow \rightarrow$ (triangle creation)

Confluence by Triangulatedness

$$
\begin{aligned}
& \text { Lemma } \\
& \text { if } \leftarrow \cdot \rightarrow \subseteq \leftarrow \cup \rightarrow \\
& \text { then } \leftarrow \cdot \rightarrow \subseteq \leftarrow \cup \rightarrow
\end{aligned}
$$

Confluence by Triangulatedness

Lemma
if $\leftarrow \cdot \rightarrow \subseteq \leftarrow \cup \rightarrow$
then $\leftarrow \cdot \rightarrow \subseteq \llbracket \cup \rightarrow$
Lemma
\rightarrow is confluent
if $\leftarrow \cdot \rightarrow \subseteq \leftrightarrow^{=}$(triangulated)

Confluence by Triangulatedness

Lemma
if $\leftarrow \cdot \rightarrow \subseteq \leftarrow \cup \rightarrow$
then $\leftarrow \cdot \rightarrow \subseteq \llbracket \cup \rightarrow$
Lemma
\rightarrow is confluent
if $\leftarrow \cdot \rightarrow \subseteq \leftrightarrow^{=}$(triangulated)
Corollary (Total Triangle)
\rightarrow is total on reductions peaks
if $\leftarrow \cdot \rightarrow \subseteq \leftrightarrow^{=}$(triangulated)

Termination by Finiteness

Lemma
\rightarrow is terminating if set of objects finite, \triangleright and \triangleright terminating, and

- $\rightarrow=\triangleright \cup \vee$ (adjoin)
- \triangleright co-deterministic (co-determinism)
$\rightarrow \subseteq \leftarrow \rightarrow$ (triangle creation)

Proof.

because of finitenes, termination equivalent to acyclicity

Termination by Finiteness

Lemma

\rightarrow is terminating if set of objects finite, \triangleright and \triangleright terminating, and

- $\rightarrow=\triangleright \cup$ (adjoin)
- \triangleright co-deterministic (co-determinism)
$\rightarrow \subseteq \leftarrow \rightarrow$ (triangle creation)

Proof.

by contradiction: assume a cycle with minimal weight (multiset of objects on cycle ordered my multiset extension of 4)

Termination by Finiteness

Lemma

\rightarrow is terminating if set of objects finite, \triangleright and \triangleright terminating, and
$\rightarrow \rightarrow=\triangleright \cup \vee$ (adjoin)

- \triangleright co-deterministic (co-determinism)
$\rightarrow \subseteq \leftarrow \rightarrow$ (triangle creation)

Proof.

Termination by Finiteness

Lemma

\rightarrow is terminating if set of objects finite, \triangleright and \triangleright terminating, and
$-\rightarrow=\triangleright \cup \vee$ (adjoin)

- \triangleright co-deterministic (co-determinism)
$\rightarrow \subseteq \leftarrow \rightarrow$ (triangle creation)
Proof.

Termination by Finiteness

Lemma

\rightarrow is terminating if set of objects finite, \triangleright and \triangleright terminating, and
$-\rightarrow=\triangleright \cup \vee$ (adjoin)

- \triangleright co-deterministic (co-determinism)
$\rightarrow \subseteq \leftarrow \rightarrow$ (triangle creation)

Proof.

Termination by Finiteness

Lemma

\rightarrow is terminating if set of objects finite, \triangleright and \triangleright terminating, and
$-\rightarrow=\triangleright \cup \vee$ (adjoin)

- \triangleright co-deterministic (co-determinism)
$\rightarrow \subseteq \leftarrow \rightarrow$ (triangle creation)

Proof.

Termination by Finiteness

Lemma

\rightarrow is terminating if set of objects finite, \triangleright and \triangleright terminating, and
$-\rightarrow=\triangleright \cup \vee$ (adjoin)

- \triangleright co-deterministic (co-determinism)
$\rightarrow \subseteq \leftarrow \rightarrow$ (triangle creation)
Proof.

Termination by Finiteness

Lemma

\rightarrow is terminating if set of objects finite, \triangleright and \triangleright terminating, and
$-\rightarrow=\triangleright \cup \vee$ (adjoin)

- \triangleright co-deterministic (co-determinism)
$\rightarrow \subseteq \leftarrow \rightarrow$ (triangle creation)
Proof.

Termination by Finiteness

Lemma

\rightarrow is terminating if set of objects finite, \triangleright and \triangleright terminating, and
$-\rightarrow=\triangleright \cup \vee$ (adjoin)

- \triangleright co-deterministic (co-determinism)
$\rightarrow \subseteq \leftarrow \rightarrow$ (triangle creation)
Proof.

Termination by Finiteness

Lemma

\rightarrow is terminating if set of objects finite, \triangleright and \triangleright terminating, and
$-\rightarrow=\triangleright \cup \vee$ (adjoin)

- \triangleright co-deterministic (co-determinism)
$\rightarrow \subseteq \leftarrow \rightarrow$ (triangle creation)
Proof.

Termination by Finiteness

Lemma

\rightarrow is terminating if set of objects finite, \triangleright and \triangleright terminating, and
$-\rightarrow=\triangleright \cup \vee$ (adjoin)

- \triangleright co-deterministic (co-determinism)
$\rightarrow \subseteq \leftarrow \rightarrow$ (triangle creation)
Proof.

Termination by Termination

\rightarrow is terminating if \triangleright and \triangleright terminating, and

- $\rightarrow=\triangleright \cup \vee$ (adjoin)
- \triangleright co-deterministic (co-determinism)
$\rightarrow \subseteq \leftarrow \rightarrow$ (triangle creation)
??

Termination by Termination

\rightarrow is terminating if \triangleright and \triangleright terminating, and

- $\rightarrow=\triangleright \cup \vee$ (adjoin)
- \triangleright co-deterministic (co-determinism)
$\rightarrow \subseteq \leftarrow \rightarrow$ (triangle creation)
??

Termination by Termination

\rightarrow is terminating if \triangleright and \triangleright terminating, and
$-\rightarrow=\triangleright \cup \vee$ (adjoin)

- \triangleright co-deterministic (co-determinism)
$\rightarrow \subseteq \leftarrow \rightarrow$ (triangle creation)
??

Counterexample

Loss of termination by infinite \triangleright-expansion

Termination by Termination

\rightarrow is terminating if \triangleright and \triangleright terminating, and

- $\rightarrow=\triangleright \cup$ (adjoin)
- \triangleright co-deterministic (co-determinism)
$\rightarrow \subseteq \leftarrow \rightarrow$ (triangle creation)
??

Counterexample

Loss of termination by infinite \triangleright-expansion

Counterexample
Loss of termination by infinite -expansion

Termination by Shallow Triangles

Observations on triangulation of co-deterministic \triangleright :

Termination by Shallow Triangles

Observations on triangulation of co-deterministic \triangleright :
$\triangleright \subseteq(\triangleleft \cdot \triangleright) \cup(\triangleleft \cdot \triangleright) \cup(\triangleleft \cdot \triangleright)$ (shallow triangle)

Termination by Shallow Triangles

Observations on triangulation of co-deterministic \triangleright :
$\triangleright \subseteq(\triangleleft \cdot \triangleright) \cup(\triangleleft \cdot \triangleright) \cup(\triangleleft \cdot \triangleright)$ (shallow triangle)
$-\triangle \subseteq \triangleleft \cdot((\triangleleft \cdot \triangleright)-\mathrm{id}) \cdot \infty$ (bifurcation)

Lemma

\rightarrow is terminating if \triangleright and \triangleright terminating, and
$-\rightarrow=\triangleright \cup>$ (adjoin)

- \triangleright co-deterministic (co-determinism)
$-\triangleright \subseteq((\triangleleft \cdot \triangleright) \cup(\triangleleft \cdot \triangleright) \cup(\triangleleft \cdot \triangleright)) \cap(\triangleleft \cdot((\triangleleft \cdot \triangleright)-\mathrm{id}) \cdot \triangleright)$

Termination by co-conditions
Lemma
\rightarrow is terminating if \triangleright and terminating, and

- $\rightarrow=\triangleright \cup \vee$ (adjoin)
- \triangleright deterministic (determinism)
$-\subseteq \subseteq \rightarrow$ (triangle creation)

Termination by co-conditions

Lemma

\rightarrow is terminating if \triangleright and \triangleright terminating, and

- $\rightarrow=\triangleright \cup \vee$ (adjoin)
- \triangleright deterministic (determinism)
$\rightarrow \subseteq \rightarrow \cdot \leftarrow$ (triangle creation)

Proof.

based essentially on ∇-property:

Puzzle

Consider a city with Red (\triangleright) and Blue (\triangleright) buslines

- Blue buses are deterministic, i.e. the next stop of a Blue bus (if it can go anywhere at all) is completely determined by the stop it's currently at;
- Red buses can be triangulated, i.e. if a Red bus can go directly from stop a to stop b, then there is a stop c such that one can go directly from both a and b to c, in each case by either taking a Red or a Blue bus.
Show that if one can make an infinite trip using buses of either company, then one can make an infinite trip using buses of one and the same company only.
- triangles vs squares
- applications??

