Title Page

Contents

→

→

Page 1 of 100

Go Back

Full Screen

Close

Quit

Contents

Title Page

Content

44 >>>

→

Page 2 of 100

Go Back

Full Screen

Close

Quit

1. Commutative Residu Algebras (CRAs)

- Branden Fitelson (University of California, Berkeley)
- Vincent van Oostrom (Universiteit Utrecht)
- Albert Visser (Universiteit Utrecht)

Title Page

Contents

→

→

Page 3 of 100

Go Back

Full Screen

Close

Quit

2. Origins of CRAs

Student Exercise:

- Write an (inductive) function bubbel in Coq which performs a single 'bubbel' step, and an (inductive) function bubbel_sort based upon it, which sorts a list via the bubblesort algorithm.
- Prove correctness of bubbel (what does it mean?).
- Bonus: prove correctness of bubbel_sort .

Title Page

Contents

→

→

Page 3 of 100

Go Back

Full Screen

Close

Quit

2. Origins of CRAs

Student Exercise:

- Write an (inductive) function bubbel in Coq which performs a single 'bubbel' step, and an (inductive) function bubbel_sort based upon it, which sorts a list via the bubblesort algorithm.
- Prove correctness of bubbel (what does it mean?).
- Bonus: prove correctness of bubbel_sort .

```
Theorem sort : (l:list){k:list| (is_sorted k)
& (list_eq l k)}.
```

Title Page

Contents

→

→

Page 3 of 100

Go Back

Full Screen

Close

Quit

2. Origins of CRAs

Student Exercise:

- Write an (inductive) function bubbel in Coq which performs a single 'bubbel' step, and an (inductive) function bubbel_sort based upon it, which sorts a list via the bubblesort algorithm.
- Prove correctness of bubbel (what does it mean?).
- Bonus: prove correctness of bubbel_sort .

Theorem sort : (l:list){k:list| (is_sorted k)
& (list_eq l k)}.

Proof is constructive, so a Haskell sort program can be extracted.

Title Page

Contents

44 →

→

Page 4 of 100

Go Back

Full Screen

Close

Quit

3. List equality

- Same up to permutation
- Same representative?

Title Page

Contents

→

→

Page 4 of 100

Go Back

Full Screen

Close

Quit

3. List equality

- Same up to permutation
- Same representative?

Same underlying multiset

Title Page

Contents

→

Page 4 of 100

Go Back

Full Screen

Close

Quit

3. List equality

- Same up to permutation
- Same representative?

Same underlying multiset

```
Fixpoint list_fmset [l:list] : fmset :=
Cases l of
  nil_list => fmset_empty
| (letter_list a k) =>
        (fmset_head a (list_fmset k))
end.
Definition list_eq :=
  [l,k:list](fmset_eq (list_fmset l)
        (list_fmset k)).
```

Title Page

Contents

→

→

Page **5** of **100**

Go Back

Full Screen

Close

Quit

4. Formalizing Multisets?

- Coq: 'multiplicity' map to integers note: not finite
- Terese: residual system over 'letters' note: not commutative

our solution:

Title Page

Contents

→

→

Page 5 of 100

Go Back

Full Screen

Close

Quit

4. Formalizing Multisets?

- Coq: 'multiplicity' map to integers note: not finite
- Terese: residual system over 'letters' note: not commutative

our solution:

commutative residual systems over letters (= commutative residual algebras)

Title Page

Contents

→

→

Page 5 of 100

Go Back

Full Screen

Close

Quit

4. Formalizing Multisets?

- Coq: 'multiplicity' map to integers note: not finite
- Terese: residual system over 'letters' note: not commutative

our solution:

commutative residual systems over letters (= commutative residual algebras)

bonus (for me): formalization of part of Terese book

Title Page

Contents

→

Page 6 of 100

Go Back

Full Screen

Close

Quit

5. (Part of) Multiset Interface

- equality is an equivalence relation
- empty multiset, singleton, multiset sum
- sum is associative, commutative
- equality is congruence for sum
- empty multiset no elements
- element singleton is equal to it
- element sum is element of part

Title Page

Contents

44 >>>

•

Page 7 of 100

Go Back

Full Screen

Close

Quit

6. Definition of CRA

Algebra (A, -, 0) satisfying the following axioms.

- cra1 x 0 = x
- cra4 (x y) (z y) = (x z) (y z) (cube)
- cra5 (x y) x = 0
- cra6 x (x y) = y (y x) (commutativity)

Title Page

Contents

→

→

Page 8 of 100

Go Back

Full Screen

Close

Quit

7. Some CRAs

- natural numbers with cut-off subtraction
- bits with cut-off subtraction
- sets with set-difference
- multisets with multiset-difference
- positive natural numbers with c-o division
- rationals with cut-off subtraction

Non-example: integers with subtraction

Title Page

Contents

44 ▶▶

→

Page 9 of 100

Go Back

Full Screen

Close

Quit

8. Some facts on CRAs

- cra2 x x = 0
- $cra3 \ 0 x = 0$
- $\bullet (x-y) z = (x-z) y.$
- (x y) (x z) = (z y) (z x)

Title Page

Contents

→

Page 10 of 100

Go Back

Full Screen

Close

Quit

8.1. Proof of (x - y) - z = (x - z) - y

$$(x-y)-z = ((x-y)-z)-((z-y)-z)$$

$$= ((x-y)-(z-y))-(z-(z-y))$$

$$= ((x-z)-(y-z))-(y-(y-z))$$

$$= ((x-z)-y)-((y-z)-y)$$

$$= (x-z)-y$$

Title Page

Contents

→

→

Page 11 of 100

Go Back

Full Screen

Close

Quit

9. The Natural Order

$$x \le y : \iff y - x = 0$$

- $\bullet \le$ is a partial ordering
- Minus is not determined by ordering (for infinite CRAs)
- Minus monotonic: if $x \le x'$, then $x y \le x' y$
- Minus is antitonic: if $y \le y'$, then $x y' \le x y$.

Title Page

Contents

44 ▶▶

→

Page 12 of 100

Go Back

Full Screen

Close

Quit

10. Infimum

$$x \wedge y := (x - (x - y))$$

- \wedge is the infimum w.r.t. \leq .
- \bullet \land is idempotent.
- $\bullet \wedge$ is commutative.
- $x \land y \le x$ and $x \land y \le y$.
- $x \le y$ iff $x = x \land y$.
- \bullet \land is associative.

Title Page

Contents

44 ▶▶

→

Page 12 of 100

Go Back

Full Screen

Close

Quit

10. Infimum

$$x \wedge y = (x - (x - y))$$

- \wedge is the infimum w.r.t. \leq .
- \bullet \land is idempotent.
- $\bullet \land$ is commutative.
- $x \land y \le x$ and $x \land y \le y$.
- $x \le y$ iff $x = x \land y$.
- \bullet \land is associative.

Otter

Title Page

Contents

44 >>

→

Page 13 of 100

Go Back

Full Screen

Close

Quit

10.1. Minus and infimum

- $\bullet \ x y = x (x \wedge y).$
- (x y) (y x) = x y.
- $\bullet (x y) \land (y x) = 0.$
- $\bullet (x \wedge y) z = (x z) \wedge (y z).$

11. Supremum and Sum

a+b=c if c-a=b and a-c=0 $a\vee b\equiv a+(b-a).$

Title Page

Contents

-44 →→

→

Page 14 of 100

Go Back

Full Screen

Close

Quit

12. Related Work

12.1. Max-plus algebras

(()N,0,max,+)

not finitely axiomatiable

12.2. Iseki's BCK-algebras

- cbck1 ((x-y) (x-z)) (z-y) = 0
- cbck2 x x = 0
- cbck3 0 x = 0
- cbck4 (x (x y)) y = 0
- cbck5 x y = y x = 0 implies x = y

Title Page

Contents

Page 15 of 100

Go Back

Full Screen

Close

Quit

• cbck6 x - (x - y) = y - (y - x) (commutativity)

Title Page

Contents

◆◆

•

Page 16 of 100

Go Back

Full Screen

Close

Quit

12.3. Unique Decomposition

Bas in two weeks