Z

Vincent van Oostrom

Theoretical Philosophy Universiteit Utrecht
The Netherlands
November 28, 2007

Z

Triangle
(Hyper)Normalization

Further Applications

Dehornoy's I Z

$\exists \bullet: A \rightarrow A, \forall a, b \in A$:
$a \rightarrow a^{\bullet} \& a \rightarrow b \Rightarrow b \rightarrow a^{\bullet}, a^{\bullet} \rightarrow b^{\bullet}$

$\exists \bullet: A \rightarrow A, \forall a, b \in A$:

$$
a \rightarrow b \Rightarrow b \rightarrow a^{\bullet}, a^{\bullet} \rightarrow b^{\bullet}
$$

$Z \Leftrightarrow I Z$

Consider the reflexive closure of \rightarrow

Self-distributivity

$$
x y z \rightarrow x z(y z)
$$

Self-distributivity

$$
\begin{aligned}
x y z & \rightarrow x z(y z) \\
x^{\bullet} & =x \\
(t s)^{\bullet} & =t^{\bullet}\left[x_{1}:=x_{1} s^{\bullet}, x_{2}:=x_{2} s^{\bullet}, \ldots\right]
\end{aligned}
$$

Self-distributivity

$$
\begin{aligned}
x y z & \rightarrow x z(y z) \\
x^{\bullet} & =x \\
(t s)^{\bullet} & =t^{\bullet}\left[x_{1}:=x_{1} s^{\bullet}, x_{2}:=x_{2} s^{\bullet}, \ldots\right] \\
(x y)^{\bullet} & =x y \\
(x y z)^{\bullet} & =x z(y z)
\end{aligned}
$$

Self-distributivity

$$
\begin{aligned}
x y z & \rightarrow x z(y z) \\
x^{\bullet} & =x \\
(t s)^{\bullet} & =t^{\bullet}\left[x_{1}:=x_{1} s^{\boldsymbol{\bullet}}, x_{2}:=x_{2} s^{\bullet}, \ldots\right]
\end{aligned}
$$

See: Braids and Self-distributivity (Dehornoy, 2000)

Triangle

$\exists \bullet: A \rightarrow A, \exists \multimap \rightarrow \subseteq \rightarrow \subseteq \rightarrow, \forall a \in A:$
$a \longrightarrow a^{\bullet} \& a \longrightarrow b \Rightarrow b \rightarrow a^{\bullet}$

$\exists \bullet: A \rightarrow A, \exists \multimap \rightarrow \subseteq \rightarrow \subseteq \rightarrow, \forall a \in A:$ $a \rightarrow b \Rightarrow b \rightarrow a^{\bullet}$

$<\Leftrightarrow$ Triangle

Consider the reflexive closure of \rightarrow

λ-calculus

$(\lambda x \cdot M) N \rightarrow M[x:=N]$

λ-calculus

$(\lambda x \cdot M) N \rightarrow M[x:=N]$

$$
\begin{array}{rlrl}
x^{\bullet} & =x \\
(\lambda x . M)^{\bullet} & =\lambda x \cdot M^{\bullet} & \\
(M N)^{\bullet} & =M^{\prime}\left[x:=N^{\bullet}\right] & \text { if } M \text { is an abstraction, } M^{\bullet}=\lambda x \cdot M^{\prime} \\
& =M^{\bullet} N^{\bullet} & \text { otherwise }
\end{array}
$$

λ-calculus

$$
\begin{aligned}
&(\lambda x \cdot M) N \rightarrow M[x:=N] \\
& \begin{aligned}
x^{\bullet} & =x
\end{aligned} \\
& \begin{aligned}
&(\lambda x \cdot M)^{\bullet}=\lambda x \cdot M^{\bullet} \\
&(M N)^{\bullet}=M^{[}\left[x:=N^{\bullet}\right] \\
&=M^{\bullet} N^{\bullet} \\
& \\
& I^{\bullet}=I \\
& \text { otherwise is abstraction, } M^{\bullet}=\lambda x \cdot M^{\prime}
\end{aligned} \\
& \begin{aligned}
((\lambda x y \cdot l y x) z I)^{\bullet} & =(\lambda y \cdot y z) I
\end{aligned}
\end{aligned}
$$

λ-calculus

$$
\begin{array}{rlrl}
(\lambda x \cdot M) N & \rightarrow M[x:=N] \\
x^{\bullet} & =x \\
(\lambda x \cdot M)^{\bullet} & =\lambda x \cdot M^{\bullet} & & \\
(M N)^{\bullet} & =M^{\prime}\left[x:=N^{\bullet}\right] & & \text { if } M \text { is an abstraction, } M^{\bullet}=\lambda x \cdot M^{\prime} \\
& =M^{\bullet} N^{\bullet} & & \text { otherwise }
\end{array}
$$

See Barendregt: The Lambda Calculus, Its Syntax and Semantics (1985)

$Z \Leftrightarrow<$

(If) Suppose $a \rightarrow b$
$\rightarrow \subseteq \rightarrow \Rightarrow a \longrightarrow b$
The triangle property $\Rightarrow b \longrightarrow a^{\bullet}$ hence also $a^{\bullet} \longrightarrow b^{\bullet}$. $\rightarrow \subseteq \rightarrow \Rightarrow b \rightarrow a^{\bullet} \rightarrow b^{\bullet}$
(only if) Def. $a \rightarrow b$ if b between a and a^{\bullet}, i.e. $\left(a \rightarrow b \rightarrow a^{\bullet}\right)$:
$-a \rightarrow b \Rightarrow b \rightarrow a^{\bullet} \Rightarrow \rightarrow \subseteq \rightarrow$.

- $a \rightarrow b \Rightarrow a \rightarrow b \Rightarrow \rightarrow \subseteq \rightarrow$.
- Suppose $a \rightarrow b$.
$a \rightarrow b \rightarrow a^{\bullet}$ by definition of \rightarrow.
$a \rightarrow b \Rightarrow a^{\bullet} \rightarrow b^{\bullet}$.
Hence $b \rightarrow a^{\bullet}$.

(Hyper)Cofinality

Definition

\triangleright is a many-step strategy for \rightarrow, if $\triangleright \subseteq \rightarrow^{+}$and both have the same normal forms.

(Hyper)Cofinality

Definition

\triangleright is a many-step strategy for \rightarrow, if $\triangleright \subseteq \rightarrow^{+}$and both have the same normal forms.

Definition
\triangleright is hyper-cofinal if $a \rightarrow b$ implies b reduces to some object on any maximal reduction from a which eventually always contains a \triangleright-step.

(Hyper)Cofinality

Definition

\triangleright is a many-step strategy for \rightarrow, if $\triangleright \subseteq \rightarrow^{+}$and both have the same normal forms.

Definition

\triangleright is hyper-cofinal if $a \rightarrow b$ implies b reduces to some object on any maximal reduction from a which eventually always contains a \triangleright-step.
If \bullet has the Z-property for \rightarrow, the many-step \rightarrow-strategy \rightarrow is:
$a \bullet b$ if a is not a normal form and $b=a^{\bullet}$.

(Hyper)Normalization

Theorem
\bullet is hyper-cofinal, if • has the Z-property.

(Hyper)Normalization

Theorem
\bullet is hyper-cofinal, if • has the Z-property.

(Hyper)Normalization

Theorem
\bullet is hyper-cofinal, if • has the Z-property.

\Rightarrow confluent

Confluence $\nRightarrow \mathrm{Z}$

Composition

If \bullet_{1}, \bullet_{2} have the Z-property for \rightarrow, so does their composition $\bullet 1 \circ \bullet_{2}$.

Composition

If \bullet_{1}, \bullet_{2} have the Z-property for \rightarrow, so does their composition $\bullet_{1} \circ \bullet_{2}$. Moreover, $a^{\bullet} \rightarrow\left(a^{\bullet_{2}}\right)^{\bullet_{1}}$

The Z-property for λ-calculus

(Self) $M \rightarrow M^{\bullet}$;
(Rhs) $M^{\bullet}\left[x:=N^{\bullet}\right] \rightarrow M[x:=N]^{\bullet}$; and
(Z) $M \rightarrow N \Rightarrow N \rightarrow M^{\bullet} \rightarrow N^{\bullet}$;
each by induction and cases on M.
$\lambda \sigma$

Calculi with explicit substitutions

Calculi with explicit substitutions

Weakly orthogonal rewriting

rewrite systems only having trivial critical pairs $(\lambda \beta \eta)$.

Weakly orthogonal rewriting

rewrite systems only having trivial critical pairs $(\lambda \beta \eta)$.

$$
\begin{aligned}
& c(x) \rightarrow x \\
& f(f(x)) \rightarrow f(x) \\
& g(f(f(f(x)))) \rightarrow g(f(f(x)))
\end{aligned}
$$

Weakly orthogonal rewriting

rewrite systems only having trivial critical pairs $(\lambda \beta \eta)$.

$$
\begin{aligned}
& c(x) \rightarrow x \\
& f(f(x)) \rightarrow f(x) \\
& g(f(f(f(x)))) \rightarrow g(f(f(x)))
\end{aligned}
$$

Contract maximal set of non-overlapping redexes inside-out

Weakly orthogonal rewriting

rewrite systems only having trivial critical pairs $(\lambda \beta \eta)$.

$$
\begin{aligned}
& c(x) \rightarrow x \\
& f(f(x)) \rightarrow f(x) \\
& g(f(f(f(x)))) \rightarrow g(f(f(x)))
\end{aligned}
$$

Contract maximal set of non-overlapping redexes inside-out

$$
g(f(f(c(f(f(x))))))^{\bullet}=g(f(f(x)))=g(f(f(f(f(x)))))^{\bullet}
$$

Weakly orthogonal rewriting

rewrite systems only having trivial critical pairs $(\lambda \beta \eta)$.

$$
\begin{aligned}
& c(x) \rightarrow x \\
& f(f(x)) \rightarrow f(x) \\
& g(f(f(f(x)))) \rightarrow g(f(f(x)))
\end{aligned}
$$

outside-in does not work!

Weakly orthogonal rewriting

rewrite systems only having trivial critical pairs $(\lambda \beta \eta)$.

$$
\begin{aligned}
& c(x) \rightarrow x \\
& f(f(x)) \rightarrow f(x) \\
& g(f(f(f(x)))) \rightarrow g(f(f(x)))
\end{aligned}
$$

outside-in does not work!

$$
g(f(f(c(f(f(x)))))) \rightarrow g(f(f(f(f(x)))))
$$

Conclusions

Surprising input from outside (Dehornoy): simple notion not known

Conclusions

Surprising input from outside (Dehornoy): simple notion not known Does the Z-property hold for β-reduction with restricted η-expansion.

