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Self-distributivity

xyz → xz(yz)

x• = x

(ts)• = t•[x1:=x1s
•, x2:=x2s

•, . . .]

See: Braids and Self-distributivity (Dehornoy, 2000)
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λ-calculus

(λx .M)N →M[x :=N]

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

See Barendregt: The Lambda Calculus, Its Syntax and Semantics
(1985)



Z ⇔ <

(If) Suppose a → b
→ ⊆ ◦−→ ⇒ a ◦−→ b
The triangle property ⇒ b ◦−→ a• hence also a• ◦−→ b•.
◦−→ ⊆ � ⇒ b � a• � b•



Z ⇔ <

(only if) Def. a ◦−→ b if b between a and a•, i.e. (a � b � a•):

I a → b ⇒ b � a• ⇒ → ⊆ ◦−→.

I a ◦−→ b ⇒ a � b ⇒ ◦−→ ⊆ �.

I Suppose a ◦−→ b.
a � b � a• by definition of ◦−→.
a � b ⇒ a• � b•.
Hence b ◦−→ a•.



(Hyper)Cofinality

Definition
. is a many-step strategy for →, if . ⊆ →+ and both have the
same normal forms.

Definition
. is hyper-cofinal if a � b implies b reduces to some object on any
maximal reduction from a which eventually always contains a
.-step.

If • has the Z-property for →, the many-step →-strategy •−→ is:

a •−→ b if a is not a normal form and b = a•.
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Composition

If •1, •2 have the Z-property for →, so does their composition
•1 ◦ •2.

Moreover, a•i � (a•2)•1
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If •1, •2 have the Z-property for →, so does their composition
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The Z-property for λ-calculus

(Self) M � M•;

(Rhs) M•[x :=N•] � M[x :=N]•; and

(Z) M → N ⇒ N � M• � N•;

each by induction and cases on M.
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Weakly orthogonal rewriting

rewrite systems only having trivial critical pairs (λβη).

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

outside-in does not work!

g(f (f (c(f (f (x)))))) → g(f (f (f (f (x)))))
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Surprising input from outside (Dehornoy): simple notion not known

Does the Z-property hold for β-reduction with restricted
η-expansion.
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