Clickable Proofs

Vincent van Oostrom Tim Selier

Universiteit Utrecht

TF lunch, Utrecht, March 5, 2013

Proofs Proofterms Proofgraphs Conclusion

Proofs

Proofterms

Proofgraphs

Conclusion

Proofs Proofterms Proofgraphs Conclusion

Natural Deduction

 $set of named (open) assumptions \vdash conclusion$

Excluded middle proof

$$\frac{\frac{[C]^{y}}{C \vee \neg C} \vee^{IL} [\neg (C \vee \neg C)]^{x}}{\frac{\frac{1}{\neg C} \neg^{I^{y}}}{C \vee \neg C} \vee^{IR} [\neg (C \vee \neg C)]^{x}} \neg_{E}$$

$$\frac{\frac{1}{C \vee \neg C} \vee^{IR}}{\frac{1}{C \vee \neg C} RAA^{x}} \neg_{E}$$

proof for $\emptyset \vdash C \lor \neg C$, for all formulas substituted for C.

Universiteit Utrecht

Proofs

Proofs as terms

(Standard) Ideas

- formalisation of informal devices (triangles, withdrawing)
- propositional formulas as base types
- proof rules as simply typed symbols over base types
- proofs as terms over the symbols

Proofs
Proofterms
Proofgraphs
Conclusion

Proofs as terms

(Standard) Ideas

- formalisation of informal devices (triangles, withdrawing)
- propositional formulas as base types
- proof rules as simply typed symbols over base types
- proofs as terms over the symbols

Change in perspective:

formulas and how proved \Rightarrow proofs and what they prove

Proofs as terms

(Standard) Ideas

- formalisation of informal devices (triangles, withdrawing)
- propositional formulas as base types
- proof rules as simply typed symbols over base types
- proofs as terms over the symbols

Change in perspective:

formulas and how proved \Rightarrow proofs and what they prove

Notations to suggest correspondence rules and symbols:

- product types $(A \times B)$ as juxtaposition $(A \cap B)$;
- function types $(A \rightarrow B)$ as fractions $\frac{A}{B}$;

Proofterms

Natural deduction proofsignature

$$x: \alpha \quad \bot E: \frac{1}{\alpha} \quad RAA: \frac{\left(\frac{-\alpha}{1}\right)}{\alpha} \quad \neg I: \frac{\left(\frac{\alpha}{1}\right)}{\neg \alpha} \quad \neg E: \frac{\alpha \quad \neg \alpha}{1}$$

$$\land I: \frac{\alpha}{\alpha \land \beta} \quad \land EL: \frac{\alpha \land \beta}{\alpha} \quad \land ER: \frac{\alpha \land \beta}{\beta}$$

$$\lor IL: \frac{\alpha}{\alpha \lor \beta} \quad \lor IR: \frac{\beta}{\alpha \lor \beta} \quad \lor E: \frac{\alpha \lor \beta \quad \left(\frac{\alpha}{\gamma}\right) \quad \left(\frac{\beta}{\gamma}\right)}{\gamma}$$

$$\rightarrow I: \frac{\left(\frac{\alpha}{\beta}\right)}{\alpha \rightarrow \beta} \quad \rightarrow E: \frac{\alpha \quad \alpha \rightarrow \beta}{\beta}$$

$$\leftrightarrow I: \frac{\left(\frac{\alpha}{\beta}\right) \quad \left(\frac{\beta}{\alpha}\right)}{\alpha \leftrightarrow \beta} \quad \leftrightarrow EL: \frac{\alpha \quad \alpha \leftrightarrow \beta}{\beta} \quad \leftrightarrow ER: \frac{\alpha \leftrightarrow \beta \quad \beta}{\alpha}$$
set of typed (free) variables \vdash type of proofterm

Proofs Proofterms Proofgraphs Conclusion

Universiteit Utrecht

(ロ > (品 > (主 > (1 =)) = の(で)

Excluded middle proofterm

Proofs Proofterms Proofgraphs Conclusion

$\mathsf{RAA}(x.\neg\mathsf{E}(\lor\mathsf{IR}(\neg\mathsf{I}(y.\neg\mathsf{E}(\lor\mathsf{IL}(y),x))),x))$

proofterm for $\varnothing \vdash C \lor \neg C$, for all formulas substituted for C

Excluded middle proofterm

Proofs Proofterms Proofgraphs Conclusion

$$\mathsf{RAA}(x.\neg\mathsf{E}(\lor\mathsf{IR}(\neg\mathsf{I}(y.\neg\mathsf{E}(\lor\mathsf{IL}(y),x))),x))$$

proofterm for $\varnothing \vdash C \lor \neg C$, for all formulas substituted for C

Lemma

There is a bijection between proofs and proofterms.

Proofs as graphs

Ideas

- liberation from the inductive bottom-up straitjacket
- proof rules as nodes with ports labelled by formulas (input: premiss, output: conclusion, bound: assumption)
- proofs as graphs over the nodes
- partial correctness via conditions on proofgraph

Proofs as graphs

Ideas

- liberation from the inductive bottom-up straitjacket
- proof rules as nodes with ports labelled by formulas (input: premiss, output: conclusion, bound: assumption)
- proofs as graphs over the nodes
- partial correctness via conditions on proofgraph

Proof construction by iteration

- introduce a fresh copy of a proofnode
- click two proofpieces together on their ports (formulas should unify; lego)

and undoing these actions

Universiteit Utrecht

Natural deduction proofnodes

Proofs Proofterms Proofgraphs Conclusion

Universiteit Utrecht

 \sim set of labelled (free) ports \vdash label of conclusion port

Excluded middle proofgraph

proofgraph for $\varnothing \vdash C \lor \neg C$, for all formulas substituted for C

Universiteit Utrecht

Proofgraphs

Excluded middle proofgraph

proofgraph for $\varnothing \vdash C \lor \neg C$, for all formulas substituted for C

Lemma

There is a bijection between proofs and correct proofgrapher

Universiteit Utrecht

Proofgraphs

Correctness

Idea:

Correctness

The proof-like graph should be completable by further constructions, but without destruction, into a proofgraph (graph corresponding to a proofterm)

Correctness 1: unification

Definition

The *unification problem* of a proof-like graph is the set of equations arising from identifying the formulae of the ports connected by click-edges.

Example

Unification problem for excluded middle proof

Most general solution

$$A = B = F = C \lor \neg C \qquad E = G = C \qquad D = H = \neg C$$

Universiteit Utrecht

Correctness 1: unification

Definition

The *unification problem* of a proof-like graph is the set of equations arising from identifying the formulae of the ports connected by click-edges.

Example

Unification problem for excluded middle proof

Most general solution

 $A = B = F = C \lor \neg C$ F = G = C $D = H = \neg C$

Correctness

For a proof-like graph to be a proofgraph it is necessary that tsuniversiteit Utrecht unification problem be solvable.

Proofgraphs

Correctness 2: click-forest

Correctness

For a proof-like graph to be a proofgraph it is necessary that its click-edges constitute a forest, all click-edges connect input to output ports, and no port is connected to two click-edges.

Proofs Proofterms **Proofgraphs** Conclusion

Correctness 2: click-forest

Correctness

For a proof-like graph to be a proofgraph it is necessary that its click-edges constitute a forest, all click-edges connect input to output ports, and no port is connected to two click-edges.

enforced automatically by interface of app (e.g. cannot drag one port of a proofpiece onto another)

Correctness 3: bind-forest

Binding problems (cyclic and dag)

Proofs Proofterms **Proofgraphs** Conclusion

Correctness 3: bind-forest

Binding problems (cyclic and dag)

Proofs Proofterms **Proofgraphs** Conclusion

Correctness 3: bind-forest

Binding problems (cyclic and dag)

Proofs Proofterms Proofgraphs Conclusion

Correctness

For a proof-like graph to be a proofgraph it is necessary that click-edges can be adjoined to yield a forest such that all bind-edges are click-paths.

Graph problem

Problem

Given a set of vertices and two sets E,P of ordered pairs of vertices, is there a (rooted, directed) forest on the vertices such that for each pair of vertices in E(P), there is an edge (a path) from the first to the second in the forest?

Graph problem

Problem

Given a set of vertices and two sets E,P of ordered pairs of vertices, is there a (rooted, directed) forest on the vertices such that for each pair of vertices in E(P), there is an edge (a path) from the first to the second in the forest?

cycle-checking easy; dag-checking seems hard

Conclusions and questions

Second-order signature adequate for natural deduction

Conclusions and questions

- Second-order signature adequate for natural deduction
- Complexity of graph problem?

