Clickable Proofs

Vincent van Oostrom
 Tim Selier

Universiteit Utrecht

TF lunch, Utrecht, March 5, 2013

Proofs

Proofterms

Proofgraphs

Conclusion

Natural Deduction

$$
\begin{aligned}
& {[\neg \alpha] \quad[\alpha]} \\
& \alpha \quad \stackrel{\perp}{\alpha} \perp \mathrm{E} \quad \stackrel{\nabla}{\stackrel{\perp}{\alpha}} \mathrm{RAA} \quad \stackrel{\nabla}{\neg \alpha} \neg \mathrm{I} \quad \frac{\alpha \neg \alpha}{\perp} \neg \mathrm{E} \\
& \frac{\alpha \beta}{\alpha \wedge \beta} \wedge \mathrm{I} \quad \frac{\alpha \wedge \beta}{\alpha} \wedge \mathrm{EL} \quad \frac{\alpha \wedge \beta}{\beta} \wedge \mathrm{ER} \\
& \text { [} \alpha \text {] [} \beta \text {] } \\
& \frac{\alpha \vee \beta \stackrel{\nabla}{\gamma} \stackrel{\nabla}{\gamma}}{\gamma} \vee \mathrm{E} \\
& \text { [} \alpha \text {] } \\
& \frac{\stackrel{\rightharpoonup}{\beta}}{\alpha \rightarrow \beta} \rightarrow 1 \\
& \frac{\alpha \quad \alpha \rightarrow \beta}{\beta} \rightarrow \mathrm{E} \\
& {[\alpha] \quad[\beta]}
\end{aligned}
$$

set of named (open) assumptions \vdash conclusion

Excluded middle proof

Proofs
Proofterms

$$
\frac{\frac{[C]^{y}}{C \vee \neg C l L}[\neg(C \vee \neg C)]^{x}}{} \neg \mathrm{E}
$$

proof for $\varnothing \vdash C \vee \neg C$, for all formulas substituted for C.

Proofs as terms

(Standard) Ideas

- formalisation of informal devices (triangles, withdrawing)
- propositional formulas as base types
- proof rules as simply typed symbols over base types
- proofs as terms over the symbols

Proofs as terms

(Standard) Ideas

- formalisation of informal devices (triangles,withdrawing)
- propositional formulas as base types
- proof rules as simply typed symbols over base types
- proofs as terms over the symbols

Change in perspective:
formulas and how proved \Rightarrow proofs and what they prove

Proofs as terms

(Standard) Ideas

- formalisation of informal devices (triangles,withdrawing)
- propositional formulas as base types
- proof rules as simply typed symbols over base types
- proofs as terms over the symbols

Change in perspective:
formulas and how proved \Rightarrow proofs and what they prove

Notations to suggest correspondence rules and symbols:

- product types $(A \times B)$ as juxtaposition $\left(\begin{array}{ll}A & B\end{array}\right)$;
- function types $(A \rightarrow B)$ as fractions $\frac{A}{B}$;

Natural deduction proofsignature

$$
\begin{aligned}
& x: \alpha \quad \perp \mathrm{E}: \frac{\perp}{\alpha} \quad \operatorname{RAA}: \frac{\left(\frac{\neg \alpha}{\perp}\right)}{\alpha} \quad \neg \mathrm{I}: \frac{\left(\frac{\alpha}{\perp}\right)}{\neg \alpha} \quad \neg \mathrm{E}: \frac{\alpha \quad \neg \alpha}{\perp} \\
& \wedge \mathrm{I}: \frac{\alpha \beta}{\alpha \wedge \beta} \wedge \mathrm{EL}: \frac{\alpha \wedge \beta}{\alpha} \wedge \mathrm{ER}: \frac{\alpha \wedge \beta}{\beta} \\
& \text { vIL }: \frac{\alpha}{\alpha \vee \beta} \quad \vee I \mathrm{R}: \frac{\beta}{\alpha \vee \beta} \quad \vee \mathrm{E}: \frac{\alpha \vee \beta\left(\frac{\alpha}{\gamma}\right)\left(\frac{\beta}{\gamma}\right)}{\gamma} \\
& \rightarrow \mathrm{I}: \frac{\left(\frac{\alpha}{\beta}\right)}{\alpha \rightarrow \beta} \rightarrow \mathrm{E}: \frac{\alpha \quad \alpha \rightarrow \beta}{\beta} \\
& \leftrightarrow \mathrm{I}: \frac{\left(\frac{\alpha}{\beta}\right)\left(\frac{\beta}{\alpha}\right)}{\alpha \leftrightarrow \beta} \leftrightarrow \mathrm{EL}: \frac{\alpha \quad \alpha \leftrightarrow \beta}{\beta} \leftrightarrow \mathrm{ER}: \frac{\alpha \leftrightarrow \beta \quad \beta}{\alpha}
\end{aligned}
$$

set of typed (free) variables \vdash type of proofterm

Excluded middle proofterm

Proofs

Proofterms
Proofgraphs

$$
\operatorname{RAA}(x . \neg \mathrm{E}(\vee \operatorname{IR}(\neg \mathrm{I}(y \cdot \neg \mathrm{E}(\vee \operatorname{lL}(y), x))), x))
$$

proofterm for $\varnothing \vdash C \vee \neg C$, for all formulas substituted for C

Excluded middle proofterm

Proofs

$$
\operatorname{RAA}(x \cdot \neg \mathrm{E}(\operatorname{vIR}(\neg \operatorname{I}(y \cdot \neg \mathrm{E}(\operatorname{vIL}(y), x))), x))
$$

proofterm for $\varnothing \vdash C \vee \neg C$, for all formulas substituted for C Lemma
There is a bijection between proofs and proofterms.

Proofs as graphs

Ideas

- liberation from the inductive bottom-up straitjacket
- proof rules as nodes with ports labelled by formulas (input: premiss, output: conclusion, bound: assumption)
- proofs as graphs over the nodes
- partial correctness via conditions on proofgraph

Proofs as graphs

Ideas

- liberation from the inductive bottom-up straitjacket
- proof rules as nodes with ports labelled by formulas (input: premiss, output: conclusion, bound: assumption)
- proofs as graphs over the nodes
- partial correctness via conditions on proofgraph

Proof construction by iteration

- introduce a fresh copy of a proofnode
- click two proofpieces together on their ports (formulas should unify; lego)
and undoing these actions

Natural deduction proofnodes

Proofs
Proofterms
Proofgraphs
Conclusion

Excluded middle proofgraph

Excluded middle proofgraph

Correctness

Proofs

Proofterms
Proofgraphs
Idea:
Correctness
The proof-like graph should be completable by further constructions, but without destruction, into a proofgraph (graph corresponding to a proofterm)

Correctness 1: unification

Definition

The unification problem of a proof-like graph is the set of equations arising from identifying the formulae of the ports connected by click-edges.

Example

Unification problem for excluded middle proof

$$
\left.\begin{array}{rlrlrl}
\perp & =\perp & B & =C \vee D & \neg B & =\neg A \\
D & =\neg E & & \perp & =\perp & F
\end{array}\right)=G \vee H
$$

Most general solution

$$
A=B=F=C \vee \neg C \quad E=G=C \quad D=H=\neg C
$$

Correctness 1: unification

Definition

The unification problem of a proof-like graph is the set of equations arising from identifying the formulae of the ports connected by click-edges.

Example

Unification problem for excluded middle proof

$$
\left.\begin{array}{rlrlrl}
\perp & =\perp & B & =C \vee D & \neg B & =\neg A \\
D & =\neg E & & \perp & =\perp & F
\end{array}\right)=G \vee H
$$

Most general solution

$$
A=B=F=C \vee \neg C \quad E=G=C \quad D=H=\neg C
$$

Correctness

For a proof-like graph to be a proofgraph it is necessary
$t S_{\text {Universiteit Utrecht }}$ unification problem be solvable.

Correctness 2: click-forest

Correctness

Proofterms
Proofgraphs

For a proof-like graph to be a proofgraph it is necessary that its click-edges constitute a forest, all click-edges connect input to output ports, and no port is connected to two click-edges.

Correctness 2: click-forest

Correctness

For a proof-like graph to be a proofgraph it is necessary that its click-edges constitute a forest, all click-edges connect input to output ports, and no port is connected to two click-edges.
enforced automatically by interface of app
(e.g. cannot drag one port of a proofpiece onto another)

Correctness 3: bind-forest

Binding problems (cyclic and dag)

Proofs
 Proofterms
 Proofgraphs

Conclusion

Correctness 3: bind-forest

Binding problems (cyclic and dag)

Proofterms
Proofgraphs

Correctness 3: bind-forest

Binding problems (cyclic and dag)

Proofs
Proofterms
Proofgraphs

Correctness

For a proof-like graph to be a proofgraph it is necessary that click-edges can be adjoined to yield a forest such that all bind-edges are click-paths.

Graph problem

Problem

Given a set of vertices and two sets E,P of ordered pairs of vertices, is there a (rooted, directed) forest on the vertices such that for each pair of vertices in $E(P)$, there is an edge (a path) from the first to the second in the forest?

Graph problem

Problem

Given a set of vertices and two sets E,P of ordered pairs of vertices, is there a (rooted, directed) forest on the vertices such that for each pair of vertices in $E(P)$, there is an edge (a path) from the first to the second in the forest?
cycle-checking easy; dag-checking seems hard

Conclusions and questions

- Second-order signature adequate for natural deduction

Conclusions and questions

－Second－order signature adequate for natural deduction
－Complexity of graph problem？

